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Abstract

In this paper we investigate a local fine scale problem which arises in var-
ious multiscale methods, see e.g. [1]. Local fine scale problems are solved
and used to modify coarse scale basis functions. We analyze the decay of
these basis functions in the case of localization of the screened Poisson equa-
tion, and state a Proposition in which we get a theoretical bound of the decay.
Furthermore we present extensive numerical tests which confirms our the-
oretical results. The screened Poisson equation can be view as a temporal
discrete parabolic equation, and can be used to model time-dependent flow
in porous media.
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1 Introduction
Many problems in science and engineering have solutions with multiscale fea-
tures. Composite materials can have, for example, thermal, electrical or elastic
properties which vary over many different scales. Another important category
of multiscale problems is simulation of porous media flow, such as oil reservoir
simulation, groundwater flow, storage of carbon dioxide, etc.

In order to resolve fine scale features using a standard one mesh finite element
method, a very fine computational grid is necessary. This results in a huge problem
which require extensive computational resources. Multiscale methods presents a
way to deal with this problem by approximating the over all impact of the fine
scale fluctuations on the large scale solution, but without resolving all fine scale
features globally. Due to a splitting of the original problem into local independent
problems, the multiscale method presented in this paper can be parallelized in a
natural way.

Early in the development of multiscale methods, T.J.R. Hughes published a
paper [2] where the framework for the variational multiscale method (VMS) was
presented. In VMS, the fine part and the coarse part of the solution are decou-
pled via a course scale residual. The problem is then further decoupled, localized
and solved using analytical techniques on the fine scale. A modified coarse scale
equation is then obtained, which takes fine scale variations into account. This
method was advanced by Larson and Målqvist in [1] where the domain of the
localized problems were allowed to grow in size and an adaptive algorithm was
implemented. Other similar multiscale methods have also been presented, e.g. the
multiscale finite element method [3].

Common for these methods is the lack of convergence analysis for general co-
efficients. When results do exist (see e.g. [4]), it is under very special assumptions
on coefficients (e.g. periodicity). However, in [5] A. Målqvist and D. Peterseim
proves that the localized solutions to the Poisson equation (solved in the kernel
of a coarse scale interpolant) decays exponentially for general coefficients, and
thereby confirms previous numerical indications. This result further motivates the
localization of corrector problems (see Section 3.1) for the Poisson equation.

In this paper we apply the method presented in [1] to the screened Poisson
equation. In Proposition 2, we state that the error due to localization of corrector
problems decay exponentially in the size of the local problem, and note that the
proof of this statement follows by small modification of the proof of Lemma 6 in
[5].

The paper is outlined in the following way. In Section 2 the screened Poisson
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equation, basic notation and an introduction to a standard finite element method is
presented. Section 3 introduces the multiscale method used throughout the paper.
In Section 4 error analysis is performed and the main result, Proposition 2, is
stated in more detail.

2 Background

2.1 Preliminaries
The problem we consider is the screened Poisson equation with zero Dirichlet
boundary conditions. This equation is given by

−∇ · A∇u + ε−2u = f , in Ω, (2.1)
u = 0, on ∂Ω, (2.2)

where A ∈ L∞(Ω) with 0 < α ≤ A ≤ β, f ∈ L2(Ω), 0 < ε ∈ R, and Ω is a
polygonal domain in Rd, d = 1, 2, 3. The corresponding variational formulation
reads: find u ∈ V = {v ∈ H1(Ω) : v|∂Ω = 0} such that

a(u, v) := (A∇u,∇v) + ε−2(u, v) = ( f , v) =: F(v), ∀v ∈ V, (2.3)

where
(u, v) :=

∫
Ω

u · v dx (2.4)

is the standard L2-inner product. The bilinear form a(·, ·) induces the norm

|||·|||
2 := |||·|||2Ω := ‖A1/2∇ · ‖2L2(Ω) + ε−2‖ · ‖2L2(Ω). (2.5)

We adopt the following notation. LetTH be a triangulation of Ω, where H is an
upper bound of the diameter of triangles in TH, and let N be the set of all interior
nodes in the triangulation. The notation δ := ε/H will be frequently used. Next,
define the finite element space VH = {v ∈ V ∩C0(Ω) : v|T is linear ∀T ∈ TH} ⊂ V .
Also, introduce a tent function for each node x ∈ N , i.e. a continuous piecewise
linear function function

λx(y) =

1 if y = x
0 if y ∈ N \ {x}.

(2.6)

These tent functions form a basis in VH = span{λx : x ∈ N} ⊂ V .
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Remark 1 Temporal discretization of the heat equation using the backward Euler
scheme results in

un − un−1

k
− ∇ · A∇un = g (2.7)

=⇒
un

k
− ∇ · A∇un = g +

un−1

k
=: f , (2.8)

where un is the solution at time step n and k is the length of the time step. Thus
(2.1) can be viewed as a temporal discrete heat equation with time step ε2.

2.2 Finite element method
In this subsection we briefly introduce a standard finite element method and dis-
cuss some of its limitations.

We reformulate the original problem (2.1) using weak derivatives, and con-
sider the weak form

a(u, v) = F(v), ∀v ∈ V. (2.9)

The variational formulation (2.9) has a unique solution u ∈ V according to the
Lax-Milgram theorem, provided that a(·, ·) is coercive and bounded. We then
seek to approximate u by uH ∈ VH, where

a(uH, v) = F(v), ∀v ∈ VH. (2.10)

As in the case of the variational formulation, boundedness and coercivity of a(·, ·)
imply existence and uniqueness of uH. The fact that uH is the best approximation
in VH of u (with respect to |||·|||) is a consequence of Galerkin orthogonality, which
sates that

a(u − uH, v) = 0, ∀v ∈ VH. (2.11)

Thus the error u − uH is orthogonal to all v ∈ VH with respect to a(·, ·).
Recall that a basis of VH is obtained by introducing tent-functions λx for each

node x ∈ N , i.e. VH = span{λx : x ∈ N}. Thus uH =
∑

x∈N cxλx for some
coefficients cx ∈ R. Solving (2.10) for each v ∈ VH is equivalent to solving (2.10)
for each basis function λy, y ∈ N . Thus (2.10) can be reduced to

a

∑
x∈N

cxλx, λy

 = F(λy), ∀y ∈ N , (2.12)
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which is a sparse linear system of equations that can be solved analytically or
numerically.

Assuming Ω to be convex and A ∈ C1(Ω), the error estimate

|||u − uH ||| < C(A, f , α)H (2.13)

holds with a constant C that depends on A, f and α. In particular if A is periodic,
e.g. A = A(x/ε), then

|||u − uH ||| .
H
ε
. (2.14)

Thus it is required that H . ε in order to obtain a reliable solution using the
method (2.10), which results in a huge problem when solving (2.12) if ε is small.
Multiscale methods presents a solution to this issue, and in the next section one
such method is introduced.

3 Multiscale method

3.1 Modified coarse problem
We proceed by defining the fine scale space, which can be done in different ways.
Let V f = {v ∈ V : IHv = 0} represent fine scale features, where IH : V → VH is
an inclusion operator specified below. For v ∈ VH define Tv ∈ V f such that

a(Tv,w) = −a(v,w), ∀w ∈ V f . (3.1)

Thus T : VH → V f . The existence and uniqueness of Tv is assured by the Lax-
Milgram theorem (note that a(·, ·) is coercive and bounded). From (3.1) it is clear
that Tv + v is a-orthogonal to w, for all w ∈ V f . This leads to the orthogonal
splitting

V = Vms
H ⊕ V f , (3.2)

where Vms
H = span{v + Tv : v ∈ VH}. Thus, a solution u to (2.3) can be written as

u = ums
H + u f , where ums

H ∈ Vms
H and u f ∈ V f . Note that a basis in Vms

H is obtained
by solving (3.1) for each coarse basis function λx, i.e. for each x ∈ N solve

a(φx, v) = −a(λx, v), ∀v ∈ V f , (3.3)

where φx := Tλx. Then Vms
H = span{λx + φx : x ∈ N}.

Since there is a one-to-one correspondence between {λx}x∈N and {φx}x∈N , {λx +

φx}x∈N can be viewed as a modified coarse scale basis which also contain fine scale
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Figure 3.1: Coefficient A1 (left), A2 (middle), A3 (right)
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Figure 3.2: Solution φx of (3.3) with coefficient A1 = 1 and δ = 10 (left), δ = 1
(middle), δ = 0.1 (right).
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Figure 3.3: Solution φx of (3.3) with δ = 1 and coefficient A1 = 1 (left), A2

discontinuous and periodic (middle. See Figure 3.1), A3 discontinuous with nodal
values from a model of an oil reservoir (right. See Figure 3.1.)

6



information. In Figure 3.2, 3.3 typical fine scale solutions of (3.3) are depicted,
using different A and δ = ε/H.

In [5] this modified basis is used to obtain the modified coarse problem: find
ums

H ∈ Vms
H such that

a(ums
H , v) = F(v), ∀v ∈ Vms

H . (3.4)

One problem with the method (3.4) is that φx in general have global support in Ω,
which results in a large problem when solving (3.3) for each coarse basis function
λx. We will now discuss a way to localize the corrector problem (3.3).

3.2 Localization
Consider the problem of solving (3.3) given a node x ∈ N . For k ∈ N, define the
k-th order patch (or a patch with k layers) ωx,k ⊂ Ω recursively as

ωx,1 =
⋃

{T∈TH :x∈T̄ }

T, (3.5)

ωx,k =
⋃

{T∈TH :T̄∩ω̄x,k−1,∅}

T. (3.6)

Figure 3.4 illustrates a patch with 1 layer, and a patch with 2 layers. Introduce
the localized fine scale space V f (ωx,k) := V f ∩ H1

0(ωx,k). As will be demonstrated
in Section 5, the decay of φx away from x is very rapid (exponential). This allows
for an approximation of φx by means of restricting the fine scale space V f to the
smaller space V f (ωx,k) when solving (3.3), i.e. find φx,k ∈ V f (ωx,k) such that

a(φx,k, v) = −a(λx, v), ∀v ∈ V f (ωx,k). (3.7)

An approximation of φx is obtained by extending φx,k to zero on Ω \ ωx,k, and a
localized version of Vms

H is obtained as Vms
H,k = span{λx + φx,k : x ∈ N}.

We can now formulate an approximation of (3.4): find ums
H,k ∈ Vms

H,k such that

a(ums
H,k, v) = F(v), ∀v ∈ Vms

H,k. (3.8)

4 Error analysis
The following Proposition provides an upper bound of the error due to localization
of problem (3.3).
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Figure 3.4: A patch with 1 layer (dark gray region), and a patch with 2 layers
(dark gray region plus light gray region).

Proposition 2 (Generalization of Lemma 6 in [5]) For x ∈ N , k, l ≥ 2 ∈ N, δ =

ε/H and IH as the Clément Interpolant (as presented in [5]), the estimate

∣∣∣∣∣∣∣∣∣φx − φx,kl

∣∣∣∣∣∣∣∣∣ . C2

(
C1 min(1, δ)

l

) k−2
2

|||φx|||ωx,l
(4.1)

holds with constants C1,C2 that only depend on the shape regularity parameter ρ
of the finite element mesh TH, but not on x, k, l, or H.

Remark 3 We note that the proof of Lemma 6 in [5] with small modification
holds for the modified bilinear form a(u, v) = (A1/2∇u,∇v) + ε−2(u, v). The key
result in [5], ‖φx‖L2(Ω) . H‖A1/2∇φx‖L2(Ω), can be improved in the setting of the

current paper. Since ‖φx‖L2(Ω) ≤ ε
(
‖A1/2∇φx‖

2 + ε−2‖φx‖
2
)1/2

and ‖φx‖L2(Ω) = ‖φx−

IHφx‖L2(Ω) . H |||φx|||L2(Ω) we conclude

‖φx‖L2(Ω) . min(H, ε) |||φx|||L2(Ω) = H min(1, δ) |||φx|||L2(Ω) . (4.2)

In Figure 4.1 the error φx − φx,k is depicted in different cases of the coefficient
A. Note that the largest error occurs on the boundary of the patch ωx,k on which
φx,k is calculated.
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Figure 4.1: Images of φx−φx,k for A1 = 1 (top left), A2 discontinuous and periodic
(top right. See Figure 3.1), A3 discontinuous with nodal values from a model of
an oil reservoir (bottom. See Figure 3.1).

5 Numerical results
Numerical results verifying Proposition 2 now follows.

Observe that (4.1) can be written

Q :=

∣∣∣∣∣∣∣∣∣φx − φx,kl

∣∣∣∣∣∣∣∣∣
|||φx|||ωx,l

. C2

(
C1 min(1, δ)

l

) k−2
2

. (5.1)

The quotient Q is calculated on a cartesian grid with mesh size h = 0.025 on
Ω = [0, 1] × [0, 1] for different parameter values. We let IH be the nodal inter-
polant and consider three different choices of A; A1, A2 and A3 (see Figure 3.1).
The Coefficient A1 is constant with value one. The coefficient A2 is periodic and
discontinuous with value 1 on bright regions and value 0.01 on dark regions. The
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thickness of the dark lines are 0.0286, the box-like pattern is repeating with period
0.257, the contrast α/β = 102. The coefficient A3 is discontinuous with nodal val-
ues taken from a model of an oil reservoir and with contrast α/β = 105. In Figure
5.1 Q is plotted against different values of δ = ε/H. The asymptotical behavior
of Q as δ grows larger is clear, and reflects the fact that (2.1) transitions into an
elliptic equation which does not depend on ε. Also, the value of Q starts to drop
drastically when δ is of the same order of magnitude as predicted by (4.1).

Next, consider varying k when calculating Q, keeping δ fixed (see Figure 5.2).
The exponential decay of Q in k is evident, which agrees well with (5.1).

6 Conclusions
As noted in Remark 1, the screened Poisson equation (2.1) can be seen as a tem-
poral discrete parabolic equation with time step ε2. Proposition 2 (whose proof
should impose no difficulty) reveals that the decay of basis functions given by
(3.3) is more rapid if δ is of order 1 or smaller. This means that the localized
problem (3.8) can be solved on smaller patches if δ is decreased, which reduces
the computational effort in each time step. It is also worth noting that the set of
modified basis functions obtained by solving (3.7) can be reused each time step if
the coefficient A is not time-dependent and the same time step is used. Thus it is a
matter of optimization when choosing the size of the patches, the time step ε, and
the mesh size H.
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Figure 5.1: Q plotted against δ for A = A1 (top), A = A2 (middle), A = A3
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