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Reliability of complex systems

o GGoteborg Water
e Fault tree analysis

— Probability of failure is

~ MDT
~ MTBF

— Inherent ability to compensate failures

P(F)

e Dynamic approach needed



Fault trees

Fault trees are built by logic gates,
the main types of which are the OR gate,

F=|JF

and the AND gate,

F=(F

?



Structural reliability

The OR gate corresponds to a series system.
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Similarly,

The AND gate corresponds to a parallell system.
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Independence

[f the base events, 1.e F}’s, are independent,
then, for the OR gate,

P(F)=1-]]1-P(F)

and, for the AND gate,

P(F) = ][ P(F)

Independence will be assumed below.



Probability of failure

Assuming ergodicity, P(F') can be thought of as the
ratio between the Mean Down Time (MDT) and the
Mean Time Between Failures (MTBF),

MDT

P(F) = MTBF

where
MTBF = MUT 4+ MDT
and MUT is short for Mean Up Time.



In a dynamic analysis at least two members of the
triplet

P(F), MUT, MDT

need to be assessed.



Markovian base component rates

In a two-state Markovian model of base component 7,
Ai

where A; is its failure rate, and 1/, is its mean down
time.



Markovian sub-system rates

For the sub-system comprising a logic gate, assume
that it has constant failure rate A, and write 1/ for
its mean down time. Then

P(F) =

Clearly, neither A nor p is necessarily constant.

Also, if two of
P(F), A, p

are known, so is the third.
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The OR gate

up state down states

State diagram of a Markov Process representing an OR
cate with two basic events. The MP is down if at least
one base MP is down.
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We conclude, for the OR gate,

P(F)=1-[[X

Ai +
A=)

And also,
11— P(F)

S T
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The AND gate

up states down state

State diagram of a Markov Process representing an
AND gate with two basic events. The MP is down
when all base MPs are down.

13



We conclude, for the AND gate,

And also
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Dynamic AND-variant 1

State diagram of an MP representing a dynamic
variant of the AND gate. The MP is down while being
in state ().
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For the AND1 gate with an arbitrary number of

‘Teservoirs’,
Ai + qifh
P
(F) >\1 + p - H Ai + i
= ju
and, again,
P(F)
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Dynamic AND-variant 2

State diagram of an MP representing a 2nd dynamic
variant of the AND gate. The MP is down while being
in state () or 00.
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For the AND2 gate with one ‘reservoir’,

A Ao+ qe(p + 1)

P(F) = =1—(p1+pon
(F) N G e e 2 ( )
where
! MM =q) o F
P1 = and Po1 =
AL+ A4 Ao+ g+ o

are the stationary probabilities for being in the up
states 0 and 01, respectively.

Moreover,

_ P1A1G2 + Po1 A2
I — P(F)

_ PLA1G2 + Po1 A2
P(F)

A
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Example: Alarm System
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An Alarm System that consist of a Power Supply, a
Supervisong Computer and a Detector Package.

A dynamic analysis is needed. Of particular
importance is the frequency of stops that last for more
than 12 hours.

19



The Power Supply
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A1 =0.002 Xy =0.11
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Fault tree representation of the Power Supply. Its
components are the Main Power (MP) and the
Back-up Power (BP) sub-systems.

The time unit i1s hours.
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Results for the Power Supply
sub-system

DFT Simulation
calculations | LCL  EST UCL

1°P(F)| 1127|1123 1127 1.132

103\ 0.9475  10.9447 0.9470 0.9494
1/ 1.190 1.187 1.192 1.196
103\ g 0.409 0.0099

where Apg = \e 12,
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P(T>t)

Up times for Power Supply, Empirical Reliability Function
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P(T>t)
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Down times for Power Supply, Empirical Reliability Function
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The Supervising Computer

A = 0.0001
1/p =100
10°P(F) = 9.901
10°Arg = 0.099
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The Detector Package
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A1 = A9 = 0.0004

Fault tree representation of the Detector Package

consisting of two identical detectors connected in
parallell.
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Results for the Detector Package
sub-system

DFT Simulation
calculations | LCL EST UCL
103P(F) 1.479 1.482 1.492 1.501
103\ 0.02963 |0.02948 0.02967 0.02987
1/p 50 50.04  50.36 50.67
ALS 0.029 0.023
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P(T>t)

Up times for Detector Package, Empirical Reliability Function
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P(T>t)

Down times for Detector Package, Empirical Reliability Function
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The complete Alarm System

9
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XL

10°A  0.948 0.1 0.0296
1/p 119 100 50
10°P(F) 1.13 9.9 148

The complete Alarm System consist of a Power Supply,
a Supervising Computer and a Detector Package.
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Results for the Alarm System

DFT Simulation
calculations | LCLL. EST UCL
103P(F) 12.48 12.43 12.52 12.62
103\ 1.078 1.074 1.076 1.079
1/p 11.72 11.69 11.78 11.87
103 A1 g 0.99 0.123
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P(T>t)

Up times for Alarm System, Empirical Reliability Function
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P(T>t)

Down times for Alarm System, Empirical Reliability Function
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Major conclusions

e The extended (dynamic) gate calculations can
provide accurate values of both

— the mean failure rate A, and

— the mean down time 1/u
at the top level.

e It is wrong to draw conclusions assuming that the
rates A and p are constant at the top level of the
tree.

e The technique allows for gate constructions that
are not possible in standard fault trees.
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Further comments

e Markovian assumption need not be correct.

o At least one of the gate output rates A, u is not
Markovian.

e Still, they are assumed to be Markovian in the
calculations at the next level.

e The thus induced error propagates through the
levels of the tree.

e The parameter uncertainties are often gross.
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