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Context

Part of the project
“Climate-related risks for energy supply and demand”

|mportant part isto assess future climate variability

- Based on past observations...

« ...and expected behavior of ENSO, PO, human-induced climate
change,...

Aim : developing a stochastic modelsto ssmulaterealistic sce-
nariosfor thefuture climate. First step:

- Focuson rainfall

« Reproduce past conditions

Simulated rainfall used asinput in models of large-scale hy-
drology and river flows

- Estimaterisksrelated to production of hydroelectricity (60% of NZ
electricity)
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Outline

Data

Basic Hidden Markov M odel (HM M)

HMM with truncated Gaussian distributions
Conclusion
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Data

Data

Data

 Rainfall datain New Zealand

e Daily rainfall
e K=7locations

© Y= (YD), ..., Y(K))'

* Y/(k)e R": rainfall (mm) during day t at
location k

e 20years

* Focuson April

# FzinGougs it bR e M
* Town 2
— Road - Kilnmatren

il Lsko o 4z zo
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Data

4 . .
« Timestructure (location 1)
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Time (year) 20t

10.\>

0 . . . .
5 10 15 20 25 30
Time (day)
 Marginal distribution 0.8
*  Two components: ol % of dry days
. Y{(k) = 0 if norainfall occurs 0.5
. Y,(k)>0 ifarainfall occurs o
O.z -
Marginal distribution, location 1
.
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Data

(. Spatial structure

o Rwer A"
oo e I
oA :-.—-: Lake: o 1z Z0

— Read - Filnmetres ¥
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HMMsfor rainfall: basic model

" Basic HMM: model description (Zucchini & Guttorp (1991))

o Existenceof “weather types’ in meteorological time series
* Another meteorological timeseries

20+ __ Cyclonic
10 WW\/\M B AﬂticyC|OniC
O 1 1 1 1 1 1

0] 5 10 15 20 25 30

Wind speed (in m/s), Brittany, January 1991

* Theweather type dependson the position of high pressure systems, frontal systems...
* Introduced asahidden process S, € {1...Q}
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HMMsfor rainfall: basic model

" Basic HMM: model description (Zucchini & Guttorp (1991))

o Existenceof “weather types’ in meteorological time series
* Introduced asa hidden process S;e {1...Q}

 Timestructure: HMM
* P(&Sio1= Sip Yioa= yt 90~ Sp Yo= Yo) = P(S|Si_1= Si_1)
* P(MYYS= s S-1% Sim1 Yio1= Yicn - S0= S Yo= Yo) = P(Y4|S= )

Weather type (not observed) - == +® - @ @ i
Precipitation (observed) @ @ @

e ..Dynamicsinduced only by {S;}!
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HMMsfor rainfall: basic model

" Basic HMM: model description (Zucchini & Guttorp (1991))

o Existenceof “weather types’ in meteorological time series
* Introduced asa hidden process S;e {1...Q}

« Timestructure HMM
e ..Dynamicsinduced only by {S;}!

o Spatial structure: conditional independence

P(Y(D),..Y(K)|S=s) = H P(Y(K)[S= sp)

ke {1...K}

Weather type (not observed) o +® @ @ L

Precipitation (observed)

e Spatial dependenceinduced only by {S;}!




HMMsfor rainfall: basic model

" Basic HMM: model description (Zucchini & Guttorp (1991))

o Existenceof “weather types’ in meteorological time series
* Introduced asa hidden process S;e {1...Q}

« Timestructure HMM
e ..Dynamicsinduced only by {S;}!

o Spatial structure: conditional independence

P(Y(D),..Y(K)|S=s) = H P(Y(K)|S= s
ke {1...K}

e Spatial dependenceinduced only by {S;}!

1-p if Oc d
P(Y(K) e dy|S=s) = Pk e dy

P v(y;o00, B if Oe dy

Yo 1 exp (_E_Q

© Yy, B) = -
(o)

« pYe0,1],a>0,BY>0
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HMMsfor rainfall: basic model

4 Parameter estimation

3KQ + Q2 —1 parameters

EM algorithm to compute the Maximum Likelihood Estimates

e Several random starting valuesto avoid local extrema

Model selection

e First selection with AIC and BIC

Q

1

2

3

AIC

17404

14317

13436

13213

13144

12990

BIC

17502

14523

13760

13663

13731

13722

Focus on the model with Q = 4
* Eader interpretation than modelswith Q=5

* Produce“morerealistic’ synthetic time seriesthan modelswith Q<3
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HMMsfor rainfall: basic model

" Model validation

 Meteorological inter pretability
* Emission probabilities
Regime 1

P(Y>0S)

Regime 2

E[Y[S,Y>0]

var (YS;,Y+>0)




HMMsfor rainfall: basic model

" Model validation

 Meteorological inter pretability
* Emission probabilities
* Transtion matrix, stationary distribution, mean durations

0.70 [0.15 |0.09 |0.05 0.56 3.33
049 [0.18 |0.20 |0.12 0.20 1.22
0.35 (031 |0.17 |0.16 0.14 1.20
0.21 |{0.29 |0.25 |0.25 0.10 1.33

e  Summary
Regime 1: dry conditions, “long” persistence

Redime 2 and 3: intermediate patterns, regional differences, higher rainfall in re-
gime 3, short persistence

Redime 4: heavy rainfall
e Similar meteorological inter pretation for other datasets
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HMMsfor rainfall: basic model

[ Model validation
 Meteorological interpretability: OK

* Realism of artificial sequences ssmulated with the mode
* Marginal distribution

0.8¢ 0.025¢

07T -
0.02¢

06 Data |

Model (+95% interval) _

05 0.015}

0.4} i

03l 0.01} = |

0.27 - et —

% 0.005¢ mm =
0.1} | ES -
0 e —— 0 - TR L T T T
0 10 20 30 40 20 40 60 80

L ocation 1 (Winchmore)
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HMMsfor rainfall: basic model

" Model validation

 Meteorological interpretability: OK
* Realism of artificial sequences ssmulated with the mode
* Marginal distribution: OK
* Dynamics at the different locations
\ Data
0.8[} ] 0.8
\ Model (+95% interval) -_
06f °\ 1 06f
\ \
0.4F - 0.4
N\ !
0.2p N 1 02
N AN .
0f e =~ O ThNee——
-0.2 : : : ~0.2 - . .
0 2 4 6 0 2 4 6
Autocorrelation (Location 1) Autocorrelation (Location 3)
.
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HMMsfor rainfall: basic model

[ Model validation
 Meteorological interpretability: OK

* Realism of artificial sequences ssmulated with the mode
* Marginal distribution: OK
* Dynamics at the different locations

04r Data 0.4}

Model (+95% interval)
0.3 0.3

o

O | = I T T — 0
5 10 15 20 5 10 15 20
Dry durations (L ocation 1) Dry durations (L ocation 3)
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HMMsfor rainfall: basic model

[ Model validation
 Meteorological interpretability: OK

* Realism of artificial sequences ssmulated with the mode
* Marginal distribution: OK
* Dynamics at the different locations: ~OK
e Spatial structure
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HMMsfor rainfall: basic model

[ Model validation
 Meteorological interpretability: OK

* Realism of artificial sequences ssmulated with the mode
* Marginal distribution: OK
* Dynamics at the different locations: ~OK
e Spatial structure: not good!

e ...Need for abetter mode!!
e Existence of residual spatial structurewithin the weather types

regime 1 regime 2

Empirical correlation matrices
in the different weather types
(identified viathe Viterbi algo.)

2 4 6 2 4 6
regime 3 regime 4
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HMMsfor rainfall: basic model

[ Model validation
M eteorological inter pretability: OK

Realism of artificial sequences smulated with the model
* Marginal distribution: OK
* Dynamics at the different locations: ~OK
e Spatial structure: not good!

...Need for a better model!
e Existence of residual spatial structurewithin the weather types

| ntroduce spatial structurein the emission probabilities

* Need model for multivariate mixed discrete-continuous distributions
e _..Truncated Gaussian random fields

Page 19



HMMsfor rainfall: HMM with truncated Gaussian fields

" HMM with truncated Gaussian fields: model description

 IfS, = sthen

0 if W(k)<O0
Yi(K) = <

(s)
w0 i wi(k)>0

e W, = m®+H®Z with Z,~N(O, 1) i.id

« m%e R =9 = HOH®)y e R and B e (R™)"

0.4
03! 0.6
/P[Y:O] T
0.1} . 0.2
0] O

—10 O 10 —-10 O 10

pdf of W~ N(-1.88, 3.78) pdf of Y = max(W, 0)8L
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HMMsfor rainfall: HMM with truncated Gaussian fields

(. Assumptions on the covariance matrices
e HMMCI model (Q2 — 1+ 3QK parameters)
=293, }) = 6{¥6{%8; ; with 6;¥ > 0
e HMMdist model (Q2 —1+K(3Q + 1) parameters)
293, ]) = 6{¥¢{Yexp(-1"d(z, 7)) with /¥ >0 and 1'¥ >0
e HMMIloc mode (Q2 —1+4QK parameters)
293, ]) = 6{%6{Yexp(-A{*A{d(z, 7)) with 6{” >0 and A{* >0
 Modd selection with AIC
Q 1 2 3 4 5
Basic HMM 17404 14317 13436 13213 13144
HMMCI 17403 14445 13639 13398 13289
HMMdist 13092 12770 12697 12616 12623
HMMIloc 12995 12741 12600 12506 12509
HM Mfull 12904 12643 12640 12674 12611
.
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HMMsfor rainfall: HMM with truncated Gaussian fields

a4 . .
Model validation A
 Meteorological inter pretability
Regime 1 Regime 2
P(Y>0|S)
E[Y S Y>0l
var (Y¢S, Y+>0)
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HMMsfor rainfall: HMM with truncated Gaussian fields

a4 . ] N\
Model validation
 Meteorological interpretability: OK
* Realism of artificial sequences ssmulated with the mode
* Marginal distribution (L ocation 1)
Truncation
+ . .
Power transf. Mixing
0.25¢ -
regime 1 regime 1 = mixed
—— regime 2 — regime 2 0.6} - data
0.2r| — regime 3 — regime 3
regime 4 06! regime 4 0.5}
0.15¢ 0.4r
04t | 0.3t
0.1f
0.2}
0.05} 0.21 k o1l
0 — : ol /=
% 10 0 10 0 5 10 15 20 25 0o 5 10 15 20 25
P(W(1)|S= P(Y(1)|S= ZP(Yt(1)|St: SP(S= 9)
J
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HMMsfor rainfall: HMM with truncated Gaussian fields

" Model validation

M eteorological inter pretability: OK
Realism of artificial sequences smulated with the model

* Marginal distribution (L ocation 1)

0.8

0.6

0.4

0.2

Data
M odel

20

40

0.025;

0.02¢

0.015

0.01;

0.005;

0
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HMMsfor rainfall: HMM with truncated Gaussian fields

" Model validation

 Meteorological interpretability: OK

* Realism of artificial sequences ssmulated with the mode
* Marginal distribution: OK
* Dynamics at the different locations: ~OK
e Spatial structure: OK
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HMMsfor rainfall: HMM with truncated Gaussian fields

~ ) .
Parameter estimation
e Modd structure

Weather type: -—— @ .
Not observed, finite values

Conditionally Gaussian vector :

Not observed, continuous values

I
v
Precipitation: @

Observed, mixed continuous-discrete

« Monte-Carlo EM algorithm
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HMMsfor rainfall: HMM with truncated Gaussian fields

(. Need to compute the following smoothing probabilities for the M -step )
*uls) = p(S= s|yi, 6,)
* V(sS) = p(S_1= 8 5= S|yi, 0,)
* E[W{y{, S= s 6,]
©  E[WW/|S= s V], 6,]

e Several algorithms can be used

* Genericalgorithms: Gibbssampler, particlefilter,...
* Moreefficient algorithmsif we take advantage of the specific structure of the model

G )
CINOINC
CHNOING
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HMMsfor rainfall: HMM with truncated Gaussian fields

(. Need to compute the following smoothing probabilities for the M -step )

u(s) = p(S= s|yi, 6,)

© %(sS) = p(S_1= S S= S|yl 6,)
*  E[W|y],6,]

*  E[WW/|y],6,]

e Several algorithms can be used

* Genericalgorithms: Gibbssampler, particlefilter,...
* Moreefficient algorithmsif we take advantage of the specific structure of the model
* Forward-backward algorithm for the discr ete component

* Monte-Carlointegration for the gaussian component (¢ pdf of N(m, X))

I I (l)(W]_?°°-7Wk7Wk+1,...,WK)dWl...de

], 0"

I I WO (W, ooy Wi, Wy 4 g, --s Wi )DW, ... O,

—°°, 0] “

]
I I WiW; O (W, ...y Wy, Wi g, e Wi ) OW .. DWW

], 0]
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HMMsfor rainfall: HMM with truncated Gaussian fields

r
N=100 N=500 N~n*n
-6300f V/ V/ V/ :
(,;/_VVV"N_—_“‘ 2.5
3 ~6400, A 13
3 T 2
= -6500¢ S
W\M
-6600t 1 : 1.5t 1 :
50 100 150 200 50 100 150 200
aQ —_
d 4 < 25|
a %
N 2t 5
0 N N
50 100 150 200 50 100 150 200
Number of iteration Number of iteration
\_
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Conclusion

~ :
Conclusion

» Better description of the spatial structure of the data
o Some per spectives

* Add an autoregressive part to better describethelocal dynamics
* Incorporate seasonal and inter-annual componentsin the model

e Somevirtuesof HMM

e Distributional versatility
* Ability to model diversetime scales
* Open structurewhich allowsfor more physical models
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