Added value in fault tree analyses

Tommy Norberg, Andreas Lindhe & Lars Rosén

Chalmers University of Technology University of Gothenburg Göteborg SWEDEN

Reliability of complex systems

- Göteborg Water
- Fault tree analysis
 - Probability of failure is

$$P(F) = \frac{\text{MDT}}{\text{MTBF}}$$

- Inherent ability to compensate failures
- Dynamic approach needed

Fault trees

Fault trees are built by logic gates, the main types of which are the OR gate,

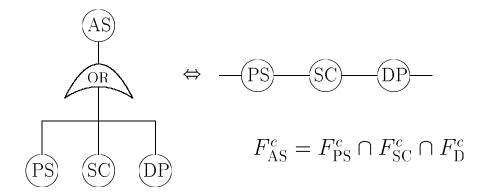
$$F = \bigcup_{i} F_{i}$$

and the AND gate,

$$F = \bigcap_{i} F_{i}$$

Structural reliability

The OR gate corresponds to a series system.



Similarly,

The AND gate corresponds to a parallell system.



Independence

If the base events, i.e F_i 's, are independent, then, for the OR gate,

$$P(F) = 1 - \prod_{i} (1 - P(F_i))$$

and, for the AND gate,

$$P(F) = \prod_{i} P(F_i)$$

Independence will be assumed below.

Probability of failure

Assuming ergodicity, P(F) can be thought of as the ratio between the Mean Down Time (MDT) and the Mean Time Between Failures (MTBF),

$$P(F) = \frac{\text{MDT}}{\text{MTBF}}$$

where

$$MTBF = MUT + MDT$$

and MUT is short for Mean Up Time.

In a dynamic analysis at least two members of the triplet

$$P(F)$$
, MUT, MDT

need to be assessed.

Markovian base component rates

In a two-state Markovian model of base component i,

$$P(F_i) = \frac{\lambda_i}{\lambda_i + \mu_i}$$

where λ_i is its failure rate, and $1/\mu_i$ is its mean down time.

Markovian sub-system rates

For the sub-system comprising a logic gate, assume that it has constant failure rate λ , and write $1/\mu$ for its mean down time. Then

$$P(F) = \frac{\lambda}{\lambda + \mu}$$

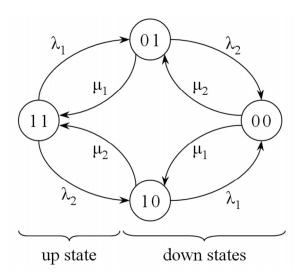
Clearly, neither λ nor μ is necessarily constant.

Also, if two of

$$P(F), \lambda, \mu$$

are known, so is the third.

The OR gate



State diagram of a Markov Process representing an OR gate with two basic events. The MP is down if at least one base MP is down.

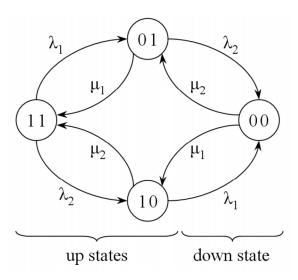
We conclude, for the OR gate,

$$P(F) = 1 - \prod_{i} \frac{\mu_{i}}{\lambda_{i} + \mu_{i}}$$
$$\lambda = \sum_{i} \lambda_{i}$$

And also,

$$\mu = \frac{1 - P(F)}{P(F)} \lambda$$

The AND gate



State diagram of a Markov Process representing an AND gate with two basic events. The MP is down when all base MPs are down.

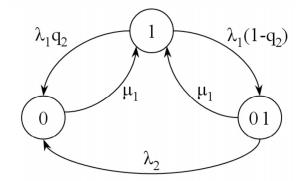
We conclude, for the AND gate,

$$P(F) = \prod_{i} \frac{\lambda_{i}}{\lambda_{i} + \mu_{i}}$$
$$\mu = \sum_{i} \mu_{i}$$

And also

$$\lambda = \frac{P(F)}{1 - P(F)} \, \mu$$

Dynamic AND-variant 1



State diagram of an MP representing a dynamic variant of the AND gate. The MP is down while being in state 0.

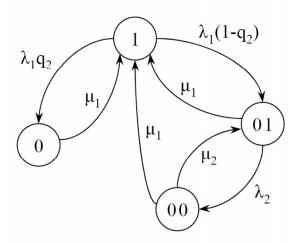
For the AND1 gate with an arbitrary number of 'reservoirs',

$$P(F) = \frac{\lambda_1}{\lambda_1 + \mu_1} \prod_{i \neq 1} \frac{\lambda_i + q_i \mu_1}{\lambda_i + \mu_1}$$
$$\mu = \mu_1$$

and, again,

$$\lambda = \frac{P(F)}{1 - P(F)} \,\mu$$

Dynamic AND-variant 2



State diagram of an MP representing a 2nd dynamic variant of the AND gate. The MP is down while being in state 0 or 00.

For the AND2 gate with one 'reservoir',

$$P(F) = \frac{\lambda_1}{\lambda_1 + \mu_1} \frac{\lambda_2 + q_2(\mu_1 + \mu_2)}{\lambda_2 + \mu_1 + \mu_2} = 1 - (p_1 + p_{01})$$

where

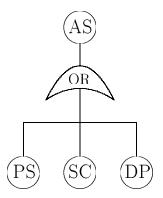
$$p_1 = \frac{\mu_1}{\lambda_1 + \mu_1}$$
 and $p_{01} = \frac{\lambda_1(1 - q_2)}{\lambda_1 + \mu_1} \frac{\mu_1 + \mu_2}{\lambda_2 + \mu_1 + \mu_2}$

are the stationary probabilities for being in the up states 0 and 01, respectively.

Moreover,

$$\lambda = \frac{p_1 \lambda_1 q_2 + p_{01} \lambda_2}{1 - P(F)}$$
$$\mu = \frac{p_1 \lambda_1 q_2 + p_{01} \lambda_2}{P(F)}$$

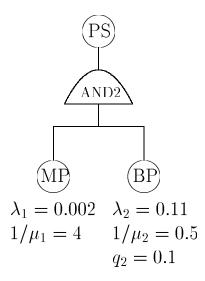
Example: Alarm System



An Alarm System that consist of a Power Supply, a Supervisong Computer and a Detector Package.

A dynamic analysis is needed. Of particular importance is the frequency of stops that last for more than 12 hours.

The Power Supply



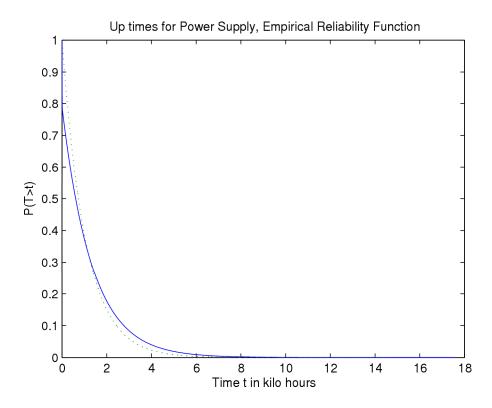
Fault tree representation of the Power Supply. Its components are the Main Power (MP) and the Back-up Power (BP) sub-systems.

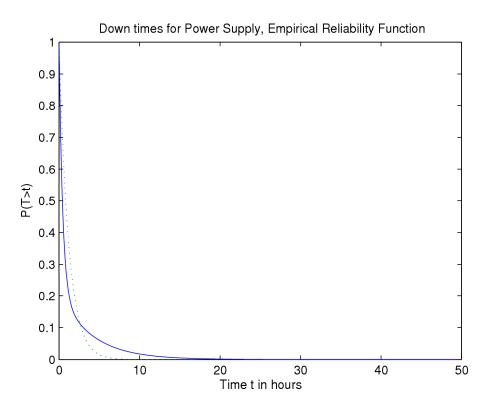
The time unit is hours.

Results for the Power Supply sub-system

	DFT	Simulation		
	calculations	LCL	EST	UCL
$10^3 P(F)$	1.127	1.123	1.127	1.132
$10^3\lambda$	0.9475	0.9447	0.9470	0.9494
$1/\mu$	1.190	1.187	1.192	1.196
$10^3 \lambda_{ m LS}$	0.409		0.0099	

where $\lambda_{\rm LS} = \lambda e^{-12\mu}$.

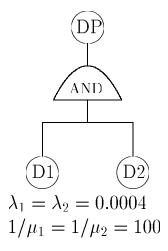




The Supervising Computer

$$\lambda = 0.0001$$
 $1/\mu = 100$
 $10^{3}P(F) = 9.901$
 $10^{3}\lambda_{\rm LS} = 0.099$

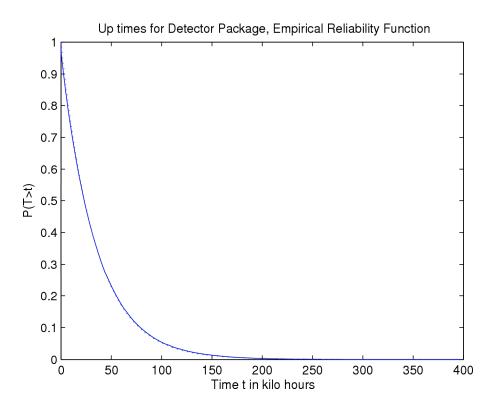
The Detector Package

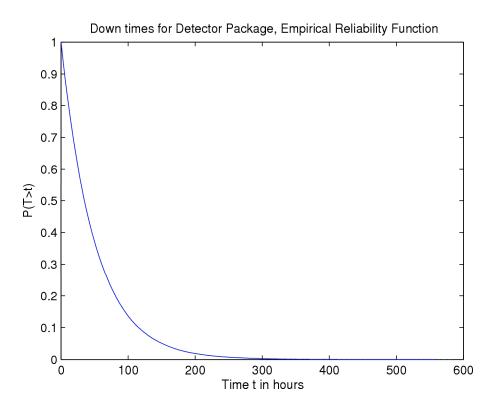


Fault tree representation of the Detector Package consisting of two identical detectors connected in parallell.

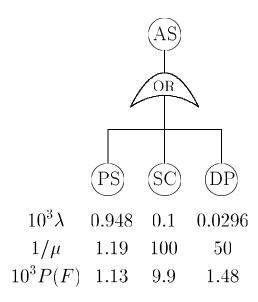
Results for the Detector Package sub-system

	DFT	Simulation			
	calculations	LCL	EST	UCL	
$10^3 P(F)$	1.479	1.482	1.492	1.501	
$10^3 \lambda$	0.02963	0.02948	0.02967	0.02987	
$1/\mu$	50	50.04	50.36	50.67	
$\lambda_{ m LS}$	0.029		0.023		





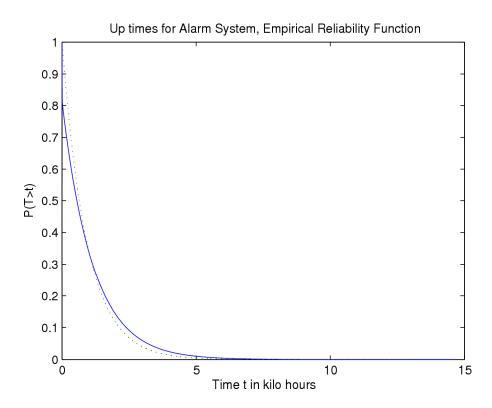
The complete Alarm System

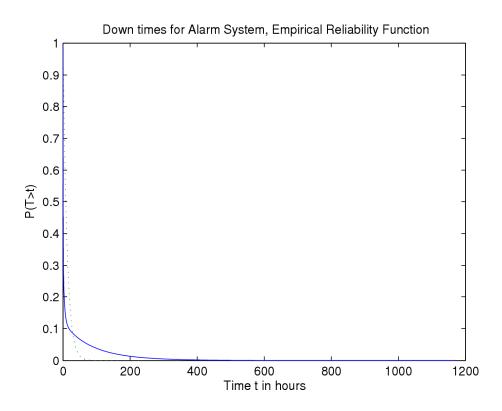


The complete Alarm System consist of a Power Supply, a Supervising Computer and a Detector Package.

Results for the Alarm System

	DFT	Simulation		
	calculations	LCL	EST	UCL
$10^3 P(F)$	12.48	12.43	12.52	12.62
$10^3 \lambda$	1.078	1.074	1.076	1.079
$1/\mu$	11.72	11.69	11.78	11.87
$10^3 \lambda_{ m LS}$	0.99		0.123	





Major conclusions

- The extended (dynamic) gate calculations can provide accurate values of both
 - the mean failure rate λ , and
 - the mean down time $1/\mu$ at the top level.
- It is wrong to draw conclusions assuming that the rates λ and μ are constant at the top level of the tree.
- The technique allows for gate constructions that are not possible in standard fault trees.

Further comments

- Markovian assumption need not be correct.
- At least one of the gate output rates λ , μ is not Markovian.
- Still, they are assumed to be Markovian in the calculations at the next level.
- The thus induced error propagates through the levels of the tree.
- The parameter uncertainties are often gross.

References

- Bedford, T. and R. Cooke (2001). *Probabilistic Risk Analysis: Foundation and methods*.

 Cambridge.
- Lindhe, A., L. Rosén, T. Norberg, O. Bergstedt (2008). Integrated probabilistic risk analysis of a drinking-water system: A fault-tree analysis. Submitted to Water Research.
- Rausand, M. and A. Højland (2004). System Reliability Theory. Models, Statistical Methods, and Applications. Wiley.

Plus two papers by Joanne Bechta Dugan *et al.* (1992, 2000) in IEEE Transactions on Reliability, which we have not yet read!