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The process - birth and growth

New individuals arrive to the region of interest, W ⊆ Rd ,
according to a Poisson process with intensity ν(W )α.

Each individual is assigned a position xi ∼ Uni(W ) together
with an initial size (mark) mi (t

i
0) = εi (t i

0 = arrival time of
individual i).

An individual changes its size, deterministically, according to

dmi (t) = f (mi (t); Θ)dt +
∑
j 6=i
j∈Ωt

h(mi (t),mj(t), ||xi − xj ||; Θ)dt

where
Ωt index set comprising the individuals alive at time t

f (·) individual growth function
h(·) spatial interaction function (|| · || Euclidean distance)

Θ set of model parameters
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The process - birth and growth

New individuals arrive to the region of interest, W ⊆ Rd ,
according to a Poisson process with intensity ν(W )α.

Each individual is assigned a position xi ∼ Uni(W ) together
with an initial size (mark) mi (t

i
0) = εi (t i

0 = arrival time of
individual i).

An individual changes its size, deterministically, according to

dmi (t) = f (mi (t); Θ)dt +
∑
j 6=i
j∈Ωt

h(mi (t),mj(t), ||xi − xj ||; Θ)dt

where
Ωt index set comprising the individuals alive at time t

f (·) individual growth function
h(·) spatial interaction function (|| · || Euclidean distance)

Θ set of model parameters

Ottmar Cronie Estimation and edge correction in the Renshaw-Särkkä model
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The process - death

Possible death scenarios in the model:

Individuals die naturally according to a death process with
intensity µ(mi (t)), i ∈ Ωt , i.e.
P [Individual i dies naturally in (t, t + dt)|mi (t)] =
µ(mi (t)) dt + o(dt)

Individuals suffer a competitive death if some event,
depending on mi (t) and/or dmi (t), occurs.
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The process - model modifications

One possibility is to consider interactive death to occur when
mi (t) < 0.
Other options:

dmi (t) < 0 ⇒ individual is considered dead through
competition

dmi (t) < 0 ⇒ individual loses its individual growth and is
considered dead through competition when mi (t) < 0.

Some natural suggestions for the natural death:

µ(mi (t)) ≡ µ
µ(mi (t)) = µ mi (t)

1+mi (t)

µ(mi (t)) = µ 1
1+mi (t)
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The process - interaction functions and individual growth

Individual growth functions:

Linear growth: f (mi (t), λi ,Ki ) = λi

(
1− mi (t)

Ki

)
Logistic growth: f (mi (t), λi ,Ki ) = λimi (t)

(
1− mi (t)

Ki

)
where λi is the growth rate and Ki is the carrying capacity.
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The process - interaction functions

Interaction functions:

Symmetric interaction:

h(mi (t),mj(t), ||xi − xj ||,Θ) = −c I {||xi − xj || < r(mi (t) + mj(t))}

where Θ = {r , c}, r > 0 and I {·} denotes the indicator
function.

Area interaction:

h(mi (t),mj(t), ||xi − xj ||,Θ) = −c
ν [B (xi , rmi (t)) ∩ B (xj , rmj(t))]

πr2mi (t)2

where Θ = {r , c}, r > 0, B (x, ε) denotes a closed ball (disk
in R2) with center x ∈ Rd and radius ε, and ν(·) denotes
volume.
Note that r < 1 implies that the marks are allowed to
intersect.
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In this talk:

Region of interest: W = [a, b]× [c, d ] ⊆ R2 ⇒
xi ∼ Uni(a, b) and yi ∼ Uni(c, d)

Parameter choices: εi ≡ ε, λi ≡ λ,Ki ≡ K , r , c > 0

Individual growth: f (mi (t), λ,K ) = λmi (t)
(

1− mi (t)
K

)
Interaction function:

h(mi (t),mj(t), ||xi − xj ||, r , c) = −c
ν[B(xi ,rmi (t))∩B(xj ,rmj (t))]

πr2mi (t)2

Natural death: µ(mi (t)) ≡ µ i.e.
P [Individual i dies naturally in (t, t + dt)] = µ dt + o(dt)

Competitive death: individual is considered dead when
mi (t) < 0
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Realisation:
α = 1.5, µ = 0.02, λ = 0.2, K = 0.1, c = 0.1, r = 1.5,
εi = 0.01, dt = 0.01
The dotted rings are the influence zones B (xi , r mi(t)).
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Estimation: α and µ

Let Nt = #{individuals observed up until t} and T the final
sample point of the process. Then

α̂ =
NT

ν (W ) T
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If µ(mi (t)) ≡ µ then we use the ML estimator

µ̂ = nT

/ nT∑
i=1

ti +

mT∑
j=1

sj


where t1, . . . , tnT

and s1, . . . , smT
denote, respectively, the

recorded lifetimes of the nT individuals who died from natural
causes by time T and the mT individuals still alive at time T .
If µ(mi (t)) = µ 1

1+mi (t) we numerically maximize

log L(µ) ≈
nt∑

i=1

log

{∫ ∞
0

µ
1

1 + x
e−

µ
1+x

ti ̂fm(ti )(x) dx

}

+
mt∑
j=1

log

{∫ ∞
0

e−
µ

1+x
sj ̂fm(T )(x) dx

}
where ̂fm(t)(x) denotes some estimate of the mark size density

at time t. Options for ̂fm(t)(x) are kernel estimates or
histogram probabilities.
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Least squares estimation of λ, K , r , and c

Determine the least squares estimates λ̂, K̂ , r̂ , and ĉ by minimizing

S (λ,K , r , c) :=
T−1∑
t=1

∑
i∈Ωt

[m̃i (t + 1;λ,K , r , c)−mi (t + 1)]2

with respect to λ, K , r , and c (Naturally the time increments do
not need to have size 1). m̃i (t + 1;λ,K , r , c) is the predicted value
of mi (t + 1) based on mi (t) and dmi (t).
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The pair correlation function

The (planar) pair correlation function g(r) = K ′(r)
2πr has the typical

appearance

r0 = minimum inter-point distance; hard core distance
r1 = range of most frequent short inter-point distance;

distance from typical point to near neighbours
r2 = distance from typical point to regions with a small

number of points beyond the nearest neighbours
r3 = range of most frequent longer inter-point distance;

distance from typical point to regions with further
neighboursOttmar Cronie Estimation and edge correction in the Renshaw-Särkkä model



Bounds and starting values

From h(mi (t),mj(t), ||xi − xj ||, r , c) = −c
ν(B(xi ,rmi (t))∩B(xj ,rmj (t)))

πr2mi (t)2

one can see that r and c are correlated which causes biased
estimates.
For some fixed t a typical influence zone radius is given by
rE[mi (t)]. So

2rE[mi (t)] + E[mi (t)] ≤ r3 =⇒ r ≤ r3 − E[mi (t)]

2E[mi (t)]

Since two trees do not intersect we get that 1 < r ≤ r3−E[mi (t)]
2E[mi (t)] .

We use as starting values in our estimation (data sampled at
t1, . . . , tn)

r̂0 =
(

r3−E[mi (t)]
2E[mi (t)] + 1

)
/2

K̂0 = maxi∈Ωtn
{mi (tn)}

λ̂0 =
{
λ > 0 : g(t1, λ, K̂0, ε) = maxi∈Ωt1

{mi (t1)}
}

where

g(t, λ,K , ε) solves m′(t) = f (m(t)) (the individual growth)

Ottmar Cronie Estimation and edge correction in the Renshaw-Särkkä model
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Data: Swedish pines (data set under investigation)
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Correcting for edge effects

Data X =
{
x1(tj), . . . , xntj

(tj)
}n

j=1
is sampled in the circular

region A.
B = Ac represents the rest of our region of interest.

A

B
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Correcting for edge effects: Rotations

1 Estimate parameters from X to generate the parameter set
Θ̂∗ = {µ̂∗, α̂∗, λ̂∗, K̂∗, r̂∗, ĉ∗}.

2 Simulate the process on W = A ∪ B, based on Θ̂∗ and
t1, . . . , tn (where W is wrapped onto a torus).

3 For t1, . . . , tn, remove what has been simulated in A.

4 For the angles θ1, . . . , θk , 0 ≤ θi < 2π, ∀i = 1, . . . , k , perform
counterclockwise rotations of X around the center of A to get
Xθ1 , . . . ,Xθk .

5 For each i = 1, . . . , k, put together the data simulated in B
with Xθi and perform estimation based on Xθi only, but still
letting the individuals in B affect the ones in Xθi and vice
versa (where W is wrapped onto a torus).
This gives us the estimates Θ̂i , i = 1, . . . , k .

6 Let our final estimates be given by

Θ̂ = median
(

Θ̂θ1 , . . . , Θ̂θk

)
.
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2 Simulate the process on W = A ∪ B, based on Θ̂∗ and
t1, . . . , tn (where W is wrapped onto a torus).

3 For t1, . . . , tn, remove what has been simulated in A.

4 For the angles θ1, . . . , θk , 0 ≤ θi < 2π, ∀i = 1, . . . , k , perform
counterclockwise rotations of X around the center of A to get
Xθ1 , . . . ,Xθk .

5 For each i = 1, . . . , k, put together the data simulated in B
with Xθi and perform estimation based on Xθi only, but still
letting the individuals in B affect the ones in Xθi and vice
versa (where W is wrapped onto a torus).
This gives us the estimates Θ̂i , i = 1, . . . , k .

6 Let our final estimates be given by

Θ̂ = median
(

Θ̂θ1 , . . . , Θ̂θk

)
.
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2 Simulate the process on W = A ∪ B, based on Θ̂∗ and
t1, . . . , tn (where W is wrapped onto a torus).

3 For t1, . . . , tn, remove what has been simulated in A.

4 For the angles θ1, . . . , θk , 0 ≤ θi < 2π, ∀i = 1, . . . , k , perform
counterclockwise rotations of X around the center of A to get
Xθ1 , . . . ,Xθk .

5 For each i = 1, . . . , k, put together the data simulated in B
with Xθi and perform estimation based on Xθi only, but still
letting the individuals in B affect the ones in Xθi and vice
versa (where W is wrapped onto a torus).
This gives us the estimates Θ̂i , i = 1, . . . , k .

6 Let our final estimates be given by

Θ̂ = median
(

Θ̂θ1 , . . . , Θ̂θk

)
.

Ottmar Cronie Estimation and edge correction in the Renshaw-Särkkä model
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Correcting for edge effects: Simultaneous growth

1 Estimate parameters from X to generate the parameter set
Θ̂∗ = {µ̂∗, α̂∗, λ̂∗, K̂∗, r̂∗, ĉ∗}.

2 For each time interval (tj−1, tj ] we get nj new individuals.

Simulate Uni(tj−1, tj)-distributed birth times bj
1 < . . . , bj

nj

and assign these to the individuals which have arrived in
(tj−1, tj ] in such an order that the largest individual gets the
smallest time, going upwards until the smallest individual has
recieved the largest time.

3 Simulate the process on W = A ∪ B, based on Θ̂∗ and
t1, . . . , tn (where W is wrapped onto a torus) where we let
each data individual enter at its birth time and grow linearly
until its death time, if it dies before T , or until T , if it is stil
alive at T .

4 Remove everything found in A at all the sample times (we are
left with what has been simulated in B) and replace it by X.

5 Estimate from X (i.e. from A) but let the individuals in B and
A affect each other.
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Future/ongoing work

1 Estimation/edge correction of multiple (homogeneous) data
sets simultaneously

2 Maximum likelihood estimation

3 Individual (stochastic) parameters

4 Incorporation of other individual growth functions
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