Spatial-Temporal Marked Point Processes : A Spectrum of Stochastic Models

Eric Renshaw

University of Strathclyde, UK

Smogen Workshop, August 2008
email: eric@stams.strath.ac.uk

Thanks to:
Aila Särkkä Chalmers University, Gothenburg
Claudia Lautensack Fraunhofer Institut, Kaiserslautern
Carles Comas Universitat Politecnica de Catalunya, Barcelona

Overview

- The construction and pattern analysis of spatial-temporal marked point processes has been fuelled by two separate fields of study.
- In biology plants are affected by others that compete for nutrient and natural resources.
- Whilst fundamental to the study of porous and granular material is the modelling and statistical analysis of random systems of hard particles.
- Renshaw and Särkkä (2001) and Särkkä and Renshaw (2006) construct a general packing algorithm that covers both situations in order to infer properties and generating mechanisms of space-time stochastic processes.

The Model

- Marks $m_{i}(t)(i=1, \ldots, n)$ have location x_{i} and change size through the deterministic incremental size change

$$
\begin{equation*}
m_{i}(t+d t)=m_{i}(t)+f\left(m_{i}(t)\right) d t+\sum_{j \neq i} h\left(m_{i}(t), m_{j}(t) ;\left\|x_{i}-x_{j}\right\|\right) d t \tag{1}
\end{equation*}
$$

- $\quad f(\cdot)$ is the mark growth function in the absence of spatial interaction.
- $h(\cdot)$ is an appropriate spatial interaction function taken over all points $j \neq i$.
- Random variation can be induced in many ways, e.g. via the simple immigrationdeath or birth-death process.
- If $m_{i}(t+d t) \leq 0$ then point i dies 'interactively' and is deleted, as happens for natural death.

Huge number of potential forms for $f(\cdot)$ and $h(\cdot)$

- The simple birth function $f_{1}(m(t))=\lambda m(t)$ is unbounded.
- So stable forms such as the linear and logistic processes $f_{2}(m(t))=\lambda(1-m(t))$ and $f_{3}(m(t))=\lambda m(t)(1-m(t) / K)$ are better.
- Both are special cases of the logistic power-law process

$$
d m(t) / d t=a m(t)-d[m(t)]^{p+1} \quad \Rightarrow \quad m(t)=K\left[1+c e^{-a p t}\right]^{-1 / p}
$$

for $K=(a / d)^{1 / p}$ and $c=[K / m(0)]^{p}-1$.

- This plays a major role in the modelling of tree growth via the Von Bertalanffy-Chapman-Richards (VBCR) growth function

$$
f_{5}(m(t))=a_{0} m_{i}(t)^{a_{1}}-a_{2} m_{i}(t)
$$

where $a_{0}=\beta K^{v} / v, a_{1}=(1-v)$ and $a_{2}=\beta / v: K$ is the tree-size carrying capacity, β scales the time axis, and v defines the curve shape.

- Multiple Equilibria: $\quad f_{6}(m)=\left(170 m^{2}+100000\right) /\left(m^{2}+8000\right)-m$
has locally stable equilibrium points at $20(0 \leq m<50)$ and $100(m>50) ; m=50$ is a locally unstable equilibrium point (Renshaw, 2009). So gives large and small marks.

Two particular forms for $h(\cdot)$ cover a wide range of situations

- Symmetric hard-core interaction function

$$
h_{1}\left(m_{i}(t), m_{j}(t) ;\left\|x_{i}-x_{j}\right\|\right)=-b I\left(\left\|x_{i}-x_{j}\right\|<r\left(m_{i}(t)+m_{j}(t)\right)\right),
$$

where $I(F)=1$ if F is true and $I(F)=0$ otherwise.

- For an asymmetric soft-core form that takes account of the relative sizes of two interacting marks, let $D\left(x_{i}, s\right)$ denote the disk with centre x_{i} and radius s, and place

$$
h_{2}\left(m_{i}(t), m_{j}(t) ;\left\|x_{i}-x_{j}\right\|\right)=-b \text { area }\left\{D\left(x_{i}, r m_{i}(t)\right) \cap D\left(x_{j}, r m_{j}(t)\right)\right\} /\left(\pi r^{2} m_{i}^{2}(t)\right) .
$$

R\&S use maximum pseudo-likelihood to estimate parameters for patterns that are sampled at a fixed time point, whilst S\&R develop a least squares procedure for successive time points.

Forestry Application Comparing Two Proposed Thinning Regimes

(1) Single-thinning from below with 100% and 50% trees cut from small \& medium diameter classes:
(2) Double-thinning with (1) followed by thinning from above which cuts 50% of trees from remaining medium and large diameter classes.

Figure 1 shows population size over 100 years, quadratic mean diameter \& stand basal area.

Fig. 1: $h_{2}(\cdot)$ with $r=0.01$ and $\operatorname{VBCR} f_{5}(\cdot)$ with $\beta=0.052, K=25$ and $b=0.6 ; n=312$ trees at $t=0$ with $U(0.25,0.75)$ radii. Cases (a), (c) and (e) relate to $v=1$, and (b), (d) and (f) to $v=0.7$.

Non-treated forest (-); single-thinning from below (-); from below \& above (-).

Fig. 2: Spatial structure at $t=100$ under $v=1$: (a) no thinning; (b) single-thinning from below; (c) thinning from below and then above (from Renshaw et al. 2008).

- Under linear growth $(v=1)$ pop size is larger than under sigmoid growth for both thinning regimes.
- This is in contrast to quadratic mean diameter.
- Thinning from below increases individual tree size: due to reduction in between-tree competition.
- Second thinning from above means increased individual tree size.
- Trees under linear growth have less initial spatial interaction so grow faster.

A Spectrum of Stochastic Modelling Strategies

- In some situations, e.g. materials science, immigration and death might not be appropriate, so how do we inject stochasticity into the system?
To set the scene first consider the non-spatial immigration-death process with $\{U\}$ a sequence of i.i.d. pseudo-random numbers.
Exact Algorithm A1: construct a complete set of event-time pairs $\left\{e_{i}, t_{i}\right\}$.
(i) set $t=0$ and $n=n_{0}$
(ii) cycle over $i=1,2, \ldots$
if $U \leq \alpha /(\alpha+n \mu)$ then $e_{i}=1$ (immigration) so $n \rightarrow n+1$
else $e_{i}=-1$ (death) so $n \rightarrow n-1$
place $t_{i}=t_{i-1}+s_{i}$ where $s_{i}=-\ln (U) /(\alpha+n \mu)$
Time-Increment Algorithm A2: In complex scenarios this may be too slow, so replace the variable s by small fixed $d t$. Then (ii) in A1 becomes
(ii)' cycle over $t=d t, 2 d t, 3 d t, \ldots$
if $U \leq \alpha d t$ then $n \rightarrow n+1$
else if $U \leq(\alpha+n \mu) d t$ then $n \rightarrow n-1$
else no change

If n varies a great deal, having $\max (n)[(\lambda+\mu) d t] \ll 1 \Longrightarrow$ most events are 'no change'. So could let $d t$ vary with n, e.g. $d t=0.01 /[n(\lambda+\nu)]$.
Tau-Leaping Algorithm A3: Interest in large-scale chemical reaction systems led Dan Gillespie to investigate a more pragmatic approach. Replace $d t$ by a larger τ. Then number of immigrants in $(t, t+\tau)$ is $B(t+\tau)=\operatorname{Poisson}(\alpha \tau)$ etc. So population size is

$$
x(t+\tau)=x(t)+B(t+\tau)-D(t+\tau) \quad(t=0, \tau, 2 \tau, \ldots) .
$$

For $\left\{Z_{0}, Z_{1}, \ldots\right\} \sim U(0,1), B$ is the largest integer j such that $\prod_{j=0}^{\infty} Z_{j} \leq e^{-\alpha \tau}$. So replace (ii)' in A2 by
(ii)" cycle over $t=\tau, 2 \tau, \ldots$
evaluate $B \sim \operatorname{Poisson}(\alpha \tau)$ and $D \sim \operatorname{Poisson}(\mu \tau x(t))$
update $x(t)$ to $x(t)+B-D$ and t to $t+\tau$
This works well in any situation deemed to be stiff, i.e. transition rates do not change substantially over time, and no significant dependence between different event types.
Langevin Algorithm A4: Replace Poisson by Normal, then for rates $\{r(x(t))\}$ and $Z \sim N(0,1)$

$$
x(t+\tau)=x(t)+\tau \sum_{j} \mathrm{E}\left[r_{j}(x(t))\right]+\sqrt{\tau} \sum_{j} \sqrt{\mathrm{E}\left[r_{j}(x(t))\right]} Z_{j} .
$$

Chemical Reaction Rate Algorithm A5: Now take the reverse limit $\tau \rightarrow d t$, whence A4 becomes the chemical Langevin equation (s.d.e.)

$$
x(t+\tau)=x(t)+\tau \sum_{j} \mathrm{E}\left[r_{j}(x(t))\right]+\sqrt{\tau} \sum_{j} \sqrt{\mathrm{E}\left[r_{j}(x(t))\right]} d W_{j},
$$

where $\left\{d W_{j}(t)\right\}$ are independent Brownian motions.
Reaction Rate Algorithm A6: Finally, ignoring the stochastic part of A5 yields the reaction rate (i.e. deterministic) representation

$$
x(t+\tau)=x(t)+\tau \sum_{j} \mathrm{E}\left[r_{j}(x(t))\right]
$$

- See Higham(2008) for current challenges and short, downloadable MATLAB codes.

Extending These Ideas to Marked Point Processes

- Spatial-temporal processes may be far more computationally demanding and complex. For example, the construction of maximally packed patterns requires points to move under interaction pressure.
- Reasonable to assert that the relative interaction pressure is greater on the smaller mark than the larger, let the vector force on i from j be (for example) $v \min \left(1, m_{j}(t) / m_{i}(t)\right)$. Then the force-field

shows that during $(t, t+d t), i$'s position is perturbed by

$$
\left(d x_{i}, d y_{i}\right)=-v \min \left(1, m_{j}(t) / m_{i}(t)\right)(\cos (\theta), \sin (\theta))
$$

Let $r_{i j}=\sqrt{ }\left\{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right\}$ be the smallest of the 8 inter-point distances.
Denote $\sum_{j \backslash i}$ to be the sum over all points j that interact with i. Then

$$
x_{i}(t+d t)=x_{i}(t)+v d t \sum_{j \backslash i} \min \left(1, m_{j}(t) / m_{i}(t)\right)\left(x_{i}-x_{j}\right) / r_{i j}, \quad \text { etc. }
$$

Fig. 4: Pattern at $t=200$ for linear-growth hard-core model $\left(f_{2}, h_{1}\right)$ with $\alpha=10$, $\lambda=1<b=2, K=20, r=0.005, \tilde{m}_{k}=0.01$: (a) $v=0$ and (b) $v=0.01$.
(a)

(b)

- Decompose the growth and interaction functions into general stochastic birth and death components:

$$
\begin{aligned}
f_{i} & =f\left(m_{i}(t)\right) & & \rightarrow f_{i}^{+}-f_{i}^{-} \\
h_{i j} & =h\left(m_{i}(t), m_{j}(t) ;\|i-j\|\right) & & \rightarrow h_{i j}^{+}-h_{i j}^{-}
\end{aligned}
$$

where f_{i}^{+}and f_{i}^{-}denote pure birth and death $h_{i j}^{+}$and $h_{i j}^{-}$denote spatial enhancement and inhibition. Write

$$
\lambda_{i}=f_{i}^{+}+\sum_{j \neq i} h_{i j}^{+}, \quad \mu_{i}=f_{i}^{-}+\sum_{j \neq i} h_{i j}^{-}, \quad \text { rate }=\alpha+\sum_{i=1}^{n}\left(\lambda_{i}+\mu_{i}\right) .
$$

- As each marked point is affected differently, we have to use an individual-based approach. Thus for points $i=1, \ldots, n$, event-time pairs $\left\{e_{k}, t_{k}\right\}(k=1,2, \ldots)$, incremental mark size δ and new mark size $\tilde{m}=$ integer $\times \delta$, A1 becomes:

Exact MPP Algorithm B1:
(i) \quad set $t=0$ and $n=n_{0}$
(ii) cycle over individuals $i=1,2, \ldots, n$
compute λ_{i}, μ_{i} and rate
if $U \times$ rate $\leq \alpha$ then $m_{n+1}=\tilde{m}$ at location $\left(U^{\prime}, U^{\prime \prime}\right), n \rightarrow n+1$ else if $U \times$ rate $\leq \alpha+\lambda_{1}$ then $m_{1}=m_{1}+\delta$
else if $U \times$ rate $\leq \alpha+\sum_{i=1}^{n-1}\left(\lambda_{i}+\mu_{i}\right)+\lambda_{n}$ then $m_{n}=m_{n}+\delta$ else $m_{n}=m_{n}-\delta$
(iii) if $i=r$ is the altered mark then recalculate $h_{r j}$ and $h_{j r}(j \neq r)$ if $m_{r}(t)=0$ remove r, relabel $i \rightarrow i-1$ for $i>r, n \rightarrow n-1$
(iv) update time t to $t-\ln (U) /$ rate and return to (ii)

- Note the switch in mark size from continuous to discrete on $0, \delta, 2 \delta, \ldots$.

Time-Increment Algorithm B2:

- Replacing the event times $t=0, s_{1}, s_{1}+s_{2}, \ldots$ by the incremental times $t=$ $0, d t, 2 d t, \ldots$ carries through as for A1 to A2, with
- each mark acting independently of all others during $(t, t+d t)$.

Thus in B1 parts (ii) to (iv) are replaced by:
(ii) cycle over individuals $i=1,2, \ldots, n$
compute λ_{i}, μ_{i} and rate
if $U \times$ rate $\leq \alpha d t$ then $m_{n+1}(t+d t)=\tilde{m}$ at $\left(U^{\prime}, U^{\prime \prime}\right), n \rightarrow n+1$
else if $U \times$ rate $\leq\left(\alpha+\lambda_{i}\right) d t$ then $m_{i}(t+d t)=m_{i}(t)+\delta$
else if $U \times$ rate $\leq\left(\alpha+\lambda_{i}+\mu_{i}\right) d t$ then $m_{i}(t+d t)=m_{i}(t)-\delta$
else $m_{i}(t+d t)=m_{i}(t)$
(iv) update time t to $t+d t$ and return to (ii)

Tau-Leaping Algorithm B9:
Switching to Tau-Leaping (A3) involves replacing $d t$ by τ and the independent Bernoulli events by Poisson variables. So B2 is altered to:
(ii) cycle over individuals $i=1,2, \ldots, n$
compute λ_{i}, μ_{i} and rate

$$
m_{i}(t+\tau)=\operatorname{Poisson}(\alpha \tau)+\operatorname{Poisson}\left(\lambda_{i} \tau\right)-\operatorname{Poisson}\left(\mu_{i} \tau\right)
$$

Langevin-Leaping Algorithm B4. Replace Poisson variables in B3 by Normal variables.
Chemical Langevin Algorithm B5. Apply the reverse limit $\tau \rightarrow d t$ in B4.
Deterministic/Reaction Rate Algorithm B6: Hits problems if allow immigration since cannot allocate new locations deterministically.

Summary

- The R\&S procedure, which is B6 and a stochastic 'driver' may be easily generalised to encompass the other approaches B1-B5 across a wide range of disciplines.
- If the exact algorithm B1 incurs too large a compute-time penalty, then analyse B 2 to B 5 in sequence in order to assess the trade-off between pattern structure and computational efficiency.
- Studies are currently being undertaken to generate models that accurately replicate three-dimensional packing structures for mixed-sized particle systems which previously could only be simulated by using 'sequential packing under gravity' and 'collective rearrangement strategies'.
- A further promising avenue would be to transfer methods recently developed for chemical reaction systems with a low to moderate number of molecules across to marked point processes.
- The scope for future development in this arena is enormous.

References

Anderson, D.F. (2007) A modified next reaction method for simulating chemical systems with time dependent propensities and delays. Journal of Chemical Physics, 127, 214017:1-10.
Anderson, D.F. (2008) Incorporating postleap checks in tau-leaping. Journal of Chemical Physics, 128, 054103:1-8.
Gillespie, D.T. (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22, 403-434.
Gillespie, D.T. (1977) Exact stochastic simulation of coupled reaction equations. Journal of Physical Chemistry, 81, 2340-2361.
Higham, D.J. (2008) Modelling and Simulating Chemical Reactions. SIAM Review (to appear).
Renshaw, E. (2009) Stochastic Population Processes (submitted).
Renshaw, E. \& Comas, C. (2008) Space-time generation of high-intensity patterns using growth-interaction processes (submitted).
Renshaw, E., Comas, C. \& Mateu, J. (2008) Analysis of forest thinning strategies through the development of space-time growth-interaction simulation models. Journal of Stochastic Environmental Research and Risk Assessment (to appear).

Renshaw, E. \& Särkkä, A. (2001) Gibbs point processes for studying the development of spatial-temporal stochastic processes. Computational Statistics and Data Analysis, 36, 85-105.
Särkkä, A. \& Renshaw, E. (2006) The analysis of marked point patterns evolving through space and time. Computational Statistics and Data Analysis, 51, 16981718.

