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Objectives

Background:

» Gaussian process very convenient in environmental sciences
since they allow for covariance/spectral modelling.

» Sometimes not sufficient, does not allow for skewed marginal
distributions and has often too light tails.

Goals:
» Construct non-Gaussian stationary process...
> ... possessing a spectrum,
» a skewed marginal distribution,
» and heavier tails than the Gaussian distribution.

Starting point:
the Laplace distributions
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B
The Laplace distribution — from a historical point of view

First and second Laplace law of error.
|. The Laplace distribution. (Laplace, 1774).
Il. The normal (Gauss) distribution. (Laplace, 1778).
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Generalized Laplace distributions
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Laplace motion - a counterpart to Brownian motion

A stochastic process A(t) is called - %"\MM’\A}‘N
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The Laplace driven moving average

Using the Laplace motion A(x) one can define a Laplace driven
moving average by

X(t) = /Oo F(t — x)dA().

The function f is called a kernel and should satisfy
[ f2(x) dx < co. A similar definition is possible in higher
dimensions.
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Spectral properties of Laplace moving averages

» The spectrum of X(t) is given :
by £ 5
2, 2 i
SW) = M|_7:f(w)|2 .
27 )

» By requiring that f is a C O Mgy 0
symmetric function one can o

estimate the kernel from the
spectral density.

kernel f(x)
°
8

» By "minimum phase”
assumptions one can get causal o
kernels.

Sofia Aberg Laplace driven MA



Marginal distribution

Gaussian: T =

U

=1/15
Standard /\

» The marginal distribution is given o3
in terms of its characteristic ZZ
function. 02

» Moments of the distribution can be ot
computed. .

» The method of moments (with first w2

four moments) can be used in
fitting the marginal distribution to
data.
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T
Simulation

The LMA can be seen as a convolution of Laplace noise with a
kernel f. Discrete version:

/f (t = x)dA(x) = > F(t — x)AN(x;)

Time domain simulation:
» simulate iid Laplace noise
» convolve the noise with the kernel
Frequency domain simulation:
» simulate iid Laplace noise
» Fourier transform the noise and the kernel f using FFT
» Take product of the Fourier transforms

» Take inverse Fourier transform of the product
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Example: Random fields with Matérn covariance

The Matérn family of covariances is commonly used to describe
spatial dependence in geostatistics. It has covariance

¢

r(x) = W(MXDBKB(MXD,

and spectrum

r(3+9)a? ¢

S(w) = r(3)r dj2 (a2+]w|2)3+%'

d is the dimension ¢ is variance, « a range parameter, 0 a
smoothness parameter and K is a modified Bessel function.
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T
Matérn correlations

Matérn correlations for different parameters
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and kernels

Matérn kernels for different parameters
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N
Symmetric fields

Laplace parameters: [1,0,u,c] =[1,1,0,0].

$=0.5, #=0.9986 f=1.5, =1.5813
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Asymmetric fields

Laplace parameters: [7,0,p,c] = [1,1/v/2,1/v/2,-1//2].
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N
Marginal densities

marginal densities marginal densities
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All distributions have mean zero and variance one
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Relation to Gaussian processes

A generalized Laplace distributed random variable A can be
represented using a (7, 1)-distributed random variable I' and
standard Gaussian variable B:

A2 c+ul +oVTB.
Similarly, the Laplace motion can be represented as
A(t) = c -t + ul(t) + aB(T (1)),

where '(t) is a Gamma-process with parameter 7 and B(t) is
standard Brownian motion.
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Conditioning on the Gamma process — a smart trick

Conditional on a specific realisation v of the gamma-process the
Laplace moving average becomes a non-stationary Gaussian
process! It will have mean

mi(t) = E[X(t) | F(x) = 7(x)] = ¢ / F(t—x) dxtp / F(t—x) dr(x)
and variance
Fh(e) = Var[X(6)| T0) = 100] = [ (e = x) d(x)

both depending on time t.
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Example: Rice's formula

» Formula for
computing the
expected number of
level crossings

» Very important in
reliability applications

» For Gaussian
stationary processes
there is a closed form
solution
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N
Rice's formula - non-stationary case

For a non-stationary process

T roo
el = [ [ e dz

> N#(u) - number of upcrossings of level u during [0, T].

» For a Gaussian process the innermost integral can be
evaluated.

» The outer integral can be computed numerically
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Monte-Carlo approach to Rice's formula

» N (u)- number of upcrossings of level u in time interval [0, T]
» Condition on I'(x) = y(x):

p(u) = E[Ny ()] = E[EINS(u) | T(x) = v()l]

» Approximate by forming a Monte-Carlo average:
1 n
()~ — > EIN () | T(x) = w(x)]
k=1

» The terms in the sum are level-crossing intensities for
non-stationary Gaussian processes.
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Upcrossing intensity
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Summary

» The Laplace driven moving average can be used to model
second order stationary loads with skewed marginal
distribution.

» The model can be fitted to data using a moment matching
approach.

» Simulation can either be done in time or in frequency domain.

» Conditional on a realisation of a gamma-process the LMA
becomes a non-stationary Gaussian process.

» Rice's formula can be evaluated by a Monte-Carlo method.
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