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1 Introduction

This is the final paper on the algebraic side of a partial response to questions
posed in [Del87]. It amounts to the study of a functorial version of Riemann-
Roch theorems. This is supposed to be understood in the following sense, for
which we refer to loc.cit. for the best introduction. A special case of the
Grothendieck-Riemann-Roch theorem can be understood as the formula

c1(Rf∗E) = f∗(ch(E) Td(Tf ))(1) (1)

for a projective smooth morphism of smooth varieties f : X → Y (cf. [FL85],
chapter V, §7 or the book [GBI71] for a precise and more general formulation).
The general question on functoriality becomes whether there are categorical re-
placements of all the objects and homomorphisms involved. This is an approach
to obtain secondary information which gets lost when one quotients out with
various equivalences. Deligne deduces (cf. see [Del87], Théorème 9.9) a unique,
up to sign, isomorphism of line bundles

(detRf∗L)⊗12 ' 〈ω, ω〉〈L,Lω−1〉⊗6 (2)

for f : C → S a smooth family of proper curves and L a line bundle on C.
This isomorphism is suggested by the same Grothendieck-Riemann-Roch the-
orem which says that the classes of the two line bundles are the same in the
Picard group (if S is regular enough). In earlier articles ([Eria], [Erib]) I have
established various properties such as rigidity results for virtual categories as
well as a functorial excess intersection theorem. These will serve in this paper to
construct a functorial Lefschetz- and Adams-Riemann-Roch theorem. We will
also deduce some geometric consequences when applying the Adams-Riemann-
Roch theorem to the case of curves and the theory of discriminants.
This article is in preliminary form. In particular the section of the Grothendieck-
Riemann-Roch theorem in general form, and its consequences, will be improved
upon.

Acknowledgements: I’d like to thank Damian Rössler for suggesting the
topic at hand as thesis topic as well as for useful advice throughout the writing
process. Also several comments by Takeshi Saito, Marc Levine were very helpful.

2 Review

This paper builds on two other papers, [Eria] and [Erib]. We will review the
main results and contents of these in this section.

2.1 The virtual category

We review the definition of the virtual category V (C) of an exact category C.
Recall first that a Picard category is a symmetric monoidal groupoid where the
”tensor functor” induces an equivalence of categories when fixing one of the
variables, or more informally a ”categorical group”, with sum and associativity-
isomorphisms instead of identities (cf. [Del87], Section 4, which is also the main
reference for virtual categories used here). Deligne’s virtual category V (C) is
a Picard category, together with a functor, [−] : (C, iso) → V (C) (here the
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first category is the subcategory of C consisting of the same objects and the
morphisms are the isomorphisms of C), with the following universal property:
Suppose we have a functor [−] : (C, iso) → P where P is a Picard category,
satisfying

(a) Additivity on exact sequences, i.e. for an exact sequence A→ B → C we
have an isomorphism [B] ' [A]+[C], and compatibility with isomorphisms
of exact sequences.

(b) A zero-object of C is mapped to a zero-object in P .

(c) The additivity on exact sequences is compatible with admissible filtrations.

(d) If A → B → 0 is an exact sequence, with the first map being an isomor-
phism f , then the induced isomorphism [B] ' [A] + [0] ' [A] is [f ].

Then the conclusion is that the functor [−] : (C, iso)→ P factors uniquely up to
unique isomorphism through (C, iso)→ V (C). For an algebraic stack X we de-
note by V (X) the virtual category of vector bundles on X. In [Eria], Section 1.1
there is also a virtual category associated to Waldhausen categories, such as the
category of complexes on an abelian category together with quasi-isomorphisms.
In both cases they can be realized as the fundamental groupoid of the associated
K-theory space. In particular the group of isomorphism classes of any object
of the virtual category is the usual Grothendieck group, K0(X), of the category
of vector bundles on X, and the automorphism group of any object is K1(X)
so the virtual category interpolates between the two. From this description it
follows that questions such as equivalences or faithfulness of virtual categories
can often be read from bijectivity and injectivity on induced maps on K1. Also,
to fix notation, denote by ⊗ : V (X)×V (X)→ V (X) the natural tensor product
on the virtual category induced by the tensor product of vector bundles, and
∩ : V (X) × C(X) → C(X) the same tensor product but replacing one of the
arguments with the virtual category of coherent sheaves. We will also denote
by + : V (X)× V (X)→ V (X) the natural direct sum functor of virtual vector
bundles.

2.2 Chow categories and rigidity

In [Fra90] and [Fra91] Franke has constructed Chow categories and Chern func-
tors, in short categorifications of classical constructions. The definition of Chow
categories is done using codimension, but in this article we will use (relative)
dimension. The necessary work was established in [Eria], and we review the
definition here.

Definition 2.0.1. Let X be a scheme of finite type over a regular scheme, ad-
mitting an ample family of line bundles. The i-th (homological) Chow category
is the following: The objects are dimension i-cycles and whose homomorphisms
are given by Hom(z, z′) := {f ∈ E1

i−1,−i(X), d1(f) = z′ − z}/d1E
1
i−2,−i(X),

where the groups and differentials involved are the natural ones coming from
the niveau spectral sequence. This category localized at Q is the (rational and
homological) Chow category and we denote it by CHi(Z). It has a natural
structure of Picard category.
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We will furthermore suppose that all our schemes are of the above form,
i.e. of finite type over a regular scheme and admit an ample family of line
bundles. The definition of Chow categories in [Fra90] uses codimension instead
of dimension in the definition, defining categories CHk instead, and we denote in
this article the same category localized at Q. Moreover, in [Eria] we relate this
to the virtual category of coherent sheaves on X, and use this to define Chern
functors. Using [Gil81], both [Fra90] and [Eria] establish most of the natural
properties one might ask for of a categorification of the Chow group. We recall
the main properties in the following proposition:

Proposition 2.1. Fix a positive integer k. Then we have
Proper pushforward: Suppose f : X → Y is a proper morphism, then there is a
functor f∗ : CHk(X)→ CHk(Y ).
Gysin-type functors: Suppose f : X → Y is a projective local complete intersec-
tion morphism of constant relative dimension d. Then there is a natural functor
f∗ : CHk(Y )→ CHk+d(X).
Topological invariance: Consider the closed embedding Zred ⊆ Z. The induced
proper pushforward induces an equivalence of categories.
Homotopical invariance: Suppose T → X is a torsor under a vector bundle E.
The pullback morphism is an equivalence of categories.
Compatibility with Franke’s construction: If X is of pure dimension n and bi-
catenary, i.e. for any closed subscheme Z, we have dimZ+codimXZ = dimX,
then there is an identification

CHk(X) = CHn−k(X).

Here the most nontrivial part is the establishment of the Gysin-type func-
tor. In [Eria] we deduce it from the same type of functor on G-theory, which is
possible in view of that we are working with rational coefficients.

Proposition 2.2. Let E be a line bundle and k a positive integer, and α a k-
cycle. Then there is a natural additive functor ck(E)∩ : CHn(X)→ CHn−k(X)
satisfying the following properties:
Normalization: If E = O(D) is a line bundle given by a Cartier divisor D, then
c1(O(D)) ∩ [X] ' [D] and c0(E) ∩ α ' α in general.
Commutativity: If E and E′ are both vector bundles and k and k′ are positive
integers, then there is a natural transformation of functors

ck(E) ∩ (ck′(E
′)∩)→ ck′(E

′) ∩ (ck(E)∩).

Whitney sum isomorphism: Let c(E) = 1 + c1(E) ∩+c2(E) ∩+ . . . denote the
total Chern class-type functor and suppose we have an exact sequence of vector
bundles

0→ E′ → E → E′′ → 0.

Then there is an natural transformation of functors :

c(E)→ c(E′)c(E′′).

Projection formula: Let f : X → Y be a proper morphism. Then there is a
natural transformation

f∗ (ck(f∗E) ∩ −)→ ck(E) ∩ f∗.
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It should be remarked that there are analogous of the above propositions in
[Fra91]. When it makes sense (i.e. in the context of the last point of Proposition
2.1) to compare the two constructions they coincide. We also use the rigidity
theorem

Theorem 2.3 ([Eria], Theorem 4.5). Any endofunctor f of the contravariant
functor K0, on the category of regular schemes, has a canonical lifting to the
virtual category by a contravariant functor F . Moreover, any automorphism of
the functor F is 2-torsion, in particular trivial if we invert 2.

3 Explicit construction of characteristic classes

Let X be an algebraic stack, which from [Erib] we view as an algebraic space
together with descent data, and consider the virtual category V (X ). Consider
the full subcategory V (X )∗ of V (X ) consisting of the elements whose image
[−] in K0(X ) is invertible. It is clear that tensor-product on V (X ) satisfies
the pentagonal and hexagonal axioms for a Picard category (see section 2.1 in
[Eria]). Also, by construction, for a fixed object B in V (X )∗, A 7→ A ⊗ B is
essentially surjective, and fully faithful since it acts on the automorphism-group
K1(X ) of an object by [B] which is an automorphism in view of the fact that
K1(X ) is a K0(X )-module. It follows that the category V (X )∗ together with the
tensor product is a Picard category and thus for any object B in V (X )∗ there
is an element, B−1, unique up to unique isomorphism such that B ⊗ B−1 = 1.
As with the category V (X ), V (X )∗ comes equipped with a plethora of sign-
anomalies associated with the fact that they are not strictly commutative. We
start by showing that certain characteristic classes are constructible in a quite
general context whenever we ignore these signs.

Definition 3.0.1. Suppose (P,⊕) is a Picard category with a distributive func-
tor ⊗ : P × P → P with associativity and commutativity-constraints satisfying
the hexagonal and pentagonal axioms (cf. loc. cit. ) so that ⊗ makes P into a
(non-unital) monoidal category. We call (P,⊕,⊗) a Picard ring and often omit
reference to ⊕ and ⊗. It is said to be strictly commutative if the operations ⊕
and ⊗ are strictly commutative, i.e. the symmetry-isomorphism X⊕X → X⊕X
and Y ⊗ Y → Y ⊗ Y is the identity. A ring functor of Picard rings is a functor
of Picard rings which is monoidal for both operations ⊕ and ⊗.
We say that a category P fibered over a category C is a category fibered in
Picard rings (resp. categories) over a category C if for any object X of C, P (X)
is a Picard ring (resp. category), and such that for any morphism f : X → Y
in C, there is a ring (resp. additive) functor f∗ : P (Y ) → P (X) satisfying the
natural associativity constraints.

Clearly the virtual category V (X ) is a Picard ring and V defines a category
fibered in Picard rings over the category of algebraic stacks. In general, for
a Picard ring P , we can consider the full subcategory of elements P ∗ whose
isomorphism-class in π0(P ) is invertible under the operation π0(⊗). By the
same argument as above, (P ∗,⊗) forms a Picard category, and similarly for
a category fibered in Picard rings P one obtains a category fibered in Picard
categories P ∗. Similarly for the cohomological virtual category W (X ).

For the next proposition, recall that by [Tot04], Theorem 1.1, Proposition
1.3, a normal separated Noetherian algebraic stack (over SpecZ) with affine
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geometric stabilizers has the resolution property if and only if it is of the form
[U/GLd] for quasi-affine U . In particular, a regular algebraic stack with affine
stabilizers is of the form [U/GLd] for regular quasi-affine U if and only if it has
the resolution property. This is in the same spirit as the following result which
we shall also quote often:

Theorem 3.1 (Jouanolou-Thomason, [Wei89], Proposition 4.4). Let X be a
scheme admitting an ample family of line bundles. Then there is a vector bundle
ξ → X and a ξ-torsor f : T → X such that T is affine.

Proposition 3.2 (Multiplicative characteristic classes in cohomological virtual
categories on quotient stacks). Consider the cohomological virtual category W
considered as a Picard ring fibered over the category of regular algebraic stacks
with the resolution property and finite affine stabilizers (by the above, necessarily
of the form [U/GLd] for quasi-affine U). Suppose we are given a powerseries

F = 1 +

∞∑
i=1

aix
i ∈ 1 + xQ[[x]].

There is then a unique functor Θ : V → W , up to unique isomorphism, such
that:

(a) Θ is a determinant functor V →W ∗.

(b) For a line bundle L on X there exists an isomorphism Θ(L) = F (L− 1),
which is well-defined by virtue of point (7) of the rigidity theorem.

Proof. As for existence, we first recall the formalism of Hirzebruch polynomials.
Let R be a λ-ring and denote by γ the corresponding γ-structure (cf. [FL85],
chapter III). Suppose that φ(x) ∈ 1 + xR[[x]]. We can associate multiplicative
maps Mφ(x) : R→ R as follows. First, for u a line element, we simply define

Mφ(u) = φ(u− 1).

If e is a sum of line elements ui, we set

Mφ(e) =
∏
i

Mφ(ui).

If Wi are independent variables, we consider the power-series

Mφ(Wit) =
∑

Hφ
j (s1, . . . , sj)t

j

for some degree j-homogenous polynomial Hφ
j in the elementary symmetric

functions sk in the Wi. Here the Hφ
j are the associated (multiplicative) Hirze-

bruch polynomials. Now, regular schemes have the resolution property so by
[Tot04], Theorem 1.1 they are of the form prescribed. LetX be a regular scheme,
R = K0(X)Q and φ = F . The associated HF

j and MF define homomorphisms
K0(X)Q → K0(X)Q functorial on the category of regular schemes. By rigidity
they define functors, which we denote by Hj : W → W (j) and M : W → W ,
such that for a line bundle L on a regular algebraic stack, Hj(L) = aj(L−1)j and
M(L) = 1+

∑∞
i=1 ai(L−1)k. This sum is again well-defined by rigidity. Rigidity
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also implies that for a sum of virtual bundles u+v on an algebraic stack X , there
is a canonical isomorphism Hj(u+ v)→

∑
Hi(u)⊗Hi−j(v) in W (j). It follows

that there is an isomorphism M(u + v) → M(u) ⊗M(v) in W (X )∗ and thus
Θ defines a determinant functor by the composition V (X )→W (X )→W (X )∗

and it is functorial by construction and satisfies the conditions of the theorem.
We are left to establish unicity. Suppose X = [U/GLd] is a regular algebraic
stack with quasi-affine U . By the splitting principle it is sufficient to verify that
the object Θ(L) in W (X ) is uniquely determined. The trivial bundle on U is
then GLd-equivariantly ample and there exists a GLd-equivariant locally split
monomorphism L ⊂ Or for big enough r. This defines a section i : X → PnX
to the natural projection p : PnX → X and L = i∗O(1) = Li∗O(1). Since the
algebraic stacks have the resolution property we can apply the functor Ri∗ and
we then have an isomorphism

Ri∗Θ(L) //

��

Ri∗Li
∗Θ(O(1)) //

��

Ri∗(OX )⊗Θ(O(1))

��
Ri∗F (L− 1) // Ri∗Li∗F (O(1)− 1) // Ri∗(OX )⊗ F (O(1)− 1)

.

Since Rp∗Ri∗ = id the isomorphism Θ(L) → F (L − 1) is determined by the
isomorphism Θ(O(1)) → F (O(1) − 1) on PnX . However, O(1) on PnX is the
pullback of O(1) on PnZ via the unique (in general non-representable) morphism
X → SpecZ and this isomorphism is tautologically rigidified since W (PnZ) =
V (PnZ)Q doesn’t have any non-trivial automorphisms.

Any class constructed in the above fashion will be called the associated
multiplicative class to the given data. We now harvest the following corollary
of the previous proposition.

Corollary 3.3 (Bott’s cannibalistic class). Let X be a regular algebraic
stack with finite affine stabilizers of the form [U/GLd] for a quasi-affine
U .

• For k ≥ 1, there is then a unique Bott-element θk : V (X )→W (X ) which
is k times the associated multiplicative class of the polynomial F (x) =
k−1(1 + (x+ 1) + (x+ 1)2 + . . .+ (x+ 1)k−1) ∈ 1 + Q[x].

• Suppose that v is a virtual vector bundle of rank r. Then θ2(−v) is equal
to

1

2r

(
1− v − r

2
+

(v − r)2 − γ2(v − r)
4

− (v − r)3 − 2γ2(v − r)(v − r) + γ3(v − r)
8

)
modulo F (4)W (X ) 1.

Proof. This is all contained in the preceding proposition, except for the last
point which is a direct calculation of the relevant Hirzebruch polynomial.

1Here taking a Picard category P modulo a full sub Picard category P ′, is to be understood
as the category P ′′ defined as follows: objects are those of P with the equivalence relation
that a ∼ b if a− b is in the essential image of P ′ in P . Morphisms are described by removing
automorphisms coming from P ′. It is clearly also a Picard category.
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Proposition 3.4. There is a canonical determinant functor θk : V (X) →
V (X)

[
1
k

]∗
such that for a line bundle L

θk(L) ' 1 + L+ L⊗2 + . . .+ L⊗(k−1).

Proof. For a line bundle we use the definition of Corollary 3.3 and given a
complete flag of a vector bundle E we define it by multiplicativity. We need to
prove that this isomorphism doesn’t depend on the choice of flag.

3.1 An explicit functorial Lefschetz formula for cyclic di-
agonal actions

In this section we recall and formulate the Lefschetz-Riemann-Roch theorem
of [Tho92] (in particular, Théorème 3.5) for regular schemes with the action of
cyclic diagonalizable group (see below), and make it functorial. Recall that a
regular scheme is to be understood as Noetherian, separated regular scheme.
Let S be a connected separated Noetherian scheme, and T = SpecS[M ] a
diagonalizable group of finite type determined by an abelian group M . By
[DG70], I.4.7.3, a T -representation E on S is equivalent to a grading of weights⊕

λ∈M Eλ and so the K-groups of T -equivariant locally free sheaves are given
by K∗(S, T ) = K∗(S)⊗ Z[M ], and to any prime ideal ρ of Z[M ] consider

Kρ = {λ ∈M |1− [λ] ∈ ρ ⊆ Z[M ]}

and associate to it the sub group-scheme DS(M/Kρ) = Tρ ⊆ T . Tρ is called
the support of ρ and has the property that for any closed diagonalizable sub
group-scheme T ′ = DS(M/K) ⊆ T , ρ is an inverse image of Z[M ] → Z[M/K]
if and only if Tρ ⊆ T ′ (see loc.cit. Proposition 1.2). Given a T -equivariant
S-scheme X, we denote by i : Xρ → X the fixed-point scheme of X under Tρ.

Theorem 3.5 ([Tho92]). Keep the above assumptions and assume in addition
that X is a regular scheme.

(a) XT is also a regular scheme.

(b) For any prime ideal ρ of Z[M ], we have an isomorphism of localizations
at ρ, i∗ : K∗(X

ρ, T )(ρ) ' K∗(X,T )(ρ).

(c) If Ni is the normal bundle to i : Xρ → X, the inverse to i∗ is given by
(λ−1N

∨
i )−1 ⊗ i∗ (part of the statement is that λ−1(N∨i ) is invertible in

K0(Xρ, T )(ρ)).

(d) Suppose that Y is also a regular and T -equivariant S-scheme with j :
Y ρ → Y and that f : X → Y is a proper T -equivariant morphism with
induced morphism f ′ : Xρ → Y ρ, then we have the formula

Rf∗(F) = Rf ′∗
(
(λ−1f

′∗N∨j )⊗ (λ−1N
∨
i )−1 ⊗ Li∗F

)
in K∗(Y

ρ, T )(ρ).

We digress for a short moment on the following case. Suppose M = Zr ⊕
Z/n and T = DS(M) = Grm × µn, a ”cyclic diagonalizable group” (compare
[Tho92], Remarque 1.5 and [Seg68]) and let X be a finite-dimensional connected
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regular S-scheme with trivial T -action, and L a line-bundle on X with no trivial
eigenvalues by the action of T . That is, L is given by a line bundle L0 and
a grading λ ∈ M \ 0. Let Φn be the n-th cyclotomic polynomial and ρ =
ρT : ker[Z[M ] = Z[T±1

0 , T±1
1 , . . . , T±1

r ]/(Tn0 − 1)→ Z[T±1
0 , T±1

1 , . . . , T±1
r ]/(Φn)]

where the homomorphism is the canonical one. Then Kρ = ∅ so Xρ = XT

and we can verify directly that the element 1 − L is invertible in K0(T,X)(ρ).
Indeed, first we see that when L0 = 1 is the trivial bundle, 1 − λ is invertible
since it is not zero in Z[M ](ρ)/ρ which is just the field Q(µn)(x1, . . . , xr), the
function field of the n-th cyclotomic field with r independent variables. Then,
we calculate, in K0(XT , T )(ρ):

1

1− λL0
=

1

1− λ+ λ− λL0
=

1

1− λ
1

1− λ/(1− λ)L0

=
1

1− λ
∑(

λ

1− λ

)k
(1− L0)k.

Since the rank 0-part of K-theory of a regular scheme is nilpotent, more precisely
(1− L0)k = 0 for k > dimX, this sum is well-defined 2.

Definition 3.5.1. Fix a cyclic diagonalizable group-scheme T over SpecZ and
denote by RT the category whose objects are regular T -schemes and morphisms
are T -equivariant morphisms of T -schemes. For a T -scheme, denote by |X| =
XT and V (X,T ) the virtual category of T -equivariant vector bundles on X
denote by V (X,T )(ρ) the localization of V (X,T ) at the prime ideal ρ = ρT
exhibited above and then at Q (defined in the naive way). Also, denote by αX
the virtual bundle λ−1(N∨|X|/X) in V (|X|, T ).

The following lemma gives an explicit construction of the class λ−1(N∨|X|/X)−1

appearing in Thomason’s result in a special case.

Lemma 3.6 (Inverting λ−1). Let T be a cyclic diagonalizable group-scheme
corresponding to a finitely generated abelian group M = Zr × Z/n. Let X be
a regular scheme with a trivial T -action and E a vector bundle on X with no
trivial eigenvalues for the action of T . There is then a unique way of expressing
the inverse bundle λ−1(E)−1 as a power-series in V (X,T )(ρ) such that it stable
under base change and compatible with exact sequences.

Proof. First notice that there is an equivalence of categories V (X,T )(ρ) =
(V (X)Q ⊗ Q[M ])(ρ)

3. Let E be such a vector bundle. Since |X| = X it is
given by a grading E = ⊕λ∈M,λ6=0Eλ. Then we propose that for a virtual
bundle uλ on X with pure weight λ 6= 0

Λ−1(uλ) = (1− λ)
rku

∞∑
k=0

(
λ

λ− 1

)k
γk(u− rku).

2In [VV02], results similar to those of [Tho92] were obtained, but with a different choice of
localization (cf. [VV02], Section 2). Clearly the results in this text can be reformulated with
respect to such localizations.

3Here the tensor product V ⊗M for a Picard category and a vector space M refers to the
Picard category whose objects are formal finite sums

∑
vi ⊗mi with vi an object of V and

mi ∈M and ⊗ is bilinear. Morphisms are determined by the condition HomV⊗M ((v⊗m, v′⊗
m′)) = Hom(v, v′)V ⊗M .
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If k > dimX + 1, by Corollary 4.12 of [Eria], there is a completely canon-
ical trivialization γk(u) = 0 in V (X)Q and by truncating the powerseries at
such a k these isomorphisms glue together to an object. By the same corol-
lary, for u = L a line bundle, γk(L − 1) = 0 for k > 1 so that Λ−1(uλ) =
(1 − λ)(1 + λ

1−λ (L − 1)) = 1 − λL = λ−1(λL). By Corollary 4.11, [Eria],
Λ−1((u + v)λ) = Λ−1(uλ)Λ−1(vλ) so that u 7→ λ−1(uλ) defines an additive
functor from V (X) to the Picard category V (X,T )∗(ρ) of invertible elements and
for a vector bundle E = ⊕λ∈M,λ6=0Eλ with no trivial eigenvalues for the action
of T , Λ−1(E) = ⊗λ∈M,λ6=0Λ−1(Eλ) = λ−1(E). Now, returning to the case of a
virtual bundle u = ⊕λ∈M,λ6=0uλ, we put λ−1(u) = ⊗λ∈M,λ6=0λ−1(uλ). And thus
for the same vector bundle we propose the element λ−1(E)−1 = Λ−1(−E).
Next, we show that this constructed class is unique. By the splitting principle
we can suppose that E is a line bundle. The scheme X is regular and thus has
an ample family of line bundles (cf. [GBI71], II 2.2.4). The argument of [Wei89],
Proposition 4.4 then provides us with a T -equivariant torsor SpecR → X un-
der a T -equivariant vector bundle, which can be chosen with trivial T -action.
Then SpecR is regular and V (T,X)(ρ) → V (T, SpecR)(ρ) is an equivalence of
categories so we can suppose X is affine regular. But then the trivial bundle
OX is equivariantly ample and choosing a surjection On � L∨ we obtain that
L = i∗(O(1)) for a section i : X → PnX to the natural projection p : PnX → X.
Then Ri∗(Λ−1(Lλ)) = Ri∗Li

∗Λ−1(Lλ) = Ri∗OX⊗Λ−1(O(1)λ) and Ri∗ is faith-
ful by virtue of it having a right inverse Rp∗. But Λ−1(O(1)λ) is the unique
pullback of Λ−1(O(1)λ) on PnZ and in this case V (PnZ, T )(ρ) has no nontrivial
morphisms and the objects Λ−1(±O(1)λ) are uniquely determined.

Let X be a regular T -scheme and denote by XT = |X| and suppose that
|X| → X is a closed regular immersion. Assume in addition that the square

|X| iX //

f ′

��

X

f

��
|Y | iY // Y

is Cartesian. First, also suppose that f is a closed regular immersion. We obtain
a surjection N∨X/Y � N∨|X|/|Y | and the kernel is the excess bundle E. By [Ful98],

Example 6.3.2, we also have a surjection N∨|Y |/Y � N∨|X|/X whose kernel is also
E. Hence we obtain the formula

λ−1(N∨|Y |/Y ) = λ−1N
∨
|X|/X ⊗ λ−1(E)

and since N∨|Y |/Y and N∨|X|/X have no non-trivial eigenvalues for the action of
T so that

λ−1(E) = (λ−1N
∨
|X|/X)−1 ⊗ λ−1(N∨|Y |/Y )

where the (λ−1N
∨
|X|/X)−1 is defined as above. Via the projection formula we

immediately see that the Lefschetz-formula above takes the form of an excess
intersection-formula, valid without any localization. Note that since X is regular
it has the resolution-property, and by [Tho87b] it also has the T -equivariant
resolution property so the excess-formula of [Erib] can be applied to stacks of
the form [X/T ] and it is clearly valid after localization.

10



In the rest of this section we put together the already constructed isomor-
phisms to obtain a functorial Lefschetz-formula. Fix T a cyclic diagonalizable
group of finite type (i.e. of the form DSpecZ(Zr⊕Z/n). Let X be a T -equivariant
regular scheme, and denote by |X| the fixed point set iX : |X| → X of the ac-
tion of T , and write αX for the class λ−1(N|X|/X) in V (X,T )(ρ). Denote by

LX : V (X,T )(ρ) → V (|X|, T )(ρ) the functor x 7→ α−1
X ⊗ Li∗Xx where α−1

X is the
class constructed above. Then

Lemma 3.7. Let X be a regular T -scheme for a cyclic diagonalizable group.
Then there are natural equivalences of functors LXRi∗ = id and Ri∗LX = id.
Moreover, for q : X ′ → X with induced morphism |q| : |X ′| → |X| there is a
natural isomorphism LX′Lq

∗ = αX′/XLX |q|∗ for αX′/X = λ−1(ker[N∨|X|/X �
N∨|X′|/X′ ]).

Proof. By [Erib], there is a self-intersection formula Li∗XRiX,∗ = αX and thus
naturally α−1

X Li∗XRiX,∗ = id. By Theorem 3.5, Ri∗ induces a bijection on
automorphism-groups and surjection on objects and is thus an equivalence of
categories and to exhibit a natural isomorphism RiX,∗LX = id it suffices to
establish RiX,∗LXRiX,∗ = RiX,∗. We can construct such an isomorphism using
the isomorphism Li∗XRiX,∗ = αX already established. Given q : X ′ → X, then
αX′/Xα

−1
X = α−1

X′ and we thus define the isomorphism in the second part of the
lemma.

Corollary 3.8. Given a proper morphism f : X → Y , there is a canonical
isomorphism of functors Υf : R|f |∗LX → LYRf∗.

Proof. Apply the above explicit equivalence of categories to the composition of
functors R|f |∗RiY,∗ = RiX,∗Rf∗.

Given a projective morphism f : X → Y and any morphism q : Y ′ →
Y , both in RT , there is the question of how the just established isomorphism
transforms under base change. Consider the cube

|X ′|
iX′ //

q′′

��

X ′

q

��

|Y ′|
��

|f ′|
��������� iY ′ //

q′′′

��

Y ′
��

f ′
����������

q′

��

|X| iX // X

|Y | iY //
��

|f |
���������

Y
��

f

����������

with commutative squares. Since the cube is not transversal in the sense of the
main theorem of [Erib] we cannot directly apply the functorial excess-formula
to calculate this. We proceed as follows. For a projective morphism f : X →
Y in RT we can define the cotangent complex which is a two-term complex

11



of equivariant vector bundles canonically determined up to canonical quasi-
isomorphism, LX/Y = Lf . If f is a closed immersion

LX/Y = [N → 0]

for N the conormal bundle and if f is smooth

LX/Y = [0→ ΩX/Y ].

For a composition of projective local complete intersection morphism X
f→ Y

g→
Z there is an exact triangle

LX/Y → LY/Z → LX/Z → LX/Y [1]

(cf. [GBI71], VIII, 2, the arguments are easily made equivariant). In the
above setting, we obtain exact triangles

L|X|/X → LX/Y → L|X|/Y → L|X|/X [1]

and
L|X|/|Y | → L|Y |/Y → L|X|/Y → L|X|/|Y |[1].

Define E (resp. E′) to be the homology of [LX/Y → LX′/Y ′ ] (resp. [L|X|/|Y | →
L|X′|/|Y ′|]. Then E is the excess-bundle of the Cartesian square

X ′ //

��

Y ′

��
X // Y

whereas E′ is represented by a complex whose λ−1(E′) = αE′ can be defined
by Λ−1(L|X|/|Y | − L|X′|/|Y ′|) which is seen to be well-defined. Moreover, using
excess and the isomorphism iX,∗LX = id one constructs an isomorphism

R|f ′|∗(αE′ ⊗ Lq′′′
∗
) = Lq′′

∗
R|f |∗ (3)

and by functoriality we have an isomorphism αY ′/Y ⊗ λ−1(E) = αX′/X ⊗
λ−1(E′). We then have two isomorphisms

Lq′′′
∗
LYRf∗ = αY ′/Y LY ′Lq

′∗Rf∗ = αY ′/Y LY ′Rf
′
∗(λ−1(E)⊗ Lq∗) (4)

Lq′′′
∗
R|f |∗LX = R|f ′|∗(αE′ ⊗ Lq′′

∗
LX) (5)

= R|f ′|∗(αE′ ⊗ αX′/X ⊗ LX′Lq∗)
= R|f ′|∗(λ−1(E)⊗ αY ′/Y ⊗ LX′Lq∗)
= αY ′/YR|f ′|∗LX′(λ−1(E)⊗ Lq∗))

From the definition it is not difficult to verify that these two isomorphisms are
compatible with the isomorphisms LYRf∗ = R|f |∗LX and LY ′Rf

′
∗ = R|f ′|∗LX′ .

The theorem is that these properties essentially characterize the Lefschetz-
isomorphism:

12



Theorem 3.9 (Functorial Lefschetz-Riemann-Roch for cyclic diagonalizable
groups). Fix positive integers r and n and let M = Zr ⊕ Z/n and let T =
SpecZ[M ] be the associated diagonalizable group. Consider the category Rp

T

of T -equivariant regular schemes and morphisms given by f : X → Y a T -
equivariant morphism of regular schemes which is equivariantly projective, i.e.
factors equivariantly into a projective bundle X ↪→ P(E) → Y for a closed
immersion X ↪→ P(E) and an equivariant vectorbundle E on Y . Denote the
induced morphism on fixed points |f | : |X| → |Y |. Then there is a family, unique
up to unique isomorphism, of functor-isomorphisms for f a morphism in Rp

T ,

Υf : R|f |∗LX → LYRf∗

satisfying the following compatibilities:

(a) Stability under composition: Given X
f→ Y, Y

g→ Z in Rp
T , the composition

R(|g||f |)∗LX
Υf→ R|g|∗LYRf∗

Υg→ LZR(gf)∗

is Υgf .

(b) Stability under base change in RT ; if q′ : Y ′ → Y is an equivariant mor-
phism such that q : X ′ → Y ′ is also in RT , the isomorphisms (4) and (5)
intertangle to give a commutative diagram:

Lq′′′
∗
LYRf∗

(4) //

Υf

��

αY ′/Y LY ′Rf
′
∗(λ−1(E)⊗ Lq∗)

Υf′

��
Lq′′′

∗
R|f |∗LX

(5) // αY ′/YR|f ′|∗LX′(λ−1(E)⊗ Lq∗)

(c) Suppose Z is also in RT , and h : Z → Y is closed regular immersion
T -equivariant immersion and f : X → Y is a morphism RT whose image
is disjoint with that of Z. Then both sides of Υf are canonically trivialized
and we require that Υ respects these trivializations.

(d) The isomorphism is compatible with the projection-formula, i.e. the dia-
gram

R|f |∗LX(u⊗ Lf∗v) //

��

LYRf∗(u⊗ Lf∗v)

��
R|f |∗LXu⊗ L|f |∗Li∗Y v

��

LY (Rf∗u⊗ v)

��
R|f |∗LXu⊗ Li∗Y v // LYRf∗u⊗ Li∗Y v

commutes.

Remark 3.9.1. The proof proceeds as in the case of the functorial excess-formula
and also follows the corresponding proof for Grothendieck-Riemann-Roch in the
unpublished manuscript [Fra], which uses a reduction to the arithmetic case.
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This in turn is an adaption of the usual proof of [GBI71] to the functorial situa-
tion. Clearly the isomorphism exists in greater generality by Corollary 3.8, the
stronger statement is the uniqueness-property. It is possible to establish a simi-
lar isomorphism for more general diagonalizable groups but one has to introduce
a normalization-condition analogous to that of the rough excess-isomorphism in
[Erib].

Proof. The isomorphism has already been constructed and the properties follow
either from construction or from the discussion. We review its construction in
the case of a closed immersion and a projective bundle projection to possibly
clarify the situation.
Suppose i : X → Y is a closed immersion of regular T -schemes. Thus we can
apply the excess-formula to algebraic stacks of the form [X/T ] which gives an
isomorphism, by the arguments preceding the theorem,

α−1
Y ⊗ Li

∗
YRf∗ = R|f |∗

(
α−1
X ⊗ Li

∗
X

)
.

It moreover satisfies the given conditions by virtue of them being satisfied for
the excess-isomorphism. This also gives a description of Lefschetz for closed
immersions via a rough excess-argument.
Now, suppose f : P(N) → Y is a projective bundle projection for N a T -
equivariant vector bundle on Y , whose restrictionN ||Y | is diagonalized to⊕λ∈MNλ.
Then |P|Y |(⊕Nλ)| =

∐
λ∈M P|Y |(Nλ) (cf. [KR01], Proposition 2.9). Thus we

are given a diagram∐
λ∈M P|Y |(Nλ) //

((PPPPPPPPPPPPPP
P|Y |(N ||Y |) //

��

PY (N)

f

��
|Y | // Y

with Cartesian square. We treat first the left triangle and suppose that Y = |Y |.
Denote by iλ : PY (Nλ)→ PY (N) the closed immersion, i =

∐
iλ :

∐
PY (Nλ)→

PY (N), |f |λ = fiλ and |f | = fi. For any virtual bundle x, we need to construct
a functorial isomorphism

Rf∗(x) =
∑

R|f |λ,∗(λ−1(Nλ)−1 ⊗ Liλ∗x).

We can assume x is of the form
∑n−1
k=0 Lf

∗ak ⊗O(−k) for n = rkN . The right
hand side is thus isomorphic to, via the projection formula,∑

k,λ

R|f |λ,∗(λ−1(Nλ)−1 ⊗ Li∗λO(−k))⊗ ak). (6)

By the excess isomorphism in [Erib], there is a canonical isomorphism of functors
Li∗λRiλ,∗(−) = λ−1Nλ ⊗ (−) and thus λ−1(Nλ)−1 ⊗ Li∗λRiλ,∗ = id. Moreover,
it is known that Riλ,∗ is an equivalence of categories. Thus any x is of the form
Riλ,∗y and we deduce the isomorphism

Riλ,∗λ−1(Nλ)−1 ⊗ Li∗λx = λ−1(Nλ)−1 ⊗ Li∗λRiλ,∗y = Riλ,∗y = x.

Applying this isomorphism to (6) we obtain
∑
k Rf∗(O(−k)) ⊗ ak. For k > 0,

Rf∗(O(−k)) = 0 and for k = 0, Rf∗(O) = O. In general we compose this

14



with the excess-isomorphism for the Cartesian square. For a projective bundle-
projection it is also true that E = E′ = 0 for base changes. That this respects
composition is done exactly as in the case of the excess-isomorphism.

We are left to show that the morphism is unique. We can clearly suppose
Y is connected and treat the cases of a closed immersion and projective bundle
projections separately. In the case of a closed immersion it is immediate to verify
that all the schemes that arise in the case of a deformation to the normal cone
are regular T -schemes so thus we stay in the correct category. The essential
point is the trivialization condition (c) to exclude unwanted factors. Then a
deformation to the normal cone-argument analogous to that of argument related
to the excess-formula shows that we are reduced to the case of an embedding
i : X → P(N) for some equivariant vector bundle N of rank n defined by an
inclusion L ⊂ N for some line bundle N . Let p : PX(N)→ X be the projection.
Then |PX(N)| =

∐
λ∈M P|X|(N ||X|,λ) (loc.cit.). For a virtual bundle u the

isomorphism u = Li∗Lp∗u and compatibility with the projection formula shows
that we are reduced to showing that Υi(O) is uniquely determined.
We apply the base change-property to the Cartesian diagram

|X| //

iX

��

∐
λ∈M P|X|(N ||X|,λ)

iPX (N)

��
X // PX(N)

and see that Υi(O) is determined by the functor Υ|i| and hence by Υ|i|(O).
Since |PX(N)| =

∐
λ∈M P|X|(N ||X|,λ) and we can assume Y to be connected we

can assume furthermore that Y = P|X|(Nλ) for some fixed λ ∈ M and vector
bundle N = Nλ on |X| = X with single grading λ. We need to verify that the
Lefschetz-isomorphism Rf∗O → Rf∗O in this case necessarily is the identity.
By 3.1 there exists a torsor t : SpecR → X under some vector bundle on X
which we endow with the trivial action. Then by the affine bundle theorem
of [Tho87a] there are equivalences of categories Lt∗ : V (X,T ) → V (SpecR, T )
and thus V (X,T )(ρ) → V (SpecR, T )(ρ) as well. Similarly there is an equivalence
V (PX(N), T )(ρ) → V (PSpecR(t∗N), T )(ρ) and by the base change-property we
can assume that X is in fact affine. Then we can choose a surjection Or → N∨

so that we have a flag L ⊂ N ⊂ Or which is concentrated on the single grading
λ. Consider the Grassmannian τ : G = Gr1,n,r → X of flags L′ ⊂ N ′ ⊂ Or on X
with L′ (resp. N ′) have rank 1 (resp. n). Then G is regular, has trivial T -action
and the flag L ⊂ N ⊂ Or defines a section j : X → G. If L ⊂ N ⊂ Or is the
universal flag on G, p∗j∗L ⊂ p∗j∗N similarly define a section j′ : P(N)→ P(N )
so that we have a Cartesian diagram

X
i //

j

��

P(N)

j′

��
G

i′ // P(N )

.

Then compatibility with the projection-formula shows that

Rj′∗Υi = Rj′∗(OX)⊗Υi′ .
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However, Rj′∗ is faithful since Rτ∗Rj
′
∗ = id so Υi is determined by Υi′ . The

varieties G and P(N ) are equivariantly defined over SpecZ. This shows that
Υi′ is obtained by base change from X → SpecZ so we can assume that X = Z.
In this case uniqueness is tautological since G is cellular so K1(G,T )(ρ),Q is a
free K1(Z, T )(ρ),Q-module and (cf. beginning of this section)

K1(Z, T )(ρ),Q = K1(Z)⊗Q Q[M ](ρ) = 0

since K1(Z) = ±1.
Now, consider the case of a projective bundle projection p : PY (N) → Y

for some T -equivariant vector bundle N on Y . Arguing as above, we reduce
to the case of Y = |Y | being an affine scheme and the case of a virtual bundle
of the form O(−i) on PY (N). If N = ⊕λ∈MNλ with Nλ of rank nλ, choose a
locally split injection N ⊂ Or which restricts to Nλ ⊂ Orλλ on each grading and
consider the Grassmannian G = Grn,r of flags N ′ ⊂ ⊕λ∈MOrλλ with N ′ of rank
n. In a way similar to the case of closed immersions we reduce to the case of
the diagram ∐

λ∈M Grnλ,rλ(Nλ)

��

// PG(N )

��∐
λ∈M Grnλ,rλ // Grn,r

where N is the universal rank n subbundle of ⊕λ∈MOrλλ on G. Again this
diagram is equivariantly defined over SpecZ and we conclude as before.

3.2 An Adams-Deligne-Riemann-Roch formula for regu-
lar schemes

In this section we state and prove a functorial Adams-Riemann-Roch formula.
We will continuously work in the category V (X)Q of virtual vector bundles on
a scheme X, which comes equipped with Adams operations and various other
operations (cf. Proposition 3.8 in [Eria]). This coincides with the cohomological
virtual category W (X), and whenever X is regular it also comes equipped with
various additional operations considered in section 4 of [Eria] which we shall
use freely. Also recall that a regular scheme is a separated, Noetherian regular
scheme.
We recall to the reader that one formulation of the Adams-Riemann-Roch for-
mula is as follows (cf. [FL85], V, Theorem 7.6). Suppose that f : X → Y is a
projective local complete intersection morphism of schemes and that Y has an
ample family of line bundles so that any coherent sheaf is the quotient of a co-
herent locally free sheaf. Also, define Ωf to be the class of the cotangent-bundle
of f , and θk,f = θk(Ωf ) where θk is the unique multiplicative characteristic class
in K0(X) such that for a line bundle L, θk(L) = 1 + L+ . . .+ Lk−1. Then for
any k ≥ 1, we have a commutative diagram

K0(X)

Rf∗

��

θ−1
k,f⊗Ψk

// K0(X)Q

Rf∗

��
K0(Y )

Ψk // K0(Y )Q

.
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To formulate the functorial version of the Adams-Riemann-Roch formula, recall
the following Lemma which is a corollary of Corollary 3.3 while noticing that
for an regular scheme, W (X) = V (X)Q:

Lemma 3.10. There is a unique family of functors, determined up to unique
isomorphism, on the category of regular schemes, stable under base change, such
that for a regular scheme X

θk : V (X)→ V (X)Q

such that θk is a determinant functor P(X)→ V (X)∗Q and for a line bundle L
on X there exists an isomorphism

θk(L) = 1 + L+ . . .+ Lk−1 = 1 + L+ . . .+ Lk−1 =

k−1∑
j=0

aj,k(L− 1)j

where aj,k =
∑k−1
i=j

(
i
j

)
.

Now, given a projective morphism f : X → Y of regular schemes factoring

as X
i
↪→ P

p→ Y for a closed immersion i and smooth morphism p, define
θ−1
k (Ωf )i,p to be the virtual bundle θk(N∨i − i∗ΩP/Y ). We analyze its properties

before stating the functorial Adams-Riemann-Roch-theorem. The usual proof
in [GBI71], VIII, Proposition 2.2, shows that the virtual bundle N∨i − i∗ΩP/Y
glues together to a virtual bundle Ωf which is independent of factorization . We
define θ−1

k,f := θ−1
k (Ωf ) which is an object dependent only on f determined up to

unique isomorphism. Moreover, suppose q : Y ′ → Y is any morphism such that
f ′ : X ′ = Y ′×Y X → Y ′ is also a projective morphism of regular schemes. Then
it is clear from the definition that there is a canonical isomorphism Lq∗θ−1

k,f =

θ−1
k,f ′ ⊗ θkE with E the excess bundle of the diagram

X ′ //

��

Y ′

��
X // Y

.

One deduces from the splitting principle an isomorphism

θkE ⊗ λ−1(E) = Ψk(λ−1(E)) (7)

and thus an isomorphism

Lq∗θ−1
k,f ⊗ λ−1(E) = θ−1

k,f ′ ⊗Ψk(λ−1(E)). (8)

Finally, for a composition of projective morphisms of regular schemes,

X
f→ Y

g→ Z, there is also a canonical isomorphism

θ−1
k,gf = θ−1

k,g ⊗ Lf
∗θ−1
k,g (9)

(cf. [GBI71], VIII, Proposition 2.6).
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Theorem 3.11 (Functorial Adams-Riemann-Roch). Suppose f : X → Y is a
projective morphism of regular schemes (automatically a local complete inter-
section ), and k ≥ 1. There is a unique family of functorial isomorphisms

ψk,f : ΨkRf∗ → Rf∗(θ
−1
k,f ⊗Ψk) (10)

characterized further by the following properties:

(a) Stability under composition of projective local complete intersection mor-
phisms: That is, for a composition of projective morphisms

X
f→ Y

g→ Z,

the isomorphism

R(gf)∗(θ
−1
k,gf ⊗Ψk(u))

(9)
= R(gf)∗(θ

−1
k,g ⊗ Lf

∗θ−1
k,g ⊗Ψk(u))

= Rg∗(θ
−1
k,g ⊗Rf∗(θ

−1
k,f ⊗Ψk(u)))

ψk,f
= Rg∗(θ

−1
k,gΨ

kRf∗(u)

ψk,g
= ΨkRg∗Rf∗(u)

= ΨkR(gf)∗u

is ψk,gf .

(b) Stability under the projection-formula: That is, the diagram

ΨkRf∗(u⊗ Lf∗v) //

��

Rf∗(θ
−1
k,f ⊗Ψk(u⊗ Lf∗v))

��
ΨkRf∗(u)⊗Ψk(v) // Rf∗(θ

−1
k,f ⊗Ψk(u))⊗Ψk(v)

commutes where the horizontal isomorphisms are given by Ψk,f and the
vertical isomorphisms are given by the projection-formula.

(c) Compatibility with base change and excess: Suppose q : Y ′ → Y is a
morphism such that the induced morphism f ′ : X ′ = Y ′×X Y → X is also
a projective morphism of regular schemes, and denote by q′ : X ′ → X the
morphism obtained by base change, and denote by E the associated excess
bundle. Then the diagram

Lq∗ΨkRf∗(u) //

Excess,[Erib]

��

Lq∗ψk,f // Lq∗Rf∗(θ
−1
k,f ⊗Ψk(u))

Excess,[Erib]

��
ΨkRf ′∗(λ−1(E)⊗ Lq′∗u)

ψk,f′

��

Rf ′∗(λ−1(E)⊗ Lq′∗(θ−1
k,f ⊗Ψk(u))

��
Rf ′∗(θ

−1
f ′,k ⊗Ψk(λ−1(E)⊗ Lq′∗u))

��

Rf ′∗(λ−1(E)⊗ Lq′∗θ−1
k,f ⊗ΨkLq′

∗
u)

Rf ′∗(θ
−1
f ′,k ⊗Ψk(λ−1(E))⊗ΨkLq′

∗
u)

(8)
33ffffffffffffffffffffff
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commutes, where the diagonal morphism is deduced from the isomorphism
(8). In particular, for k = 1 this reduces to the excess-isomorphism of
[Erib], and if q is flat the isomorphism strictly commutes with pullback.

(d) Suppose we are given a closed immersion h : Z → Y whose image in
Y doesn’t intersect that of X. Then both Rh∗(OZ) ⊗ ΨkRf∗(u) and
Rh∗(OZ) ⊗ Rf∗(θ

−1
k,f ⊗ Ψk(u)) are canonically trivialized. We demand

that the isomorphism ψk,f interchanges these trivializations. We don’t
require Z to be regular.

Proof. The proof proceeds as in the case of the functorial excess-formula and
also closely follows the corresponding proof for Grothendieck-Riemann-Roch in
the unpublished article [Fra], which uses a reduction to the arithmetic case.
We indicate the necessary changes from the case of the excess-isomorphism.
Suppose i : X → Y is a regular closed immersion of regular schemes. Given a
Koszul resolution built out of s : N∨ → OY of OX , one first defines a rough
Adams-Riemann-Roch-isomorphism for closed immersions as follows: Let L be
a line bundle on X and L an extension of X to a line bundle on Y . As in (7)
we have a natural isomorphism θk(N∨) ⊗ λ−1(N∨) ' Ψk(λ−1(N∨)). Then we
have an isomorphism

Ψki∗(L) ' Ψk(λ−1N
∨ ⊗ L) ' θk(N∨)⊗ λ−1N

∨ ⊗ L⊗k.

This is, by another projection-formula-argument, isomorphic to i∗(θi,k(N∨i ) ⊗
ΨkL).
One needs to verify that the deformation to the normal cone-argument can be
used to reduce to this case. The same proof goes through with the remark that
if X → Y is a closed regular immersion of regular schemes, then the blow-up
of Y in X is a regular scheme with regular exceptional divisor. Indeed, the
exceptional divisor is simply PX(N) so thus regular. It is a regular Cartier
divisor in BlXY and so forces BlXY to be regular (see [DG67], 19.1.1). Thus
we stay in the correct category of regular schemes while deforming.
We are left to show that the morphism is unique. A deformation to the normal
cone-argument (which is justified by the above reasoning) shows that we are
reduced to the case of an embedding i : X → P(N) for some vector bundle
N of rank d defined by an inclusion L ⊂ N for some line bundle L. Let p :
P(N) → X be the projection. By stability under the projection formula we
have a commutative diagram

Ri∗(Ψ
k(E)⊗ θi,k) //

��

Ri∗(Ψ
k(Li∗Lp∗E)⊗ θi,k) //

��

Ψk(Lp∗E)⊗Ri∗(θi,k)

��
Ψk(Ri∗E) // Ψk(Ri∗Li

∗Lp∗E) // Ψk(Lp∗E)⊗Ψk(Ri∗OX)

.

and thus we can assume that E = OX . By Theorem 3.1, there exists an affine
torsor T → Y under some vector bundle E on Y , and base change to this variety
is an equivalence of virtual categories so we can assume X and Y are affine. We
loose the assumption that Y = P(N) but gain that X is affine. By another
deformation to the normal cone argument we can again assume Y = P(N).
Since X is affine N∨ is generated by global sections OnX → N∨ for some n and
we have an injection N ⊂ OnX . Consider the flag variety G = Grn,d,1,X of locally
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split flags L′ ⊂ N ′ ⊂ Od, with L′ and N ′ of rank 1 and d respectively. The flag
L ⊂ N ⊂ Od defines a section s : X → G to r : G → X. If L → N → Od
denotes the universal flag on G we have the following commutative diagram

G = Grn,d,1

r

		

i′ // PG(N )

r′

		
X

s

II

i // P(N) = P(s∗N )

s′

II

with the section s′ is defined by the flag r∗L ⊂ r∗N on G. Then Rr∗OG = OX
and Rr′∗OPG(N ) = OP(N). Then there is no excess for the Cartesian diagram of

closed immersions and so Ls∗θ−1
k,i′ = θ−1

k,i and Ls∗Ri∗ = Ls′
∗
Ri′∗. We have the

commutative diagrams

Rs′∗(Ri∗(θ
−1
k,f ))

Rs′∗(ψk,i) //

��

Rs′∗(Ψ
kRi∗1)

��
Rs′∗Ls

′∗Ri′∗(θ
−1
k,i′)

��

// Rs′∗Ls′
∗
(ΨkRi′∗1)

��
Ri′∗(θ

−1
k,i′)⊗Rs′∗(1)

ψk,i′⊗Rs
′
∗(1)

// ΨkRi′∗(1)⊗Rs′∗(1)

where the upper square is the base change-property and the lower square is the
natural transformation associated to the projection-formula. Since Rr′∗Rs

′
∗ =

id, Rs′∗ is faithful and thus ψk,i is determined by ψk,i′ ⊗Rs′∗(1) which is deter-
mined by ψk,i′ . It has a morphism to SpecZ and we may assume by base change
that X is SpecZ. In this case the virtual category under consideration doesn’t
have any non-trivial automorphisms, since K1(Z) ± 1 and we tensor with Q.
Thus the isomorphism in question is uniquely rigidified in the case of a closed
immersion.

Suppose now that f : P(N) = X → Y is a projective bundle projection for
some vector bundle N on Y of rank d. By the projective bundle formula for
K-theory in [Eria] we can assume u =

∑d−1
i=0 Lf

∗ui ⊗ O(−i) for virtual bun-
dles ui on Y . By the projection-formula and the multiplicative property of the
Adams operations (cf. Corollary 3.9, [Eria]) we only need to define the iso-
morphism for bundles of the type u = O(−i). We calculate both sides. First,
ΨkRf∗(O(−i)) = 0 if i > 0 and isomorphic to 1 if i = 0. On the other hand,
there is a universal exact sequence

0→ ΩX/Y → f∗N∨ ⊗O(1)→ OX → 0

onX. Then we obtain the isomorphism θk(f∗N∨⊗O(1)) = θk(OX)⊗θk(ΩX/Y ) =
kθk(ΩX/Y ). Thus we want to construct isomorphisms

Rf∗(θk(f∗N∨ ⊗O(1))⊗O(−ik)) =
1/k if i = 0
0 if i = 1, . . . , d− 1

.

We need the following lemma:
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Lemma 3.12 ([FL85], II, Lemma 3.3). Let R be a commutative ring in which
k is invertible. For a, b ∈ R, define a⊕ b = (1 + a)(1 + b)− 1 and for an integer
j define [j]a = a ⊕ a ⊕ . . . ⊕ a taken j times. Let a1, . . . , ad, Z be independent
variables and define

R[[a1, . . . , ad, Z]] 3 Fn,k(Z) = (1 + Z)nk
d∏
j=1

Z ⊕ aj
[k](Z ⊕ aj)

.

There exists unique elements bi,k0 , . . . , bi,kd ∈ R[[s1, . . . , sd]] (where sj are the
elementary symmetric functions in the aj) such that

Fi,k(Z) ≡ bi,k0 + bi,k1 Z + . . .+ bi,kd−1Z
d−1 mod

d∏
j=1

Z ⊕ aj

and we have
d−1∑
v=0

(−1)vbi,kv =
1/k if n = 0
0 if i = 1, . . . , d− 1

.

In particular, this result holds as an identity on R = K0(P(N)X)Q when-
ever inserting Z = (O(−1) − 1) and sj = γj(N − d) and by ridigity this lifts
to the virtual category. Also, by rigidity there is a canonical isomorphism
Fi,k(Z) and θk(f∗N∨ ⊗ O(1)) ⊗ O(−ik) and we define the Adams-Riemann-
Roch-isomorphism as the isomorphism interchanging the two calculations we
have done above. By functoriality of the rigidity-construction this isomorphism
clearly satisfies all the proposed properties, except possibly the one concerning
compatibility of composition of morphisms.
We now show uniqueness for f : X = P(N)→ Y a projective bundle projection
for some vector bundle N on Y of rank d. By Theorem the projection formula
for K-theory in [Eria] we can assume u =

∑d−1
i=0 f

∗ui ⊗O(−i) for virtual bun-
dles ui on Y . By additivity and compatibility with the projection formula we
can assume that u = O(−i) for some i, 0 ≤ −i < d. Again as in the case of a
closed immersion we can assume that Y is affine and that we have an injection
N ⊂ OnX and consider the Grassmannian Grd,n,Y of locally split flags N ′ ⊂ On
with N ′ a rank d vector bundle with universal flag N ⊂ On. Again, arguing as
above one reduces to the case of P(N ) → Grd,n,Y and then Y = SpecZ where
the statement is tautological.

Now, given a factorization f : X
i→ P(N)

p→ Y one defines ψk,f,i,p via ψk,pψk,i
which is defined by requiring that condition 1. holds. One needs to go over
the same steps as in the case of the excess formula to establish that it is inde-
pendent of factorization and satisfies the conditions of the theorem. They are
proved similarly, with one exception:

Lemma 3.13. Suppose we are given a Cartesian square

PX(NX)
i′ //

p′

��

PY (N)

p

��
X

i // Y

of morphisms in of regular schemes with i, i′ closed immersions, N a vector bun-
dle on Y , p the natural projection and NX = N |X . Then ψk,pψk,i′ = ψk,iψk,p′ .
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Proof. This can be done by direct calculation, but we show how to reduce to the
arithmetic situation. All functors are compatible with the projection formula
so we only need to show that ψk,pψk,i′(u) = ψk,iψk,p′(u) for virtual bundles
u = O(−i), i = 0, 1, . . . , d− 1 with d being the rank of N . By Theorem 3.1 and
the properties already established we may assume that Y , and thus X, is affine.
Also, a deformation to the normal cone-argument shows that we can suppose
Y = PX(M) for a vector bundle M on X and a Grassmannian argument as
in the proof of the main result of section 3.1 shows we can reduce to the case
of a diagram of Grassmannians and reduces to the case of Grassmannians over
SpecZ in which case the isomorphisms are rigidified.

The rest of the proof is just like in the proof of the excess formula. We
conclude the proof of the Adams-Riemann-Roch theorem.

Recall that the relative dimension of a local complete intersection morphism
f : X → Y is the rank of the virtual bundle Ωf defined at the beginning
of this section. This is locally constant on X. Also, denote by F iV (X) =
F iW (X) and V (X)(i) = W (X)(i) where F iW (X) is part of the filtration of the
cohomological virtual category exhibited in section 4 of [Eria]. This is motivated
by the equivalence of categories V (X)Q = W (X).

Corollary 3.14. Let f : X → Y be a projective local complete intersection mor-
phism of regular schemes of constant relative dimension n. Then the morphism
Rf∗ : V (X) → V (Y ) restricts canonically to a morphism Rf∗ : F iV (X) →
F i−nV (Y ). In other words, the essential image of F iV (X) in V (Y ) lies in (the
essential image of) F i−nV (Y ).

Proof. Denote by pj the composition of V → V (j) → V . Then, by the Adams
decomposition in Theorem 4.7 (g) of [Eria], any object v ∈ F iV (X) is equivalent
to a sum of the form

∑
j≥i vj for vj ∈ V (X)(j). Let P (t) be the multiplicative

characteristic class associated to (t − 1)/ log(t) which exists and is unique by
Proposition 3.2 and the arguments of Lemma 3.10. An application of the split-
ting principle establishes that for a virtual vector bundle v of rank r, there is
a canonical isomorphism ΨkP (v)θ−1

k (v) = k−rP (v) stable under arbitrary base
change of regular schemes. An application of the above Riemann-Roch the-
orem to the virtual bundle v = P (Ωf ) ⊗ P (Ωf )−1 ⊗ v ∈ F iV establishes an
isomorphism, putting vj = pj [P (Ωf )−1 ⊗ v]

ΨkRf∗(P (Ωf )⊗ vj) = Rf∗(θk(Ωf )−1 ⊗ΨkP (Ωf )⊗ vj)
= kj−nRf∗(P (Ωf )⊗ vj).

Because the Adams-Riemann-Roch isomorphism is functorial we obtain, by al-
ready cited Theorem 4.7 (g) of [Eria], a functorial projection of Rf∗(v) onto
F i−nV (Y ).

3.3 A general Grothendieck-Riemann-Roch formula for
schemes

We expand on the previous section by proving a Grothendieck-Riemann-Roch-
transformation for general schemes, in the sense of [Ful98]. Henceforth, a scheme
will be supposed to be a separated scheme admitting an ample family of line
bundles. We will denote by S an affine regular scheme.
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Theorem 3.15. There is a canonical equivalence of categories τ : V C(Y ) →
CH∗(Y ) such that

(a) If E is a complex of vector bundles on Y , then τ(E ∩F) = ch(E)∩ τ(F).

(b) Suppose f : X → Y is a projective morphism. Then there is a canonical
isomorphism τ(Rf∗F) = f∗(τF).

(c) Suppose f : X → Y is a flat or local complete intersection morphism, then
f∗τ(α) = τ(Lf∗α) ∩Td(f).

(d) If f : X → Y is an projective morphism, then there is a canonical isomor-
phism

τY (Rf∗(α)) = f∗τX(α).

(e) If g : S′ → S is a morphism of affine regular schemes, and if X is an S-
scheme such that X ′ = X ×S S′ is a transversal intersection, then g∗τX .

(f) Suppose that E is a complex of vector bundles whose support is disjoint
from that of F , then both sides of (a) are canonically trivialized, we de-
mand they respect this trivialization.

(g) If V is a closed subvariety of X with dimV = n, then there is a canonical
isomorphism

τX(OV ) = [OV ] + terms of lower dimension.

Moreover, this isomorphism is characterized by (c).

Proof. We start by remarking that if X both and Y are smooth over a regular
basescheme S and f : X → Y is an local complete intersection morphism, this is
basically the usual Grothendieck-Riemann-Roch theorem and the proof carries
over. In particular one can mimic the proof of the functorial Adams-Riemann-
Roch theorem for the above version. We leave this to the reader.
For the general case, suppose that X admits an embedding into a scheme M
smooth over a regular scheme S. Then we define, tentatively,

τMX (α) = chMX (α) ∩ (Td(TM/S) ∩ [M ]).

We need to show that different choices of M glue together to a single functor
τX such that moreover we have an isomorphism verifying (d). This is done by
the following three lemmas, which are proven as in the classical case in [Ful98],
chapter 18.3.

Lemma 3.16. Suppose that X →M →M ′ are closed immersions with M and
M ′ smooth over S. Then there is a canonical functor isomorphism

τMX ' τM
′

X .

Lemma 3.17. Suppose that X
i→ Y → M ′ are closed immersions with M

smooth over S. Then there is a canonical functor isomorphism

i∗τ
M
X ' τMY i∗.
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Lemma 3.18. Suppose that X = P(E)Y for a scheme Y , Y →M an immersion
with M smooth over S, and that E is the pullback of a vector bundle E′ on M .

Then there is a functor isomorphism τMY f∗ ' f∗τP(E′)
P(E) .

It follows from the lemmas 3.16, 3.17, 3.18 that the functors τMX for var-
ious smooth M glue together to one single functor τX : V C(X) → CH∗(X).
Moreover,

We verify unicity. In case we have two different τ, τ ′ verifying the above
axioms, then one has that T = τ ′

−1 ◦ τ is an additive functor T : V C → V C
(recall that τ is an equivalence of categories by construction). If X is smooth
over S, V C(X) is equivalent to the virtual category of vector bundles V (X) and
by the universal property we have to prove that T is necessarily uniquely fixed
on vector bundles. By Jounalou-Thomason and (c) we can assume that X is
moreover affine. We can then use the reduction to the arithmetic situation with
flag varieties to conclude that T is uniquely trivialized.

4 Some geometric consequences

4.1 Case of finite morphisms: classical discriminants

Let f : D → S be a finite flat generically tale morphism of regular schemes.
Then as in [Gro] I, Proposition 4.10 there is a canonical rational section δS′/S
of the linebundle det f∗(OS′)⊗2, called the discriminant section, with divisor
∆S′/S . Also recall there is a canonical isomorphism [Del87], section 7, det f∗(L−
1) = ND/S(L), where the latter is the norm of a line bundle. By loc. cit. we also
have for a general virtual bundle v of rank r on S′, det f∗(v−r) ' NS′/S(det v).
Rigidity provides us with, for a virtual bundle u of rank m, a canonical and
functorial isomorphism

Ψ2(u)−m = (u−m)⊗2 + 2(u−m)− 2γ2(u−m). (11)

.

Proposition 4.1. The discriminant section ∆S′/S is given by the Riemann-
Roch isomorphism, and for any virtual bundle v we have a canonical isomor-
phism

(det f∗(v))⊗2 ' NS′/S(det v)⊗2 ⊗O(∆S′/S).

Proof. We can suppose that S is a discrete valuation ring and thus that f is pro-
jective. The difference between the isomorphism determined by ∆S′/S and the
above constructed isomorphism defines an element c(v) ∈ H0(S,Gm)Q which
is additive and stable under pullback. To prove it is trivial we can assume Y
is the spectrum of a field so that S′ is the union of spectra of separable field
extensions given by irreducible polynomials in n and that v is trivial. We can
assume this is irreducible and given by f of degree n with non-trivial discrim-
inant. There is a universal family over Ank \∆ where ∆ is the divisor given by
the usual discriminant, ∆(f) =

∏
i<j(αi − αj)2, with the αi are the roots of

f and the construction extends over all of Ank . This can be pulled back from
SpecZ and we can suppose that we are in the universal situation of families
over AnZ and the isomorphism of line bundles on this scheme extends to all of
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AnZ and the statement becomes that, since H0(AnZ,Gm)Q = 0, that the order of
vanishing of det f∗(ΩS′/S) along the discriminant locus is actually ∆S′/S , which
is the classical discriminant-different relation.

4.2 Case of curves: Mumford’s isomorphism and compar-
ison with Deligne’s isomorphism

In this section we deduce some geometric consequences of the above theory.
In particular we apply it to the case of families of curves and obtain a unified
approach to results of D. Mumford, P. Deligne and T. Saito in Theorem 4.9.
Let f : C → S be an flat local complete intersection generically smooth proper
morphism with geometrically connected fibers of dimension 1, with S any con-
nected normal Noetherian locally factorial scheme. Given a virtual bundle v on
C, denote by λf (v) = λ(v) = detRf∗v for ω = ωC/S being the relative dualizing

sheaf, also write λn = detRf∗ω
⊗n
C/S . Let f : Cg → Mg (resp. Cg → Mg) be

the universal stable curve of genus g (resp. universal smooth curve of genus
g) and let ∆g = Mg \Mg the discriminant locus of singular curves and write
δ = OS(∆g) and µ = λ⊗12

1 ⊗ δ−1. Then we have an isomorphism

λn = µn(n−1)/2 ⊗ λ1 (12)

on Mg which is unique up to sign (see [Mum77], Theorem 5.10). One deduces
the same formula over a general base for a stable curve. In the case C is reg-
ular the corresponding factor δ−1 is related to the conductor of the curve (see
[Sai88a]). In the case C is non-regular (with the same hypothesis on S) an un-
published result of J. Franke as a consequence of his functorial Riemann-Roch
in [Fra] establish a formula of the ”discriminant” as a localized Chern class.
The classical proof (see [Mum77], loc.cit.) in the stable case is a simple calcu-
lation using Grothendieck-Riemann-Roch and the facts that for any g ∈ N, we
have:

(a) the Picard-group of the moduli-functor of stable curves is torsion-free.

(b) H0(Mg,Z,Gm) = ±1 (cf. [MB89], Lemme 2.2.3).

We show that our formalism and Adams-Riemann-Roch theorem restricted to
dimension 1 implies a version of these results. It should also be noted that
the context is greatly simplified by the assumption that we tensor with Q. In
particular, inverting 2 eliminates sign-considerations which are without a doubt
the greatest obstacle to obtaining integral functorial isomorphisms.

Definition 4.1.1. Henceforth ”f : C → S is a curve” is to be as above, with
the additional hypothesis that C and S are regular.

Definition 4.1.2. (Compare with [Fal84]) Given a scheme X, define
Pic(X)Q to be the Picard category of line bundles on X with isomorphisms,
Pic(X), localized at Q. This category can be described as follows. The objects
are (L, l) with L a line bundle and l a positive integer. Moreover, we have

HomPic(X)Q((L, l), (M,m)) = lim
n→∞

HomPic(X)(L
⊗nm,M⊗nl)

where the limit is taken over integers ordered by divisibility. Given two line
bundles L,M on a scheme X, a Q-morphism f : L→ M i.e. for big enough n,
there exists a morphism L⊗n →M⊗n, up to obvious equivalence.
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First a preliminary calculation showing that we obtain a version of (12).

Lemma 4.2. Let f : C → S be a smooth curve. Then there is a unique
canonical Q-isomorphism

∆n : λn = detRf∗ω
⊗n
C/S ' λ

⊗(6n2−6n+1)
1

stable under base change S′ → S.

Proof. Uniqueness follows from descent and the preceding remarks adding that
Mg is smooth over SpecZ and so regular. We can also assume that S is the
spectrum of a discrete valuation-ring since isomorphisms would then glue to-
gether to a global one by virtue of them being canonical. In this case f is
automatically projective by [Lic68], Section 23. Let ωf = ΩC/S be the relative
dualizing bundle of f . Applying the Adams-Riemann-Roch theorem to the case
(1− ωf ), we obtain the ”Grothendieck-Serre duality”-isomorphism

(λ0 ⊗ λ−1
1 )⊗(k−1) ' 1

and in particular for k = 2 one has a canonical Q-isomorphism λ0 ' λ1. Con-
sider the cannibalistic Bott-class

θ−1
f,2 :=

1−ωf
1−ω2

f
= 1

2

(
1 +

1−ωf
2 +

(
1−ωf

2

)⊗2
)

+ F 3V (X).

The truncation is sufficient for our purposes since the relative dimension C → S
is 1 and Corollary 3.14, so that F 3V (C) has image in F 2V (S) and the determi-
nant functor is trivial on this category. It is moreover stable under base change
by functoriality of the Adams-Riemann-Roch theorem. For k = 2, inserting this
into the Adams-Riemann-Roch-theorem for the trivial line bundle and applying
Grothendieck-Serre-duality this reduces to the expression

λ16
1 = λ16

0 = λ7
0 ⊗ λ−4

1 ⊗ λ2 = λ3
1 ⊗ λ2

so that λ13
1 = λ2. Repeatedly applying the theorem to the case of 1 − ω2

f one
proceeds by induction on n to establish the general formula for λn.

Thus for any curve f : C → S we obtain a canonical rational Q-morphism
∆ : λ(ω⊗2)→ λ(ω)⊗13 which restricts to the above one over the smooth locus.
This is the usual discriminant morphism considered in [Sai88a], for example.
We intend to compare our Adams-Riemann-Roch-isomorphism with that of
Deligne (see [Del87], Théorème 9.9). Let’s just first recall the main ingredients.
Let C → S be a local complete intersection projective morphism of schemes
with geometrically connected fibers of dimension 1. Given two line bundles L
and M on C, by [Del77], XVIII, 1.3.11, [Elk89], one can form the line bundle
〈L,M〉 on S. The symbol 〈·, ·〉 satisfies bimultiplicativity with respect to ten-
sor product and has a cohomological description: if u and v are virtual vector
bundles of rank 0 on C, then (see [Del87], 7.3.1);

〈detu,det v〉 = λ(u⊗ v) (13)

and so in particular

〈L,M〉 = λ(L⊗M)λ(L)−1λ(M)−1λ(OC).
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Using this the discriminant section ∆ is equivalent to a rational section 〈ω, ω〉 →
λ(ω)⊗12 which we shall also call the discriminant section. Given any virtual
bundle v on C, define R(v) = (v−Ork v

C )−(det v−OC), one defines IC/SC2(v) =
λ(−R(v)). The unicity statement of this functor in [Del87], Proposition 9.4
easily proves:

Proposition 4.3. Let f : C → S be a curve. Then there exists a unique
canonical Q-isomorphism

Ξ : λ(γ2(u− rku)) = IC/SC2(u)

functorial on virtual bundles u on C, such that the isomorphism is compatible
with the trivializations for u a line bundle and such that the following condition
Λ holds: for an isomorphism u = v + w the isomorphism

λ(γ2(u− rku))→ λ(γ2(v− rk v))⊗λ((v− rk v))⊗ (w− rkw)))⊗λ(γ2(w− rkw))

is compatible with the isomorphism

IC/SC2(u)→ IC/SC2(v)⊗ 〈det v,detw〉 ⊗ IC/SC2(w)

via Ξ and (13).

Proposition 4.4. Suppose C → SpecR is a local complete intersection curve
(cf. 4.1.1, it is automatically projective by [Lic68], Section 23) where R be
the spectrum of discrete valuation ring with special point s and generic point
η. Let ΩC/S be the coherent sheaf of relative differentials and ωC/S = ω the
relative dualizing sheaf. The bundle IC2(ΩC/S) is canonically trivialized over
the generic point and the order of the trivialization at η is equal to the order of
the discriminant.

Proof. By the general theory ΩC/S comes equipped with a natural morphism
ΩC/S → ω inducing an isomorphism det ΩC/S = ω. The Adams-Riemann-Roch
theorem provides us with a canonical Q-isomorphism

λ(1)⊗16 = λ(1− 2(ΩC/S − 1) + (ΩC/S − 1)⊗2 − γ2(ΩC/S − 1)).

By the cohomological description of the Deligne-pairing in (13), we have canoni-
cal isomorphisms λ((ΩC/S−1)⊗2) = 〈ω, ω〉 and −(ΩC/S−1) = −R(ΩC/S)−(ω−
1) so that λ(−(ΩC/S − 1)) = IC/SC2(ΩC/S)⊗ λ(ω − 1) = IC/SC2(ΩC/S) where
the last isomorphism is by Lemma 4.2. Thus we obtain a canonical isomorphism

λ(ω)⊗12 = 〈ω, ω〉 ⊗ IC/SC2(ΩC/S)

which restricts to λ(ω)⊗12 = 〈ω, ω〉 over the generic fiber via the trivialization
IC/SC2(ΩC/S) over the generic fiber defined by the trivialization
IC/SC2(ωCη/ Spec η) = 1. Thus the order of the generic trivialization 1 →
IC2(ΩC/S) is the discriminant.

Definition 4.4.1. Let R be a discrete valuation ring, and C → SpecR a curve
with special point s and generic point η as above. Let (u, t) be a couple with u
a virtual bundle on C with a trivialization t : detu|Cη → 1 on the generic fiber.
Then the bundle 〈u, v〉 has a canonical trivialization by t on R over the generic
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point via the isomorphism 〈u, v〉 = 〈detu,det v〉 = λ((detu− 1)⊗ (det v − 1)).
Then for another virtual bundle v on C, we define cD1 (u, t).c1(v) to be the order
of this trivialization. In a similar vein, suppose that (u, s) is a couple with u
a virtual bundle on C with an isomorphism s : u||Cη → L on the generic fiber
with L a line bundle. Then IC2(u) has a canonical trivialization by s on R over
the generic point, cf. [Del87], Proposition 9.4 (ii) or above definition, and we
define cD2 (u, s) to be the order of this trivialization.

The following is a slight extension of Lemma 2 in [Sai88a], to which we refer
the reader for an idea of the proof.

Lemma 4.5. Let X be a regular scheme and Z an effective divisor of X with
complement U . Suppose we two strict perfect complexes E,F on X, and a have
a quasi-isomorphism t : E|U → F |U over U . Denote by det t the corresponding
rational section of the line bundle HomOX (detE,detF ), and div t its divisor.
Then the bivariant class cX1,Z(E → F )∩ acts as the intersection class CHi(X)→
CHi−1(Z) given by simply restricting along div t.

Corollary 4.6. The class cD1 (u, t).c1(v) defined above coincides with
cC1,Cs(detu,det t).c1(det v) ∩ [X].

Proof. This follows from the above description and an application of Riemann-
Roch for singular curves (on the special fiber) as in [Ful98], Example 18.3.4.

Lemma 4.7. Keep the assumptions and notations of the above definition. The
cotangent sheaf ΩC/S is a line bundle on the generic fiber and thus IC2(ΩC/S)
is canonically trivialized over the generic fiber. With this trivialization we have
cD2 (ΩC/S) = cC2Cs(ΩC/S), the associated localized Chern class (cf. [Blo87], sec-
tion 1).

Proof. First of all, γ2(ΩC/S − 1) = λ2ΩC/S , where λ2 denotes the λ-operation
on the virtual category, so that λ2ΩC/S is trivialized over the generic fiber. By
[Sai88b], Proposition 2.3 the alternating lengths of the cohomology of λ2(ΩC/S)
is cC2Cs(ΩC/S). It follows that the order of the above induced trivialization

of detRf∗(γ
2(ΩC/S − 1)) = detRf∗(λ

2ΩC/S) is cC2Cs(ΩC/S). We conclude by
Proposition 4.3.

Corollary 4.8 (Conductor-Discriminant formula by T. Saito). With the above
assumptions, the order of the discriminant rational section ∆ of the line bundle
HomOS (〈ω, ω〉, λ(ω)⊗12) is equal to minus the Artin conductor of C → S (cf.
[Sai88a]).

Proof. Combine Proposition 4.3 and Corollary 4.7 and the main result of [Blo87]
which identifies the localized Chern class with the Artin conductor.

Remark 4.8.1. The proof of Corollary 4.8 is essentially different from that of
[Sai88a] in that it does not use any kind of semi-stable reduction techniques. It
does however share similarity to that of [Fra].

Next we deduce the following Deligne-Riemann-Roch isomorphism:
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Theorem 4.9. Let f : C → S be a curve over a regular stack S, i.e. a
curve over any smooth presentation of S. Then there is a unique canonical
Q-isomorphism

λ(θ−2
f ⊗Ψ2u) ' 〈ω, ω〉rku ⊗ IC2(ΩC/S)rku ⊗ IC2(u)−12〈detu,detu⊗ ω−1〉6

which is compatible with the Deligne-isomorphism up to torsion.

Remark 4.9.1. Although one might guess that the above procedure directly
defines a discriminant in all dimensions this does not seem to be true.

Proof. By descent we can suppose that S is a regular scheme. The isomorphism
in (11) also holds in this situation. We can multiply this out together with
the inverse of the Bott class and use that there is a functorial product on the
filtration F iV (C) to cancel out all the terms that are in F 3V (C). This pro-
vides us with a choice of canonical isomorphism with the right-hand side of the
Deligne-Riemann-Roch theorem, compatible with base change and sums.
We verify that it is unique. This is an argument given in [Fra] which we recon-
sider here (more or less verbatim). Given any functorial isomorphism as above
the lack of compatibility with the Deligne-isomorphism for a virtual bundle u
is given by an element cX/Y (u) ∈ H0(S,Gm)Q which is stable under pullback
of smooth curves, as well as isomorphisms and sums of virtual bundles. Locally
on the base S the virtual bundle u is a sum of line bundles, so we can assume u
is a line bundle. To show that cX/Y (L) = 1 we can assume S is the spectrum of
an algebraically closed field. Given a line bundle of degree d it is the pullback
of the universal degree d-bundle Pd of Cg,d → Pg,d, moduli of genus g-curves
with a given degree d bundle, thus constant. We remark that Pg,d is smooth
over Mg and thus regular since Mg is smooth over SpecZ.
Thus we are given universal constants (cd,g) ∈ H0(Mg,Gm)Q onMg which are
1 by virtue of the fact that H0(Mg,Gm) = ±1.

Remark 4.9.2. A word of caution is in place. We haven’t actually constructed
classes θ−2

f etc for the virtual category of vector bundles on any stack. The

bundles λ(θ−2
f ⊗ Ψ2u) etc. in question refer to the bundles one obtains by

smooth descent from the case of a regular scheme, in which case it does make
sense.

4.3 The refined Riemann-Roch formula of T. Saito

Let X be a scheme and i : Z → X be a reduced closed subscheme with
j : U = X \ Z → X the open complement. The Picard category kernel
j∗ : CH∗(X)→ CH(U) is described as follows: Objects are objects A of CH∗(X)
together with a trivialization j∗A ' 0. Isomorphisms of objects are isomor-
phisms in CH∗(X) respecting the trivializations. Using the long exact localiza-
tion sequence one sees that the isomorphism classes of this category is CH∗(Z).

Indeed, if A is representative of a class in CH∗(X) of an element in CH∗(Z),
any two trivializations j∗A ' 0 differ by an element of Aut0U , whose image
in CH∗(Z) is 0 and thus comes from a global isomorphism. Conversely, any
element of the kernel is isomorphic in CH∗(X) to some element i∗B for B a
cycle on Z. The default of this to be an isomorphism defines an element in
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B′ ∈ Aut0U and B − B′ is then an element such that A is globally isomorphic
to B −B′. It is easy to see that this sets up the required isomorphism.

Now, let E be an acyclic complex on U such that the vector bundles of the
complex extends to all of X, but not necessarily the diffentials. Also let T be
a characteristic class stable under open immersions. For simplicity we suppose
that T is ch or Td, the general argument carries through. Then the object
ch(E) ∩ [X] of CH∗(X) is canonically trivialized on U and thus by the above
defines an element in CH∗(Z).

Proposition 4.10. This element coincides with the element chZX(E) ∩ [X] in
CH∗(Z).

Proof. By the arguments of [Ive76], it is enough to verify that if E is an acyclic
complex on X, this element is 0, and that if f : X → Y is a proper morphism of
schemes, then there is a projection formula isomorphism: f∗(ch(f∗E) ∩ [X]) =
(ch(E) ∩ f∗[X]). But the first is trivial and the second statement follows from
the projection formula for the first class.

Theorem 4.11. Suppose π : X → Y is a projective birational morphism of
schemes, and f : Y → T is a projective local complete intersection morphism
such that g = f ◦ π is also a projective local complete intersection . We sup-
pose that there is an open subscheme U in T such that π restricted to U is an
isomorphism, and write Z = X \ U . Denote by L the contangent complex of a
morphism. Then if E is any complex of vector bundles on Y , adjunction defines
a morphism Rf∗E → Rg∗π

∗E which is a quasi-isomorphism on U . Similarly,
there is a canonical isomorphism Lπ = [Lg → π∗Lf ] which defines a localized
class Td(Lπ)− 1. Then we have:

chZT (Rf∗(E)−Rg∗π∗E) ∩ [X] = g|Z,∗π∗(ch(E) ∩ Td(Lf )) ∩ (Td(Lπ)− 1) ∩ [X]

in CH∗(Z).

Proof. Applying the functorial Riemann-Roch theorem gives an isomorphism

ch(Rf∗(E)−Rg∗π∗E) ∩ [T ] = g∗(π
∗(ch(E) ∩Td(Lf )) ∩ (Td(Lπ)− 1) ∩ [X])

which are both trivialized when restricting to U and the Riemann-Roch-isomorphism
respect these trivializations by construction. By Proposition 4.10 these trivial-
izations define the localized classes the theorem asks for.

4.4 A Knudsen-Mumford expansion

Theorem 4.12. Let f : X → S be a flat projective morphism of relative dimen-
sion r such that S is equidimensional and locally factorial, and X is regular. Let
F be a complex of vector bundles on X and let L be line bundle on X. Defining
F(k) = F ⊗ Lk, there is a canonical Q-isomorphism

λ(F(n)) = detRπ∗(F(n)) ' ⊗r+1
k=0λ

kn

k ' ⊗r+1
n=0M

(nk)
n

for some (rational) line bundles λi,Mi, i = 0, . . . , r + 1 on S. Here

λn = π∗(c1(L)n ∩ (ch(F) ∩Td(Tf ))(r−n)/n! ∩ [X])(1)
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where A(?) denotes the degree ?-part and in particular

Mr+1 ' 〈L, . . . , L〉rkF

and if F = OX ,
M2

r ' 〈LrK−1, L, . . . , L〉.

In particular if L is relatively ample and k is big enough detRπ∗L
k =

detπ∗L
k and we recover part of the results of [KM76].

Proof. We can assume that S is the spectrum of a discrete valuation ring in
which case f is a local complete intersection morphism. Then the above is an
application of the functorial Riemann-Roch-theorem.

4.5 A conjecture of Köck for the determinant of the co-
homology

We recall the setting of [Köc98] in the special case of K0. Let S be an separated
Noetherian scheme and G a flat separated finite type group-scheme over S.
Suppose we are given a G-projective local complete intersection morphism f :
X → Y of G-equivariant schemes such that on Y any G-coherent module is the
quotient of a locally free G-module. Denote by K(X,G) the group K0(X,G)Q
of G-equivariant K-theory of vector bundles of X tensor Q. There is a natural
pushforward Rf∗ : K(X,G)→ K(Y,G).

Definition 4.12.1. Fix a G-equivariant factorization f : X
i
↪→ PY (E)

π→ Y for
some vector bundle E on Y and denote by Ω the sheaf of relative differentials
of P(E)→ Y . Let d be the rank of E and denote by K̂(Y,G) the ring K(Y,G)Q
completed at the ideal generated by elements of the form λ1(E) − d, λ2(E) −(
d
2

)
, . . . , λd(E)− 1.

Then the following is proved:

Proposition 4.13 ([Köc98], Theorem 4.5). The Bott element θ′
−1
k := θk(Ni −

i∗Ω) (defined as before) defines an element in K(X,G)⊗K(Y,G) K̂(Y,G) and for
any k ≥ 2 there is a commutative diagram

K(X,G)

Rf∗

��

θ′−1
k ⊗Ψk// K(X,G)⊗K(Y,G) K̂(Y,G)

R̂f∗
��

K(Y,G)
Ψk // K̂(Y,G)

.

We recast it in the following way to provide a formula for the first Chern-
class of the cohomology, or equivalently, the determinant of the cohomology.
Let f : X → Y be a representable proper local complete intersection morphism
of separated Noetherian algebraic stacks with the resolution property and with
smooth groupoid representations [p, q : R ⇒ X] and [p′, q′ : R′ ⇒ Y ] respec-
tively, with induced morphisms g : X → Y, h : R → R′, and consider the
following two ”determinant of cohomology”-functors. First of all, given a vector
bundle E on X , one pushforwards to obtain a perfect complex Rf∗E on Y, and
then apply the determinant to obtain the determinant of the cohomology, λ1(E),
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considered as a linebundle on Y. On the level of K-groups this corresponds to

the homomorphism K(X )
Rf∗→ K(Y)

det→ Pic(Y)Q, where the pushforward is
the one exhibited in [Köc98] for quotient-stacks, and the last homomorphism is
the determinant homomorphism. In a different vein, consider the same vector
bundle E, and consider the perfect complex Rg∗E on Y . Since one has the
relation detLq∗ = q∗ det, the base change-isomorphism equips the determinant
detRg∗E with descent-data with respect to R′ ⇒ Y , thus we obtain another
linebundle λ2(E) on Y. The main observation of this section is that in the above
setting, descent commutes with pushforward:

Lemma 4.14. There is a natural equivalence of determinant functors λ1 ' λ2,
and we denote both by λ := detRf∗.

Proof. The proof is just unwinding the definitions. The definition of λ1 is ob-
tained by choosing an R-equivariant g∗-acyclic resolution E → F , and then
applying g∗, and finally the determinant functor. The descent-data for g∗F
for acyclic F is given by the base change-isomorphism, so that the following
diagram is commutative

Lp′
∗
Rg∗E

��

// Rh∗Lp∗E //

��

Rh∗Lq
∗E //

��

Lq′
∗
Rg∗E

��
p′
∗
g∗F // h∗p∗F // h∗q∗F // q′∗g∗F

in the derived category of perfect complexes on R′. The upper line is given
by a quasi-isomorphism composed by smooth base change and descent-data,
whereas the lower one is an isomorphism given by ordinary smooth base change
and the vertical maps are the natural quasi-isomorphisms. Applying the de-
terminant functor to the perfect complex Rg∗E transforms quasi-isomorphisms
to isomorphisms and derived pullbacks to pullbacks and thus provides us with
descent-data of Rg∗E. This is the definition of λ2 and provides us with the
requested equivalence of functors.

Notice that λ1 defines a determinant functor from the category of virtual
vector bundles on X admitting a f∗-acyclic resolution, whereas λ2 is defined on
the category of virtual vector bundles on X admitting g∗-acyclic resolutions on
X.

Theorem 4.15. Let f : X → Y be a representable projective local complete
intersection morphism of regular stacks. Then we have equalities

det(Rf∗E)⊗k = det(Rf∗(θ
−1
f,k ⊗ ψ

kE))

in Pic(Y)Q.

Proof. By Theorem 3.11, for a R-equivariant vector bundle E the Adams-
Riemann-Roch isomorphism ΨkRg∗E = Rf∗(θ

−1
g,k⊗ψkE) associated to g : X →

Y is stable under smooth base change and thus defines descent-data of the
isomorphism of Q-line bundles

det(Rg∗E)⊗k = det(ΨkRg∗E) = detRf∗(θ
−1
g,k ⊗ ψ

kE).
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By The class in Pic of left hand side coincides with the map K(X )
Rf∗−→ K(Y)

det→

Pic(Y)Q and the right hand side detRf∗(θ
−1
g,k⊗ψkE) coincides withK(X )

θ−1
k ⊗Ψk

−→
K(Y)

det→ Pic(Y)Q.

Thus we obtain a non-completed version of Kck’s Adams-Riemann-Roch.
Define an action of a ∈ K(Y,G) on (r, L) ∈ Z⊕ Pic(Y,G) by

a.(r, L) = (r · rk a,det(a)r ⊗ brk a).

Then Z⊕Pic(Y,G) is a K(Y,G)-module and we put P̂ic(Y,G) to be the quotient
of (Z⊕ Pic(Y,G))⊗K(Y,G)K̂(Y,G) by Z⊗K(Y,G)K̂(Y,G). It follows from Lemma

4.14 that the image of the right side in P̂ic(Y,G) of the above theorem necessar-

ily coincides with the image under Rf∗(θ
′−1
k ⊗ΨkE) in K̂(Y,G)

det−→ P̂ic(Y,G).
Also, by the usual equivalence of the Adams-Riemann-Roch and Grothendieck-
Riemann-Roch theorem one obtains expressions for the Chern-classes and the
corresponding equivariant Grothendieck-Riemann-Roch theorem for the first
Chern-class. This is example 5.11 of loc.cit. which is only known under the
condition that f is continuous with respect to the γ-filtration on the K-groups,
i.e. if FnK denotes the γ-filtration on K, then for any n we require that there
is an m such that Rf∗F

mK(X,G) ⊂ FnK(Y,G) (cf. [Köc98], section 5).

References

[Blo87] S. Bloch, Cycles on arithmetic schemes and Euler characteristics of
curves, Proceedings of Symposia in Pure Mathematics, Volume 46,
1987, pp. 421–450.
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