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Highlights

Non-Gaussian stochastic fields are proposed that can be suitable for
modeling environmental data.

The models are introduced by the means of integrals with respect to
independently scattered stochastic measures that have generalized
Laplace distributions.

Resulting stationary second order processes have, as opposed to their
Gaussian counterpart, a possibility of accounting for asymmetry and
heavier tails.

Despite this greater flexibility the discussed models still share a lot of
spectral properties with Gaussian processes having the latter as a
special case.

The models extend directly to random fields.

Spatio-temporal characteristics be studied by the means of generalized
Rice’s formula.

The potential for stochastic modeling has been demonstrated.
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{X (τ )} – stationary real field, τ = (p, t) = (x , y , t)
Covariance function

R(τ ) =

∫

R3
exp(iλT

τ ) dσ(λ)

σ(λ) – spectral measure
Spectral representation

X (τ ) =

∫

R3
exp(iλT

τ ) dζ(λ)

ζ(λ) – complex, zero mean, orthogonal (uncorrelated)
increments,

E(|ζ(λ)|2) = σ(−∞,λ]

ζ(A) = ζ(−A)
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Gaussian stationary fields

ζ(A) – zero mean Gaussian distribution with variance σ(A)

f is square integrable

integrals with respect to ζ are Gaussian and

E exp(it
∫

R3
f (λT ) dζ(λ)) = exp(−‖f 2‖t2/2)

(X (τ 1), . . . , X (τ n)), – multivariate Gaussian (normal)

Distributional structure coincides with second order
structure
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N(T , A) – “number” of times the field X takes value zero in
[0, T ] and at the same time has a property A

For ergodic stationary processes

lim
T→∞

N(T , A)

N(T )
=

E

[
{X ∈ A}|Ẋ (0)| X (0) = 0

]

E

[
|Ẋ (0)| X (0) = 0

] ,

the right hand side represents the biased sampling
distribution when sampling is made over the 0-level
contour C0 = {τ : X (τ ) = 0}
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Are Gaussian models good?

They are good!

Spectral theory or frequency domain analysis is at the
center of stochastic modeling in engineering sciences

Elegant mathematical properties, for which the relation
between the frequency and time domain is well understood

The ability to model spatio-temporal phenomena through
essentially the same framework as for time only dependent
data contributed the popularity in geostatistics
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Are Gaussian models good enough?

Empirical evidence that the Gaussian models often do not
fit properly the phenomena they are intended to describe
Discrepancies amplified additionally by non-linearity of
deterministic physical models behind the data
Asymmetry and heavy tails – features that cannot be
modeled by Gaussian distributions
Examples: skewness of sea levels data (Åberg (2007)),
highly skewed measuremnts of soil properties in
geotechnical engineering problems and seismic ground
motion (Lagaros et al. (2005)), heavier than Gaussian tails
were reported from such spatial phenomena as
topographic data, temperature (Palacios and Steel (2006)),
or well log data in petroleum application (Røislien and
Omre (2006)), Gurley et al. (1996) – critical discussion of
various approaches to handling the non-Gaussian loads
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What are alternatives?

Growing interest in the stochastic models that serve as
asymmetric and heavier-tailed alternatives to the Gaussian
processes
Considerable efforts have been put toward searching such
alternatives
Examples here are stable and related infinitely divisible
processes
Non-existence of finite second moments is difficult to adopt
in an engineering context where the spectral theory and
the frequency domain is a dominating tool for data analysis
A need for relatively simple and convieniently
parameterized second order non-Gaussian models
Among candidates are processes linked to the Laplace
distributions that allow for simultaneous match of both
spectra and higher order moments of the data
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Laplace motion

B(λ) denote standard Brownian motion

Γ(λ) a standard gamma process, i.e. indpendent
increments with the density

g(x) =
1

Γ(γ)
xγ−1e−x , x > 0

γ = dλ

Laplace motion
L(λ) = B(Γ(λ))

Lévy motion generated by Laplace distribution
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Any Gaussian process can be written as

X (t) =

∫
exp(itλ) ζ(λ)

=

∫
∞

0
cos(λt) dBF (λ) +

∫
∞

0
sin(λt) dB̃F (λ)

where F is a non-decreasing function.

In discretization , this leads to
σ2(λj) = F (λj + dλj) − F (λj).
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Gamma variance process - harmonizable Laplace

Let LF (λ) = B(Γ(F (λ))) and

X(t) =

∫
∞

0
cos(λt) dLF (λ) +

∫
∞

0
sin(λt) dL̃F (λ)

Theorem

Harmonizable Laplace process has a generalized Laplace mariginal
distribution, defined by the characteristic function

E
[
eiξXt

]
=

(
1

1 + ξ2

2

)λ0

where λ0 = F (∞) − F (0) with the density given by

fXt (x) =

√
2

Γ(λ0)
√

π

( |x |√
2

)λ0−1/2

Kλ0−1/2(
√

2|x |), x 6= 0,
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Harmonizable Laplace process – further properties

Theorem

The finite-dimensional distributions are defined by the following char-
acteristic function

E

[
ei
∑ n

j=1 ξj X (tj )
]

= exp
{
−
∫

∞

0
ln
(

1 +
1
2

ξT Aξ

)
dF (λ)

}
,

where ξ = (ξ1, ξ2, . . . , ξn)
T and A is a matrix with entries Ajk =

cos(λ(tk − tj)).
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Harmonizable Laplace process – further properties

Theorem

The finite-dimensional distributions are defined by the following char-
acteristic function

E

[
ei
∑ n

j=1 ξj X (tj )
]

= exp
{
−
∫

∞

0
ln
(

1 +
1
2

ξT Aξ

)
dF (λ)

}
,

where ξ = (ξ1, ξ2, . . . , ξn)
T and A is a matrix with entries Ajk =

cos(λ(tk − tj)).

There is no know explicit formula for the multivariate densities – numerical routines have to be used

The construction extends easily to non-symmetric case by considering Brownian motion with shift in place
of the regular Brownian motion

Asymmetric case has explicit one dimensional densities in the terms of Bessel functions

The construction extends to fields by replacing F on real line by measures R
n
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Discretization, simulation and ...

X (τ ) =
∑

λj∈Λ+

√
2σ(λj)Rj cos(λT

j τ + εj),

σ2(λj) is proportional to the increments of the gamma
process on the j th grid cell

These random variances are independent

This can serve as a method of simulation harmonizable
Laplace processes



Spatio-temporal Gaussian models Harmonizable Laplace processes Laplace moving averages Conclusions

...a surprise



Spatio-temporal Gaussian models Harmonizable Laplace processes Laplace moving averages Conclusions

...a surprise

The samples has been generated for harmonizable processes
and their sampling distribution compared with the marginal
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Bad or good news?

In fact, it has been shown that any second order
harmonizable non-Gaussian process can not be ergodic –
Wright (1978)

That maybe not such a bad news as long as invariant sets
for the process will be identified

Non-ergodic models can be used for modeling phenomena
that vary from sample to sample

Finally non-ergodicity in space can be mixed in time and in
spatio-temporal models sample distribution collected over
time maybe still converging to constant values
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Laplace integrals

X =
∫
X

f (x) dΛ(x) – the isometry of L2(X ,B, m) into L2(Ω,F , P)
that relates the indicator functions 1A(x) with the variables Λ(A)

The characteristic function, first two moments, skeweness and
kurtosis

φX (u) = exp
(
−
∫

X

log
(

1 − iµuf (x) +
σ2f 2(x)u2

2

)
dm(x)

)
.

E X = µ ·
∫

fdm

E (X − E X)2 =
(
µ2 + σ2) ·

∫
f 2dm

s = sgn(µ)
2µ2 + 3σ2

(µ2 + σ2)
3
2

·
∫

f 3dm
(∫

f 2dm
)3/2

ke = 3

(
2 − σ4

(µ2 + σ2)
2

)
·
∫

f 4dm
(∫

f 2dm
)2 .
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m the Lebesgue measure in R
d divided by a positive ν > 0,

f (x) = 1[0,1](x) corresponds to the generalized Laplace
distributions
family of the kernels f (x) ∼ exp(−|x |α), where |x | is the
Euclidean norm in R

d ,
the proportionality constant so that VarX = (µ2 + σ2)/ν

∫
f k =

(
2
k

)1/α
(

21/α−1 α

Γ(1/α)

)k/2−1
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Fully parametric model

m the Lebesgue measure in R
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Fully parametric model

m the Lebesgue measure in R
d divided by a positive ν > 0,

f (x) = 1[0,1](x) corresponds to the generalized Laplace
distributions
family of the kernels f (x) ∼ exp(−|x |α), where |x | is the
Euclidean norm in R

d ,
the proportionality constant so that VarX = (µ2 + σ2)/ν

∫
f k =

(
2
k

)1/α
(

21/α−1 α

Γ(1/α)

)k/2−1

explicit formulas for the moments, skeweness and kurtosis
large α, the kernel is more like the one for the generalized
Laplace, i.e. approximately constant on the compact
support, while for small α it correspond more to averaging
that leads to Gaussian-like distributions
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Laplace integrals – densities
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Figure: Examples of densities and their dependence on the parameters. In the top row we see
symmetric densities with α = 0.5, 1, 2, 20 on each graph. From left to right ν = 0.5, 1, 2, respectively.
The top rows deals with the symmetric case (µ = 0) while the bottom one with the asymmetric one in which
the asymmetry parameter µ =

√
p ∗ ν, with p = 0.1.
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X
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Laplace moving averages

By the means of stochastic integral we define

Xt =

∫

X

f (t − x)dΛ(x).

the kernel f can be estimated from the spectrum
the parameters of the Laplace motion can be fitted using
method of moments
if the kernel is assumed from a parametric family one can
use fit the parameters using correlation function

a non-parametric approach an estimate f̂ is given by

f̂ (x) = F−1
√

R̂(ω),

where R̂(ω) is an estimate of spectrum
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Ergodicity
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Rice formula and sampling distribution

The joint distribution of X(0) and X ′(0)

φX (0),X ′(0)(ξ1, ξ2) = exp
(
−
∫

∞

0
ln
(

1 +
1
2

(ξ2
1 + ξ2

2λ2)

)
dF (λ)

)
.
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−
∫
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ln
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1 +
1
2

(ξ2
1 + ξ2

2λ2)

)
dF (λ)

)
.

the process and its derivative at a fixed point are uncorrelated
but not independent as it is in a Gaussian case

by inverse Fourier transform

fX (0),X ′(0)(u, z) =
1
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∞
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The joint distribution of X(0) and X ′(0)

φX (0),X ′(0)(ξ1, ξ2) = exp
(
−
∫

∞

0
ln
(

1 +
1
2

(ξ2
1 + ξ2

2λ2)

)
dF (λ)

)
.

the process and its derivative at a fixed point are uncorrelated
but not independent as it is in a Gaussian case

by inverse Fourier transform

fX (0),X ′(0)(u, z) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

e−i(ξ1u+ξ2z)φX (0),X ′(0)(ξ1, ξ2) dξ1 dξ2.

the crossing intensity can be computed by the integral

µ+(u) =
1

(2π)2

∫
∞

0

∫
∞

−∞

∫
∞

−∞

ze−i(ξ1u+ξ2z)φX (0),X ′(0)(ξ1, ξ2) dξ1 dξ2 dz.
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Conclusions

The Laplace stochastic integral based models extends
beyond Gaussian by modelling asymmetry and heavy tails

Much of the second order theory remains valid

Conceptually spatio-temporal models are not much more
complex

Sampling properties may differ – process at high level
crossings, asymmetric kernels

Fitting the model is fairly straightforward

Ergodic properties for harmonizable processes should be
investigated
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Final Slide

Quotation by Pierre-Simon Laplace

“Nature laughs at the difficulties of integration.”
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