

Assessment of Uncertainties in Life Prediction of Fatigue Crack Initiation in Rails – Influence of Residual Stresses From Manufacturing

Jonas W Ringsberg¹ and B Lennart Josefson²

Chalmers University of Technology ¹Department of Shipping and Marine Technology ²Department of Applied Mechanics Göteborg, SWEDEN

Outline of presentation

- Introduction and motivation for study
- Finite element models and analyses
- Fatigue analysis
- Statistical analysis
- Conclusions

Introduction and motivation for study

- Modern rails are subject to a complex loading situation with high local stresses at the railhead during a wheel passage superposed with a global bending stress in the rail cross section.
 - Hence, a material point near the rail's surface is subject to cyclic, fatigue loading with rotating principal stresses.
- The manufacturing of rails may give rise to additional concern for fatigue cracks starting from defects in the weld zone.
 - Failures at rail welds and growth of cracks starting in the weld zone have been studied in Mutton and Alvarez [2] and Beretta et al. [3].
- A completed weld, a flash butt weld or a thermite weld, typically exhibits high tensile residual stresses in the web region.
 - These stresses may increase the risk for fatigue failure as they are relatively unaffected by the subsequent resulting high local stresses at the railhead during wheel passages; see Skyttebol et al. [5].

Chalmers University of Technology

CONCLUSIONS

Introduction and motivation for study

S. Marich (1983)

D.E. Sonon (1980)

P.J. Mutton (2003)

P.J. Mutton (2003)

Introduction and motivation for study

• The influence of the **tensile residual stress level** (relative to the service stress level) with respect to the **risk for initiation of fatigue cracks** in the **web in the weld zone** of a rail is studied.

- Parameter variation in FE analysis:
 - the welding residual stress distribution (shape) and magnitude,
 - the service load magnitude, and
 - the material parameters used in the fatigue life estimation.
- Fatigue analysis:
 - study of fatigue crack initiation using the Dang Van criterion.
- Statistical uncertainty analysis:
 - study of variances according to the Gauss approximation formula.

Finite element models and analyses

- Ringsberg et al. [9]: FE tool developed for the analysis of RCF of rails.
 - Track model: track dynamics.
 - Rail model: local/detailed RCF analysis.
- The rail model is a 3D FE model made of 8-node brick elements.
 - Elasto-plastic material behaviour of the steel grade 900A was modelled by a linear kinematic hardening model.
 - A Hertzian contact load distribution simulates a traveling wheel (normal and tangential loads).
 - An initial welding residual stress field representing a <u>flash butt weld</u> was introduced at the weld position.

CONCLUSIONS

Finite element models and analyses

- Welding residual stress field:
 - Equally large stress components in the vertical (y) and longitudinal (z) directions.
 - No stress in the lateral (x) direction.

- The residual stress components were given a piece-wise linear shape:
 - tensile magnitude σ_A in the web, and the extent of the tensile zone A.
 - This shape is a simplification of the stress fields determined numerically and experimentally by Skyttebol and Josefson [4] and by Tawfik [11].

Smögen, August, 2008

J.W. Ringsberg and B.L. Josefson p. 7 (15)

CONCLUSIONS

Finite element models and analyses

- Simulated service load situation:
 - The heavy haul iron-ore line situated in the North of Sweden ("Malmbanan").
 - 10 wheel passages on the rail were simulated (elastic shakedown in the web).

Axle load or <i>p</i> @ velocity (10 ³ kg or MPa @ km/h)	σ _Α (MPa)	A (mm)	τ _e (MPa)
5 or 720 @ 70	300	60	150
22.5 or 1280 @ 100	450	70	168
25 or 1320 @ 50	600	80	190
30 or 1410 @ 60			

 $\sigma_{\!y} \, {\rm and} \, \sigma_{\!z}$ (MPa)

J.W. Ringsberg and B.L. Josefson p. 8 (15) CHALMERS Chalmers University of Technology

Fatigue analysis

• The Dang Van criterion was used for evaluation of the results from the FE analyses.

$\tau_{\rm a}(t) + a_{\rm DV}\sigma_{\rm h}(t) > \tau_{\rm e}$

- $\tau_{a}(t)$ is the shear stress "amplitude",
 - *i.e. deviation from mid value during a stress cycle on a shear plane.*
- $\sigma_{\rm h}(t)$ is the **total hydrostatic stress** at elastic shakedown.
 - It includes the history (residual stresses) from the welding, the global load and the contact load from the wheel passage.
- $\tau_{\rm e}$ and $a_{\rm DV}$ are material parameters obtained from two fatigue limit tests.

INTRODUCTION

CONCLUSIONS

Fatigue analysis

FATIGUE ANALYSIS

- For every material point considered in the fatigue analysis, a closed material response cycle (MRC) represented by $\tau_{a}(t)$ and $\sigma_{h}(t)$ is plotted in the Dang Van diagram.
- Example in the figure:
 - Axle load 30.10³ kg.

FE ANALYSIS

- Train speed 60 km/h.
- Fatigue-critical point in the rail web region 100 mm from the rail foot.

STATISTICAL ANALYSIS

Sheffield Hallam University, Sheffield, UK ICMFF8-2007

Chalmers University of Technology

STATISTICAL ANALYSIS

CONCLUSIONS

Fatigue analysis

Chalmers University of Technology

Statistical analysis

- The accuracy in the fatigue crack initiation prediction depends on the uncertainties in:
 - the residual stress shape and magnitude,
 - the service load,
 - the mechanical properties, and
 - the model errors.
- The uncertainty was estimated here considering uncertainties in:
 - the residual stress shape and magnitude,
 - the service load level (the maximum contact pressure), and
 - the fatigue limit.

- The expectancies E[·] and variances Var(·) of the stochastic variables were obtained from references in the literature:
 - $E[A] \approx 60 \text{ mm and } Var(A) \approx 302.$
 - − $E[\sigma_A] \approx 360$ MPa and $Var(\sigma_A) \approx 1002$.
 - $E[p] \approx 1410$ MPa and $Var(p) \approx 2712$.
 - $E[\tau_e] \approx 168 MPa \text{ and } Var(\tau_e) \approx 252.$

INTRODUCTION

CONCLUSIONS

STATISTICAL ANALYSIS

Statistical analysis

FATIGUE ANALYSIS

• Assume that σ_A , A, p and τ_e are stochastic variables one has for the difference ξ ,

 $\xi = \log(\tau_{\rm e}) - \log(\tau_{\rm a}(t) + a_{\rm DV}\sigma_{\rm h}(t))$

$$\operatorname{Var}(\xi) \approx \sum_{i=1}^{4} \left(\frac{\partial \xi}{\partial \log(X_i)} \right)^2 \operatorname{Var}(\log(X_i)) + 2 \sum_{i < j}^{4} \frac{\partial \xi}{\partial \log(X_i)} \frac{\partial \xi}{\partial \log(X_j)} \operatorname{Cov}(\log(X_i), \log(X_j))$$

• The Gauss approximation formula gives:

FE ANALYSIS

 $\operatorname{Var}(\log(X_i)) = \operatorname{Var}(X_i) / \operatorname{E}[X_i]^2$

• Requirement of a zero net longitudinal residual stress component in a vertical plane at the weld. The relation between the variables can be expressed as $\sigma_A \cdot A \approx$ constant which gives:

 $\operatorname{Cov}(\log(\sigma_A), \log(A)) = -\operatorname{Var}(\log(\sigma_A))$

Chalmers University of Technology

INTRODUCTION FE	DUCTION FE ANALYSIS		FATIGUE ANALYSIS		YSIS CONCLU	CONCLUSIONS			
Statistical analysis									
$ au_{a}(t)$	$(t) + a_{\rm DV} \sigma$	$\overline{\sigma_{\rm h}(t)} > \overline{\tau_{\rm e}}$	$\xi = \log(2)$	$(\tau_{\rm e}) - \log(\tau_{\rm a}(t))$	$+a_{\rm DV}\sigma_{\rm h}(t))$				
$\operatorname{Var}(\xi) \approx \sum_{i=1}^{4} \left(\frac{\partial \xi}{\partial \log(X_i)} \right)^2 \operatorname{Var}(\log(X_i)) + 2 \sum_{i < j}^{4} \frac{\partial \xi}{\partial \log(X_i)} \frac{\partial \xi}{\partial \log(X_j)} \operatorname{Cov}(\log(X_i), \log(X_j))$									
		Position 1: $d_{y} = 53 \text{ mm}$	Position 2: $d_y = 76 \text{ mm}$	Position 3: $d_y = 100 \text{ mm}$	180				
$\sigma_{\rm A}$: residual stress level		761	646	749	140 <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				
A: extent of tensile residua	al stress	1121	24	36	E 100 E Neutral axis (NA)				
$ au_{ m e}$: fatigue parameter		625	625	625					
p: (maximum) contact pressure		112159	171179	280363					
The "covariance term"		-1027	-137	-183	0				

FATIGUE ANALYSIS

0 σ_{A} $\sigma_{\rm v}$ and $\sigma_{\rm z}$ (MPa)

The uncertainty in the risk for initiation of fatigue cracks is dominated by the uncertainty in the contact load level.

172336

281590

113640

 $Var(\xi)$

Conclusions

- The representation of the welding residual stress field was simplified compared with similar investigations.
 - It was deemed satisfactory for a quantitative investigation.
- The fatigue analysis showed that:
 - the presence of welding residual stresses increases the risk for fatigue crack initiation, and
 - the higher the magnitude of the stresses (σ_A) the larger is this risk for fatigue failure.
- The statistical analysis showed that:
 - the contact load, p, had the greatest influence on $Var(\xi)$,
 - the welding residual stress magnitude, σ_A , was the second most influencing parameter,
 - the fatigue parameter, τ_{e} , was the third most influencing parameter,
 - followed by the welding residual stress distribution, A.