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Overview

• The construction and pattern analysis of spatial-temporal marked point processes
has been fuelled by two separate fields of study.

• In biology plants are affected by others that compete for nutrient and natural re-
sources.

• Whilst fundamental to the study of porous and granular material is the modelling
and statistical analysis of random systems of hard particles.

• Renshaw and Särkkä (2001) and Särkkä and Renshaw (2006) construct a general
packing algorithm that covers both situations in order to infer properties and generating
mechanisms of space-time stochastic processes.
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The Model

• Marks mi(t) (i = 1, . . . , n) have location xi and change size through the determin-
istic incremental size change

mi(t + dt) = mi(t) + f (mi(t))dt +
∑

j 6=i

h(mi(t),mj(t); ‖xi − xj‖)dt . (1)

• f (·) is the mark growth function in the absence of spatial interaction.

• h(·) is an appropriate spatial interaction function taken over all points j 6= i.

• Random variation can be induced in many ways, e.g. via the simple immigration-
death or birth-death process.

• If mi(t + dt) ≤ 0 then point i dies ‘interactively’ and is deleted, as happens for
natural death.
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Huge number of potential forms for f (·) and h(·)

• The simple birth function f1(m(t)) = λm(t) is unbounded.

• So stable forms such as the linear and logistic processes f2(m(t)) = λ(1−m(t)) and
f3(m(t)) = λm(t)(1−m(t)/K) are better.

• Both are special cases of the logistic power-law process

dm(t)/dt = am(t)− d[m(t)]p+1 ⇒ m(t) = K[1 + ce−apt]−1/p

for K = (a/d)1/p and c = [K/m(0)]p − 1.

• This plays a major role in the modelling of tree growth via the Von Bertalanffy-
Chapman-Richards (VBCR) growth function

f5(m(t)) = a0mi(t)
a1 − a2mi(t)

where a0 = βKv/v, a1 = (1 − v) and a2 = β/v: K is the tree-size carrying capacity,
β scales the time axis, and v defines the curve shape.

• Multiple Equilibria: f6(m) = (170m2 + 100000)/(m2 + 8000)−m
has locally stable equilibrium points at 20 (0 ≤ m < 50) and 100 (m > 50); m = 50 is
a locally unstable equilibrium point (Renshaw, 2009). So gives large and small marks.
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Two particular forms for h(·) cover a wide range of situations

• Symmetric hard-core interaction function

h1(mi(t),mj(t); ‖xi − xj‖) = −bI(‖xi − xj‖ < r(mi(t) + mj(t))) ,

where I(F ) = 1 if F is true and I(F ) = 0 otherwise.

• For an asymmetric soft-core form that takes account of the relative sizes of two
interacting marks, let D(xi, s) denote the disk with centre xi and radius s, and place

h2(mi(t),mj(t); ‖xi − xj‖) = −b area{D(xi, rmi(t)) ∩D(xj, rmj(t))}/(πr2m2
i (t)) .

R&S use maximum pseudo-likelihood to estimate parameters for patterns that are sam-
pled at a fixed time point, whilst S&R develop a least squares procedure for successive
time points.
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Forestry Application Comparing Two Proposed Thinning Regimes

(1) Single-thinning from below with 100% and 50% trees cut from small & medium
diameter classes:

(2) Double-thinning with (1) followed by thinning from above which cuts 50% of trees
from remaining medium and large diameter classes.

Figure 1 shows population size over 100 years, quadratic mean diameter & stand basal
area.
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Fig. 1: h2(·) with r = 0.01 and VBCR f5(·) with β = 0.052, K = 25 and b = 0.6; n = 312 trees at t = 0 with

U(0.25, 0.75) radii. Cases (a), (c) and (e) relate to v = 1, and (b), (d) and (f) to v = 0.7.

Non-treated forest (—); single-thinning from below (—); from below & above (—).
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Fig. 2: Spatial structure at t = 100 under v = 1: (a) no thinning; (b) single-thinning
from below; (c) thinning from below and then above (from Renshaw et al. 2008).

• Under linear growth (v = 1) pop size is larger than under sigmoid growth for both
thinning regimes.

• This is in contrast to quadratic mean diameter.

• Thinning from below increases individual tree size: due to reduction in between-tree
competition.

• Second thinning from above means increased individual tree size.

• Trees under linear growth have less initial spatial interaction so grow faster.
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A Spectrum of Stochastic Modelling Strategies

• In some situations, e.g. materials science, immigration and death might not be
appropriate, so how do we inject stochasticity into the system?

To set the scene first consider the non-spatial immigration-death process with {U} a
sequence of i.i.d. pseudo-random numbers.

Exact Algorithm A1: construct a complete set of event-time pairs {ei, ti}.
(i) set t = 0 and n = n0

(ii) cycle over i = 1, 2, . . .
if U ≤ α/(α + nµ) then ei = 1 (immigration) so n → n + 1
else ei = −1 (death) so n → n− 1
place ti = ti−1 + si where si = − ln(U)/(α + nµ)

Time-Increment Algorithm A2: In complex scenarios this may be too slow, so replace
the variable s by small fixed dt. Then (ii) in A1 becomes

(ii)’ cycle over t = dt, 2dt, 3dt, . . .
if U ≤ αdt then n → n + 1
else if U ≤ (α + nµ)dt then n → n− 1
else no change
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If n varies a great deal, having max(n)[(λ+µ)dt] ¿ 1 =⇒ most events are ‘no change’.
So could let dt vary with n, e.g. dt = 0.01/[n(λ + ν)].

Tau-Leaping Algorithm A3: Interest in large-scale chemical reaction systems led Dan
Gillespie to investigate a more pragmatic approach. Replace dt by a larger τ . Then
number of immigrants in (t, t + τ ) is B(t + τ ) = Poisson(ατ ) etc. So population size is

x(t + τ ) = x(t) + B(t + τ )−D(t + τ ) (t = 0, τ, 2τ, . . .) .

For {Z0, Z1, . . .} ∼ U(0, 1), B is the largest integer j such that
∏∞

j=0 Zj ≤ e−ατ . So
replace (ii)’ in A2 by

(ii)” cycle over t = τ, 2τ, . . .
evaluate B ∼ Poisson(ατ ) and D ∼ Poisson(µτx(t))
update x(t) to x(t) + B −D and t to t + τ

This works well in any situation deemed to be stiff, i.e. transition rates do not change
substantially over time, and no significant dependence between different event types.

Langevin Algorithm A4: Replace Poisson by Normal, then for rates {r(x(t))} and
Z ∼ N(0, 1)

x(t + τ ) = x(t) + τ
∑

j

E[rj(x(t))] +
√

τ
∑

j

√
E[rj(x(t))]Zj .
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Chemical Reaction Rate Algorithm A5: Now take the reverse limit τ → dt, whence
A4 becomes the chemical Langevin equation (s.d.e.)

x(t + τ ) = x(t) + τ
∑

j

E[rj(x(t))] +
√

τ
∑

j

√
E[rj(x(t))]dWj ,

where {dWj(t)} are independent Brownian motions.

Reaction Rate Algorithm A6: Finally, ignoring the stochastic part of A5 yields the
reaction rate (i.e. deterministic) representation

x(t + τ ) = x(t) + τ
∑

j

E[rj(x(t))] .

• See Higham(2008) for current challenges and short, downloadable MATLAB codes.
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Extending These Ideas to Marked Point Processes

• Spatial-temporal processes may be far more computationally demanding and com-
plex. For example, the construction of maximally packed patterns requires points to
move under interaction pressure.

• Reasonable to assert that the relative interaction pressure is greater on the smaller
mark than the larger, let the vector force on i from j be (for example) v min(1,mj(t)/mi(t)).
Then the force-field

o
o

o θ
(xi,yi)

(xj,yj)

force = -vmin(1,mj/mi) (cos(θ), sin(θ))

shows that during (t, t + dt), i’s position is perturbed by

(dxi, dyi) = −v min(1,mj(t)/mi(t))(cos(θ), sin(θ))
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Let rij =
√{(xi − xj)

2 + (yi − yj)
2} be the smallest of the 8 inter-point distances.

Denote
∑

j\i to be the sum over all points j that interact with i. Then

xi(t + dt) = xi(t) + vdt
∑

j\i
min(1,mj(t)/mi(t))(xi − xj)/rij , etc.

Fig. 4: Pattern at t = 200 for linear-growth hard-core model (f2, h1) with α = 10,
λ = 1 < b = 2, K = 20, r = 0.005, m̃k = 0.01: (a) v = 0 and (b) v = 0.01.
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• Decompose the growth and interaction functions into general stochastic birth and
death components:

fi = f (mi(t)) → f+
i − f−i

hij = h(mi(t),mj(t); ||i− j||) → h+
ij − h−ij

where f+
i and f−i denote pure birth and death h+

ij and h−ij denote spatial enhancement
and inhibition. Write

λi = f+
i +

∑

j 6=i

h+
ij , µi = f−i +

∑

j 6=i

h−ij , rate = α +

n∑
i=1

(λi + µi) .

• As each marked point is affected differently, we have to use an individual-based
approach. Thus for points i = 1, . . . , n, event-time pairs {ek, tk} (k = 1, 2, . . .), incre-
mental mark size δ and new mark size m̃ = integer × δ, A1 becomes:
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Exact MPP Algorithm B1:

(i) set t = 0 and n = n0

(ii) cycle over individuals i = 1, 2, . . . , n
compute λi, µi and rate
if U × rate ≤ α then mn+1 = m̃ at location (U ′, U ′′), n → n + 1
else if U × rate ≤ α + λ1 then m1 = m1 + δ

· · ·
else if U × rate ≤ α +

∑n−1
i=1 (λi + µi) + λn then mn = mn + δ

else mn = mn − δ
(iii) if i = r is the altered mark then recalculate hrj and hjr (j 6= r)

if mr(t) = 0 remove r, relabel i → i− 1 for i > r, n → n− 1
(iv) update time t to t− ln(U)/rate and return to (ii)

• Note the switch in mark size from continuous to discrete on 0, δ, 2δ, . . . .
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Time-Increment Algorithm B2:

• Replacing the event times t = 0, s1, s1 + s2, . . . by the incremental times t =
0, dt, 2dt, . . . carries through as for A1 to A2, with

• each mark acting independently of all others during (t, t + dt).

Thus in B1 parts (ii) to (iv) are replaced by:

(ii) cycle over individuals i = 1, 2, . . . , n
compute λi, µi and rate

if U × rate ≤ αdt then mn+1(t + dt) = m̃ at (U ′, U ′′), n → n + 1
else if U × rate ≤ (α + λi)dt then mi(t + dt) = mi(t) + δ
else if U × rate ≤ (α + λi + µi)dt then mi(t + dt) = mi(t)− δ
else mi(t + dt) = mi(t)

(iv) update time t to t + dt and return to (ii)
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Tau-Leaping Algorithm B3:

Switching to Tau-Leaping (A3) involves replacing dt by τ and the independent Bernoulli
events by Poisson variables. So B2 is altered to:

(ii) cycle over individuals i = 1, 2, . . . , n
compute λi, µi and rate

mi(t + τ ) = Poisson(ατ ) + Poisson(λiτ )− Poisson(µiτ )

Langevin-Leaping Algorithm B4. Replace Poisson variables in B3 by Normal variables.

Chemical Langevin Algorithm B5. Apply the reverse limit τ → dt in B4.

Deterministic/Reaction Rate Algorithm B6: Hits problems if allow immigration since
cannot allocate new locations deterministically.
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Summary

• The R&S procedure, which is B6 and a stochastic ‘driver’ may be easily generalised
to encompass the other approaches B1–B5 across a wide range of disciplines.

• If the exact algorithm B1 incurs too large a compute-time penalty, then analyse
B2 to B5 in sequence in order to assess the trade-off between pattern structure and
computational efficiency.

• Studies are currently being undertaken to generate models that accurately replicate
three-dimensional packing structures for mixed-sized particle systems which previously
could only be simulated by using ‘sequential packing under gravity’ and ‘collective rear-
rangement strategies’.

• A further promising avenue would be to transfer methods recently developed for
chemical reaction systems with a low to moderate number of molecules across to marked
point processes.

• The scope for future development in this arena is enormous.
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