
The Laplace driven moving average
– a non-Gaussian stationary process
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Objectives

Background:

I Gaussian process very convenient in environmental sciences
since they allow for covariance/spectral modelling.

I Sometimes not sufficient, does not allow for skewed marginal
distributions and has often too light tails.

Goals:

I Construct non-Gaussian stationary process...

I ... possessing a spectrum,

I a skewed marginal distribution,

I and heavier tails than the Gaussian distribution.

Starting point:
the Laplace distributions
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The Laplace distribution – from a historical point of view

First and second Laplace law of error.

I. The Laplace distribution. (Laplace, 1774).

II. The normal (Gauss) distribution. (Laplace, 1778).
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Generalized Laplace distributions

I Laplace distribution:

φ(t) =

(
1

1 + σ2t2

2

)

I Generalization:

φ(t) =

(
1

1− iµt + σ2t2

2

)τ
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Laplace motion - a counterpart to Brownian motion

A stochastic process Λ(t) is called
asymmetric LM if

1. it starts at the origin

2. it has independent and
stationary increments

3. the increments have a
generalized asymmetric Laplace
distribution

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2

4

Brownian motion

0 5 10 15 20 25 30
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Laplace motion: τ = σ=1
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The Laplace driven moving average

Using the Laplace motion Λ(x) one can define a Laplace driven
moving average by

X (t) =

∫ ∞

−∞
f (t − x)dΛ(x).

The function f is called a kernel and should satisfy∫
f 2(x) dx < ∞. A similar definition is possible in higher

dimensions.
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Spectral properties of Laplace moving averages

I The spectrum of X (t) is given
by

S(ω) =
τ(σ2 + µ2)

2π
|F f (ω)|2

I By requiring that f is a
symmetric function one can
estimate the kernel from the
spectral density.

I By ”minimum phase”
assumptions one can get causal
kernels.
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Marginal distribution

I The marginal distribution is given
in terms of its characteristic
function.

I Moments of the distribution can be
computed.

I The method of moments (with first
four moments) can be used in
fitting the marginal distribution to
data.

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

τ=1/15

Standard
Gaussian: τ = ∞

−5 0 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Symmetric

Asymmetric
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Simulation

The LMA can be seen as a convolution of Laplace noise with a
kernel f . Discrete version:

∫
f (t − x)dΛ(x) ≈

∑
f (t − xi )∆Λ(xi )

Time domain simulation:

I simulate iid Laplace noise

I convolve the noise with the kernel

Frequency domain simulation:

I simulate iid Laplace noise

I Fourier transform the noise and the kernel f using FFT

I Take product of the Fourier transforms

I Take inverse Fourier transform of the product
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Example: Random fields with Matérn covariance

The Matérn family of covariances is commonly used to describe
spatial dependence in geostatistics. It has covariance

r(x) =
φ

2β−1Γ(β)
(α|x |)βKβ(α|x |),

and spectrum

S(ω) =
Γ(β + d

2 )α2β

Γ(β)πd/2

φ

(α2 + |ω|2)β+ d
2

.

d is the dimension φ is variance, α a range parameter, β a
smoothness parameter and K is a modified Bessel function.
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Matérn correlations
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... and kernels
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Symmetric fields

Laplace parameters: [τ, σ, µ, c] = [1, 1, 0, 0].
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Asymmetric fields

Laplace parameters: [τ, σ, µ, c] = [1, 1/
√

2, 1/
√

2,−1/
√

2].
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Marginal densities
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Relation to Gaussian processes

A generalized Laplace distributed random variable Λ can be
represented using a Γ(τ, 1)-distributed random variable Γ and
standard Gaussian variable B:

Λ
D
= c + µΓ + σ

√
ΓB.

Similarly, the Laplace motion can be represented as

Λ(t)
D
= c · t + µΓ(t) + σB(Γ(t)),

where Γ(t) is a Gamma-process with parameter τ and B(t) is
standard Brownian motion.
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Conditioning on the Gamma process – a smart trick

Conditional on a specific realisation γ of the gamma-process the
Laplace moving average becomes a non-stationary Gaussian
process! It will have mean

m1(t) = E [X (t) | Γ(x) = γ(x)] = c

∫
f (t−x) dx+µ

∫
f (t−x) dγ(x)

and variance

σ2
11(t) = Var [X (t) | Γ(x) = γ(x)] = σ2

∫
f 2(t − x) dγ(x)

both depending on time t.
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Example: Rice’s formula

I Formula for
computing the
expected number of
level crossings

I Very important in
reliability applications

I For Gaussian
stationary processes
there is a closed form
solution 0 10 20 30 40 50 60 70 80 90 100
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Rice’s formula - non-stationary case

For a non-stationary process

E [N+
T (u)] =

∫ T

0

∫ ∞

0
zfY (t),Y ′(t)(u, z) dz dt

I N+
T (u) - number of upcrossings of level u during [0, T ].

I For a Gaussian process the innermost integral can be
evaluated.

I The outer integral can be computed numerically
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Monte-Carlo approach to Rice’s formula

I N+
T (u)- number of upcrossings of level u in time interval [0,T ]

I Condition on Γ(x) = γ(x):

µ+(u) = E [N+
1 (u)] = E [E [N+

1 (u) | Γ(x) = γ(x)]]

I Approximate by forming a Monte-Carlo average:

µ+(u) ≈ 1

n

n∑

k=1

E [N+
1 (u) | Γ(x) = γk(x)]

I The terms in the sum are level-crossing intensities for
non-stationary Gaussian processes.
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Upcrossing intensity
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Gaussian
LMA: skewness = 0, kurtosis = 3.01
LMA: skewness = 0.3, kurtosis = 4
LMA: skewness = 0.6, kurtosis = 5
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Summary

I The Laplace driven moving average can be used to model
second order stationary loads with skewed marginal
distribution.

I The model can be fitted to data using a moment matching
approach.

I Simulation can either be done in time or in frequency domain.

I Conditional on a realisation of a gamma-process the LMA
becomes a non-stationary Gaussian process.

I Rice’s formula can be evaluated by a Monte-Carlo method.
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