Likelihood estimation of diffusion coefficients from sequences of confocal microscope images

Jenny Jonasson^{*}, Joel Hagman, Niklas Lorén, Diana Bernin, Magnus Nydén, Mats Rudemo

*Mathematical Sciences, Chalmers

FRAP

Fluorescence Recovery After Photobleaching

Depth profile

Diffusion equation

- Rotational symmetry
- No net diffusion in z-direction
- Diffusion equation

$$\frac{\partial C}{\partial t} = D \left\{ \frac{1}{r} \frac{\partial C}{\partial r} + \frac{\partial^2 C}{\partial r^2} \right\}.$$

Initial concentration

 \blacksquare \Rightarrow Analytic solution to the diffusion equation

$$C(r,t) = c_0 - \frac{c_1}{4Dt + r_0^2} \exp\left(-\frac{r^2}{4Dt + r_0^2}\right)$$

- Normally distributed noise
- Noise is independent between pixels
- Maximum likelihood estimation of the parameters $D, c_0, c_1, r_0, \sigma^2$.
- Fast
- Limited to image sequences where the first image has a profile already smoothed by diffusion

Initial concentration profile estimated from the first image using isotonic regression followed by kernel smoothing.

- Let N(x, t) be the photon count at x at time t and let the pixel value be p(x, t) = kN(x, t).
- N(x,t) is Poisson distributed with expectation $\lambda(x,t)$,
 which we write as

$$\lambda(x,t) = \sum_{y} g_0(|y|) f(|x-y|,t),$$

- $g_0(|y|)$ is the initial concentration
- "Diffusion propagator"

$$f(d,t) = \frac{1}{4\pi Dt} \exp\left(-\frac{d^2}{4Dt}\right).$$

- Maximum likelihood estimation of D. (k estimated from pre-bleach image).
- Slow
- Flexible in terms of initial concentration profile

SAP

- SAP, 0.1 mole% crosslinker, swollen 1 and 2 times it's weight.
- 50 ppm Na Fluorescein

Likelihood estimation of diffusion coefficients from sequences of confocal microscope images -p. 11/19

SAP 2x - model fit

Figure 1: Model 1 to the left and model 2 to the right. Post-bleach image no 2.

SAP 2x - model fit

Figure 2: Model 1 to the left and model 2 to the right. Post-bleach image no 2.

SAP 2x - Diffusion coefficient

Units: $(\mu m)^2/s$

		ROI 5	ROI 50 μm	
ROI 30 μ m		Model 1	Model 2	
Model 1	Model 2	28.2	28.7	
29.9	30.4	27.3	27.8	
30.3	30.2	28.0	28.0	
29.0	29.1	27.4	27.1	
		27.4	27.6	
D=29.7	D=29.9			
s=0.68	s=0.67	D=27.7	D=27.9	
	•	s=0.40	s=0.56	

SAP 1x - model fit

Figure 3: Model 1 to the left and model 2 to the right. Post-bleach image no 2.

SAP 1x - model fit

Figure 4: Model 1 to the left and model 2 to the right. Post-bleach image no 2.

SAP 1x - Diffusion coefficient

Units: $(\mu m)^2/s$

ROI 30 µm		ROI 5	ROI 50 μm	
Model 1	Model 2	Model 1	Model 2	
1.03	1.25	1.71	2.03	
0.85	1.06	0.57	0.65	
0.68	0.88	0.12	0.14	
0.89	1.13	0.09	0.09	
D=0.86	D=1.08	D=0.62	D=0.73	
s=0.14	s=0.16	s=0.75	s=0.90	

Future work

- Irregularly bleached regions
- Inhomogeneous media additional structure information is needed
- Diffusing particles of different size
- Account for the scanning
- Calculate variance components to plan experiments
- Investigate instrumental settings spatial resolution, relative size of bleached region, the number of images

Background subtraction

Figure 5: Average pre-bleach image, first post bleach image without and with subtraction of back-ground.