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Introduction

Recent technological advances, like aerial laser and
satellite scanning result in increasingly complex
environmental data over large regions in space and
relatively long periods of time. In Baxevani, Caires and
Rychlik (2006), we have used non homogeneous
spatio-temporal Gaussian fields to model the variation of
significant wave height using data from satellites and buoys.
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Spatio-Temporal Model in Baxevani et al. (2006)

For rS(p) = σ2 exp(−|p|2/2L2) we introduce time
dependence by considering the recursive autoregression

Z(p, t) = ρZ(p − vdt, t− dt) +
√

1 − ρ2Φt(p),

with independent (in t) innovations Φt(p) having the
covariance rS . The velocity v depends on both position p

and time t. The resulting (stationary) covariance is of the
form Cov(Z(p, 0), Z(p, t)) = ρtrS(p − vt).

Motivation: At each time step the past surface is moving
forward to the new location with the velocity v and is
modified by an independent innovation with the prescribed
(fixed) spatial covariance structure.
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Goal

We want to provide with a fully continuous set up!
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Stochastic Integration

First, we establish the integrals that allow to introduce
spatio-temporal fields:

X(p, t) =

∫

f(t, s)Φ(p; ds),

for deterministic f and Φ(p; ds) Gaussian random field
measure.
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Stochastic Integration I

For each t ∈ R let rS(p,p′; t) be a spatial covariance in p

and p′ (non-negative definite). Then, for a measure µ on the
real line (most often we consider the Lebesgue measure):

r(a,b](p,p
′) =

∫ b

a

rS(p,p′; s)dµ(s)

is a well defined covariance for any given a < b ∈ R.
It follows from the additivity of the covariance function with
respect to independent fields and its correspondence to the
additivity of the integral with respect to the measure µ, that
there exists a family of Gaussian spatial fields Φ(p; (a, b])
centered at zero so that:
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Stochastic Integration II

For a < b, c < d ∈ R, we have

r(a,b]∩(c,d](p,p
′) = Cov(Φ(p; (a, b]),Φ(p′; (c, d]))

For [a, b) =
⋃∞

i=1[ai, bi) where (ai, bi] are pairwise disjoint
intervals, then

Φ(p; [a, b)) =
∞

∑

i=1

Φ(p; [ai, bi))

with probability one.
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Stochastic Integration III

Thus Φ is a σ- additive measure having as values Gaussian
random fields and

f(t) =

n
∑

i=1

αi1[ai,bi)(t),

for [ai, bi), i = 1 . . . n disjoint intervals, we write

X(p) :=

∫

f(s)Φ(p; ds) =
n

∑

i=1

αiΦ(p; [ai, bi)).

X(p), is Gaussian centered with covariance
∑n

i=1 α
2
i r[ai,bi)(p,p

′) =
∫

|f(t)|2rS(p,p′; s)dµ(s).
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Stochastic Integration IV

The remainder off the construction involves extending this
mapping to be valid for any complex-valued function f that
satisfies

∫

|f(s)|2rS(p,p; s)dµ(s) <∞,

which can be done using standard measure theoretic
arguments. In particular, for any f, g ∈ L2(µ)

rX,Y (p,p′) = Cov(X(p), Y (p′)) =

∫

f(s)g(s)rS(p,p′; s)dµ(s)
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Example I

A simple version of the previous covariance is for rS
independent of time, rS(p,p′; s) ≡ rS(p,p′). Then,

Cov(X(p), X(p′)) = rS(p,p′)

∫

|f(s)|2dµ(s)

and the role of f is reduced to multiplication by a constant.
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Temporal Moving Averages I

The previous construction allows to build a very general
temporal dependence by considering:

X(p, t) =

∫

f(t, s)Φ(p; ds), f ∈ L2(µ).

A special case is: for rS independent of time and

f(t, s) = f(t− s),

X(p, t) =

∫

f(t− s)Φ(p; ds)

is called a temporal moving average of Φ.
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Temporal Moving Averages

Lemma: The temporal moving average of Φ is Gaussian
and stationary in time. Indeed, Φ has covariance

Cov(X(p, t), X(p′, t′)) = rS(p,p′)

∫

f(t− s)f(t′ − s)dµ(s)

= rS(p,p′)f ∗ f̃(t− t′) =

= rS(p,p′)ρ(t− t′)

where f ∗ g(u) =
∫

f(u− s)g(s)dµ(s) and f̃(u) = f(−u).
Also, by the stochastic integral, we have
X(p, t) = Φ(p; f(t−)) is real valued Gaussian random
variable for every (p, t).
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Discrete Temporal Moving Averages

To see the relation to moving averages in time series
analysis, let s = i∆t, i = −M, . . . ,M for some large M and
t = n∆t. Then,

X(p, n∆t) = Xn(p) ≈
M
∑

i=−M

√
∆tf((n−i)∆t)εi(p) =

N
∑

k=−N

αkεn−k(p)

where εi(p) are independent (in time) Gaussian fields with
Cov(εi(p), εi(p

′)) = rS(p,p′) that are given by

εi(p) =
Φ(p; [i∆t, (i+ 1)∆t))√

∆t
=

Φ(p; (i+ 1)∆t) − Φ(p; i∆t)√
∆t

.
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Example II

For f(t) = e−λt1[0,∞)(t), the spatio-temporal is defined by

X(p, t) =

∫ t

−∞
e−λ(t−s)Φ(p; ds)

and is has covariance

Cov(X(p, t), X(p′, t′)) = rS(p,p′)
1

2λ
e−λ|t−t′|
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Static fields? (I)

Fields defined by

X(p, t) =

∫

f(t− s)Φ(p; ds)

do not move.
Indeed, the distribution of the velocity defined by

V =

(

−Xt

Xx
,−Xt

Xy

)

is centered around zero.
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Static fields? (II)

For this, notice that the covariance of the derivatives of the
field X(p, t), which are shown to exist as stochastic
integrals, are given by

Cov(X(p, t), Xx′(p′, t′)) =

∫

f(t− s)f(t′ − s)rx
′

S (p,p′; s)dµ(s)

Cov(X(p, t), Xt′(p
′, t′)) =

∫

f(t− s)ft′(t
′ − s)rS(p,p′; s)dµ(s)

Cov(Xx(p, t), Xt′(p
′, t′)) =

∫

f(t− s)ft′(t
′ − s)rxS(p,p′; s)dµ(s)

So, in order to define spatio-temporal fields that move in
time we need something more!!
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Flow of diffeomorphisms

Consider a velocity field v : R
2 × R → R and 0 ≤ t0 ≤ s ≤ 1.

Then the motion of a point is modelled by means of a flow
of diffeomorphisms

φ : R
2 × [0, 1]2 → R

2

φ(p, 0, 1) = φ(p), φ(p, s, s) = p, φ(·, t0, s) = φ(·, u, s) ◦ φ(·, t0, u)
that are the solution to the transport equation

φ(p, t0, s) = p +

∫ s

t0

v(φ(p, t0, u), u)du, t < s.

For simplicity consider φs(p) = φ(p, 0, s), t < s and
ψs(p) = φ−1

s (p) for the point that after time s is located at p.
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Spatio-temporal dynamic models I

Now define

X(p) :=

∫

f(s)Φ(φ−s(p); ds) =
n

∑

i=1

αiΦ(ψ−s(p); ai, bi).

Then we can get a general spatio-temporal model by
taking

X(p, t) :=

∫

f(s, t)Φ(ψ−s(p); ds)
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Spatio-temporal dynamic models II

Finally, define the following new dynamical model

Y (p, t) = X(ψt(p), t) =

∫

f(t− s)Φ(ψt−s(p); ds)

with covariance function

Cov(Y (p, t), Y (p′, t′)) =

∫

f(t−s)f(t′−s)rS(ψt−s(p), ψt′−s(p
′); s)dµ(s)

Dynamically evolving Gaussian spatial fields – p. 19/22



Spatio-temporal dynamic models III

Theorem: Consider a spatio-temporal centered Gaussian
field, Z(p, t) defined by the recursive formula

Z(p, t) = ρZ(ψdt(p), t− dt) +
√

1 − ρ2εt(p),

where ρ = ρ(dt) = e−λdt for some λ ≥ 0, a suitably chosen
time lag, dt, and independent in time random fields εt(p)
with the spatial covariance Cov(εt(p), εt(p

′)) = rS(p,p′; t).
Let also ψt(p) be a flow of diffeomorhisms as defined
before. Then, the Gaussian field Z(p, t) has a covariance
function that converges with time to the covariance function
of the field Y (p, t). Moreover the field Z(p, t) moves with
velocity the v that governs the diffeomorphism.
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Conclusions I

We have constructed dynamically evolving stationary
fields that locally represent the data, and the long range
and long time variability are represented by location and
time dependent spectra.

Starting from a spatial only covariance we introduce
temporal dependence following a classical time series
analysis but with independent innovations having the
assume spatial structure.

For any covariance in space rS(p) and a fairly general
family of temporal correlations ρ(t), we show how to
effectively construct Gaussian fields having covariance
rS(p)ρ(t).
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Conclusions II

For the so-obtained fields, properly defined velocities
when sampled randomly from the surface are centered
at zero, indicating that these surfaces are dynamically
inactive.

We introduce dynamics by a velocity field representing
the motion of the surface.
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