Anisotropy analysis of 3d point processes

Claudia Lautensack with Aila Särkkä, Johannes Freitag, Katja Schladitz

Hochschule Darmstadt

Smögen Workshop Smögen, August 18-22, 2008

Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft

Motivation

Polar ice is compacted (sintered) snow. During the compression air pores are isolated in the ice.

Image: Freitag 1), Kipfstuhl 1), Stauffer 2) 1) Alfred-Wegener-Institute for polar and marine research, Bremerhaven 2) University Bern

Question

Does the location of the pores tell anything about the movements of the ice?

ттим Fraunhofer _{Institut} Techno- und Wirtschaftsmathematik

Data

tomographic images of ice samples cylinder 15 mm height, 15 mm diameter imaged inside a cold room at $-15^{\circ}C$

images from three depths: 153 m, 353 m, 505 m

14 samples per depth

Fraunhofer Institut Techno- und Wirtschaftsmathematik

ITWM

für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft

Model for pressing

shape of the pores not significant -> concentrate on pore centres

Transformation

volume preserving compression

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{x}{\sqrt{c}} \\ \frac{y}{\sqrt{c}} \\ cz \end{pmatrix}, 0 < c < 1$$

Folie 3

Aim

- detection of the distortion
- estimation of the parameter c

Methods in 2d

- point-pair rose density (Stoyan, Beneš, 1991)
- directional pair correlation function (Stoyan, Stoyan, 1992)
- Fry-method (Fry, 1979)
- directional K-function, 0-contour of the density $\frac{d}{d\varphi}K(r,\varphi)$ (Stoyan, Kendall, Mecke, 1995)

Idea

partition of circle compare estimates of summary statistics for different directions

Fraunhofer Institut Techno- und Wirtschaftsmathematik

Problems and ideas in 3d

measurement of characteristics easy and robust

methods for visualisation of results

Problems

Requirements

- more parameters than in 2d
- partition of the ball into suitable equal volume parts?

- -> choose cumulative instead of density functions
- -> adapt directions of investigation to the problem

Idea

Advantage of cone

- investigate point pattern in double cones aligned along coordinate axes
- compare observations
- large differences -> anisotropy

here: $\theta = \frac{\pi}{4}$

- + easy parametrisation w.r.t. spherical coordinates
- + can be rotated to arbitrary directions -> adaptable to data

Directional summary statistics: directional K

Directional version of the K-function

Second reduced moment measure of the cone C expected number of points within the double cone $x_0 + C$

Estimator

 K_{dir}

$$\lambda^{2} \widehat{K}_{\mathrm{dir},u,\theta}(r) = \sum_{x \in \psi} \sum_{y \in \psi, y \neq x} \frac{\mathbb{1}_{C_{u}(r,\theta)}(x-y)}{|W_{x} \cap W_{y}|}, \ r \ge 0,$$

Folie 7

 W_x translation of the window W by the vector x |B| volume of a set $B \subset \mathbb{R}^3$

Directional summary statistics: local G

Directional version of the nearest neighbour distance distribution function *G*

Distribution function of the distance from the typical point of the process to the closest point in the cone $x_0 + C$.

Estimator

 G_{loc}

$$\widehat{G}_{\mathsf{loc},u,\theta}(r) = \frac{\sum\limits_{(x,d)\in\psi} \mathbb{1}_{[0,r]}(d) \, \mathbb{1}\{x + C_u(d,\theta) \subset W\}}{\sum\limits_{(x,d)\in\psi} \mathbb{1}\{x + C_u(d,\theta) \subset W\}}, \, r \ge 0.$$

Folie 8

Fraunhofer Institut Techno- und Wirtschaftsmathematik

Directional summary statistics: global G

Directional version of the nearest neighbour distance distribution function G

Distribution function of the distance between x_0 and its nearest neighbour y conditioned on $y \in x_0 + C$.

Estimator

 G_{glob}

$$\widehat{G}_{ ext{glob},u, heta}(r) = rac{\sum\limits_{(x,y)\in\Psi} 1\!\!\!\mathrm{I}_{C_u(r, heta)}(x-y) \ 1\!\!\mathrm{I}_{W\ominus b(0,||x-y||)}(x)}{\sum\limits_{(x,y)\in\Psi} 1\!\!\!\mathrm{I}_{C_u(\infty, heta)}(x-y) \ 1\!\!\mathrm{I}_{W\ominus b(0,||x-y||)}(x)}, \ r \ge 0.$$

Folie 9

less points investigated, stronger for higher intensities?

Isotropy tests

Given

 \widehat{S}_x , \widehat{S}_y , \widehat{S}_z

Test statistics

n point patterns ψ_1, \ldots, ψ_n .

Estimators of one of the summary statistics with respect to the x-, y-, and z-direction.

$$T_{xy} = \int_{r_1}^{r_2} |\hat{S}_x(r) - \hat{S}_y(r)| \, dr, \text{ and}$$
$$T_z = \min\left(\int_{r_1}^{r_2} |\hat{S}_x(r) - \hat{S}_z(r)| \, dr, \int_{r_1}^{r_2} |\hat{S}_y(r) - \hat{S}_z(r)| \, dr\right),$$

where $[r_1, r_2]$ is a given interval.

Fraunhofer Institut Techno- und Wirtschaftsmathematik

Isotropy tests

Test statistics

$$T_{xy} = \int_{r_1}^{r_2} |\hat{S}_x(r) - \hat{S}_y(r)| \, dr, \text{ and}$$
$$T_z = \min\left(\int_{r_1}^{r_2} |\hat{S}_x(r) - \hat{S}_z(r)| \, dr, \int_{r_1}^{r_2} |\hat{S}_y(r) - \hat{S}_z(r)| \, dr\right),$$

Folie 11

Test

Alternative

reject isotropy hypothesis at level α if $T_{z,i}$ is larger than 100(1 - α)% of the estimated T_{xy} values

Monte Carlo test, if few replications available requires model for the data

Simulation study

Investigate different

Compress with pressing factor c.

- degrees of regularity: Matérn hard core point process and packing of balls (force biased algorithm)
- intensities: $\lambda = 500$ and $\lambda = 1000$
- hard core radii: R = 0.025, 0.05, and 0.075

Simulate regular point patterns in the unit cube.

- pressing factors: c = 0.7, 0.8, and 0.9

Simulation results: Matérn hard core

Parameters

 $\lambda = 500, R = 0.05, and c = 0.8$

Simulation results: Force biased

Parameters

 $\lambda = 500, R = 0.05, and c = 0.8$

Anisotropy analysis of 3d point processes

Powers of tests Investigate influence of degree of regularity, intensity, hard core radius, pressing factor interval of observation [0, 1.1R], [0, 4/3R], [0, 0.1] ([0, 0.2], resp.)test intervals 0.05 0.05 0.05 0.075 0.075 R0.075 0.0825 0^{1} 0.067 0.055 0.2 0.1 r_2 99.8 73.8 97.2 91.7 100 G_{loc} 172

21.3

19.9

 G_{glob}

 K_{dir}

68.2

79.7

powers of the tests on a 5% significance level, based on 1000 realisations

96.6

98.8

93.9

36.9

98.6

100

100

100

Existence of outliers

In real data the existence of outliers, i.e. points which violate the hard core condition, is likely. How does this influence the results?

Therefore:	 use point patterns from previous simulation
	- choose 5 random points x_1, \ldots, x_5 from each pattern
	- include a further point y_i in balls of radius R centred in x_i
Result	 decreasing powers of the tests
	- better results for K_{dir} and G_{loc} than for G_{glob} .

– larger integration intervals should be chosen.

Alternative: Investigate direction to nearest neighbour

Given	set of unit vectors $v_i = (x_i, y_i, z_i), i = 1, \dots, n$
Orientation matrix	$A = \begin{pmatrix} \sum x_i^2 & \sum x_i y_i & \sum x_i z_i \\ \sum x_i y_i & \sum y_i^2 & \sum y_i z_i \\ \sum x_i z_i & \sum y_i z_i & \sum z_i^2 \end{pmatrix}$
$\lambda_1 \ge \lambda_2 \ge \lambda_3$	eigenvalues of A
Test statistic	largest eigenvalue λ_1
Significance points	at 5% level: $\frac{1}{3} + \frac{0.873}{\sqrt{n}}$ for $n > 100$, Anderson, Stephens (1972)
Results	weaker performance than tests based on summary statistics
	Folie 17

Fraunhofer Institut Techno- und Wirtschaftsmathematik

Summary of results

- tests using summary statistics better than analysis of direction to nearest neighbour
- higher regularity, larger intensities, stronger pressing
- integration interval should be chosen suitably
- in most cases: K_{dir} yields best results
- test with G functions more stable when changing interval
- tests also work for compressed clustered patterns

Higher power for

Estimation of the pressing factor

- rescale by $(\sqrt{d}, \sqrt{d}, \frac{1}{d})$ with $d \in [0.6, 1.1]$
- compute statistics

$$T_{\sum,d} = \int_{r_1}^{r_2} \left(|\hat{S}_{x,d}(r) - \hat{S}_{y,d}(r)| + |\hat{S}_{y,d}(r) - \hat{S}_{z,d}(r)| + |\hat{S}_{z,d}(r) - \hat{S}_{x,d}(r)| \right) dr,$$

Estimator for c

$$\hat{c} = \operatorname{argmin}_{d} T_{\sum, d}$$

Fraunhofer Institut Techno- und Wirtschaftsmathematik

Results for simulated data

Parameters:

 $\lambda = 500, R = 0.05$

r_2	С	$\overline{\widehat{c}}_{loc}$	MSE	$\overline{\widehat{c}}_{glob}$	MSE	$ar{\widehat{c}}_K$	MSE
0.055	1.0	0.9828	3.944e-3	0.9795	6.763e-3	0.9875	4.850e-3
0.055	0.9	0.8810	5.813e-3	0.8855	5.138e-3	0.8933	3.631e-3
0.055	0.8	0.7780	5.363e-3	0.7818	4.544e-3	0.7923	2.844e-3
0.055	0.7	0.6880	1.850e-3	0.6913	1.981e-3	0.6860	1.988e-3
0.15	1.0	1.0005	2.625e-3	0.9385	2.081e-2	0.9955	1.813e-3
0.15	0.9	0.8953	2.806e-3	0.9060	1.819e-2	0.8993	1.669e-3
0.15	0.8	0.7968	2.306e-3	0.8655	2.511e-2	0.8030	1.013e-3
0.15	0.7	0.6958	1.631e-3	0.8128	3.222e-2	0.7015	7.125e-4

Ice: Choice of parameters

- between 329 and 733 pores per sample
- study degree of regularity using isotropic pair-correlation function
- investigation of distances to nearest neighbours shows existence of outliers
- -> choose larger interval of observation

Fraunhofer Institut Techno- und Wirtschaftsmathematik

für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft

Ice: Isotropy test

Means and confidence bands of directional summary statistics

Ice: Estimation of pressing factors

sample	153 m	353 m	505 m
N_V	380.29	454.79	516.71
λ	0.2528	0.3403	0.3241
\widehat{c}_G	0.807	0.630	0.534
\widehat{c}_K	0.821	0.641	0.545

Summary	
We have –	detected the anisotropy within the ice
_	estimated the pressing factor
Nye formula –	simplified ice flow model
->	same trend but absolute values higher in our estimates (approx. 0.1)
However	bedrock conditions not taken into account unknown so far due to incomplete drilling could shift expected pressing factors to higher values

ıтwм Fraunhofer Institut Techno- und Wirtschaftsmathematik

Folie 24

in der Helmholtz-Gemeinschaft

Further example: Foam

aluminium foam: pressed before foaming process degree of isotropy grows during foaming

grey: aluminium white: foaming agent black: pore

Folie 25

für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft

References

Anderson, Stephens (1972) Tests for randomness of directions against equatorial and bimodal alternatives. Biometrika 59/3), 613-621

Baddeley, Moyeed, Howard, Boyde (1993) Analysis of three-dimensional point patterns with replication. Applied Statistics 42, 641-668

Fry (1979), Random point distributions and strain measurement in rocks. Tectonophysics 60, p. 89-105, 1979

Lautensack, Särkkä, Freitag, Schladitz (2008) Anisotropy analysis of pressed point processes, ITWM report no. 141, 2008

Stoyan, Beneš(1991), Anisotropy analysis for particle systems. Journal of Microscopy 164, p. 159-168

Stoyan, Kendall, Mecke (1995), Stochastic Geometry and its applications. Wiley, Chichester

Stoyan, Stoyan (1992), Fraktale, Formen, Punktfelder. Akademie Verlag, Berlin

Fraunhofer Institut Techno- und Wirtschaftsmathematik

Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft