
REFINED OPERATIONS ON K-THEORY BY LIFTING TO THE VIRTUAL
CATEGORY

DENNIS ERIKSSON

Abstract: This is the first article in an upcoming series of papers that have arisen through

an attempt to answer open questions of Deligne proposed on the determinant of the coho-

mology. It amounts to functorial and metrized versions of the Grothendieck-Riemann-Roch

theorem. In this article we treat various results on virtual categories which are the categories

where the Deligne-Riemann-Roch theorem is originally formulated which is of independent

interest. In particular we construct functorial versions of Adams operations and prove a rigid-

ity result for endofunctors of the virtual category. Finally we compare our constructions to

constructions of Franke on Chern intersection functors and Chow categories.
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1. Introduction

This is the first article in an upcoming series of papers. They have arisen through an attempt

to answer open questions of Deligne proposed in [4]. This is supposed to be understood in the

following sense, for which we refer to loc. cit. for the best introduction: A special case of the

Grothendieck-Riemann-Roch theorem can be understood as the formula

(1) ch(Rf∗E) = f∗(ch(E) Td(Tf ))

for a projective smooth morphism of smooth varieties f : X → Y (cf. [13], chapter V, §7 or the

book [19] for a precise and more general formulation). The general question on functoriality

becomes whether there are categorical replacements of all the objects and homomorphisms

involved. This is an approach to obtain secondary information which gets lost when one

quotients out with various equivalences. In particular Deligne deduces (cf. see [4], Thorme

9.9) a unique, up to sign, isomorphism of line bundles

(2) (detRf∗L)
⊗12 ≃ ⟨ω, ω⟩⟨L,Lω−1⟩⊗6

for f : C → S a smooth family of proper curves and L a line bundle on C. This isomorphism

is suggested by the same Grothendieck-Riemann-Roch theorem which says that the classes of

the two line bundles are the same in the Picard group (if S is regular enough).

Some remarks are in order. The approach using virtual categories as we have done are, as

was already noted in [4], most suitable to treat questions on the determinant of the cohomology.

This can for example be seen from the observation that the virtual category is a truncation of

the K-theory space and the determinant of the cohomology corresponds to weight one Adams

eigenspaces which have all their K-theory in K0 and K1. In this case the problem on functo-

riality is to describe the above alluded to homomorphisms as functors and describe a natural

transformation of functors in the target category, refining the identity (1).

The approach we have chosen here is more or less K-theoretical in nature, using the decom-

position of K-theory into Adams eigenspaces which admits a classical relation to Chow-theory.

This article then deals with various fundamental properties of both these decompositions as

well as virtual categories in general, which hopefully are of interest independently of the ap-

plications to the Riemann-Roch problem envisioned here.

More precisely the article is organized as follows. We first consider determinant functors on

Waldhausen categories establishing results on associated virtual categories (cf. Theorem 2.2).

This extends the situation of determinant categories on exact categories in [4]. In the next

section we consider various natural operations on virtual categories and in particular construct

Adams and λ-operations (cf. Proposition 3.2, Proposition 3.4). We then establish certain

rigidity results on operations on virtual categories in Theorem 4.5, giving existence of lifts of

operations on K0 to the virtual category, at least after inverting the integers for stacks, or 2

in the case of schemes. Finally in the last section we make comparisons to constructions of

Franke in ”Chern functors” in [11] of Chern intersection functors. We have also included three

appendices on A1-homotopy theory, algebraic stacks and virtual categories to fix language and
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recall the necessary utensils.

Finally, it should be noted that the techniques in this article resemble a lot the techniques

in [14] in that they use homotopy theory of simplicial sheaves to tackle Riemann-Roch-type

problems. Also related results have been obtained in a series of papers [10], ”Chern functors”

in [11], [9] as well as that of [7]. Part of these results were announced in [8].

2. The virtual category and triangulated categories

Given a small exact category C, we can consider its K-theory. The first case of K0 can be

defined explicitly in terms of the category C, as the Grothendieck group of C. This is the free

abelian group on the objects of C, modulo the relationship B = A+ C if

0 → A → B → C → 0

is an exact sequence in C. A more sophisticated approach was taken by Quillen, [32], where he

constructs a certain topological space BQC associated to a (small) exact category C such that

Ki(C) := πi+1(BQC).

Now, let X ∈ ob(Top•) be a pointed topological space. One defines the fundamental groupoid

of X to be the category whose objects are points of X, and morphisms are homotopy-classes

of paths relative to the end-points, i.e. it is associated to the diagram

[PX ⇒ X]

where PX is the space of paths of X. Denote the corresponding functor Top• → Grp by Πf .

In [4] one defines a category of virtual objects of an exact category, which offers a type of

abelianization of the derived category and K0 of the category. Somewhat more precisely, let C
be a small exact category. The category of virtual objects of C, V (C) is the following: Objects

are loops in BQC around a fixed zero-point, and morphisms are homotopy-classes of homotopies

of loops. Recall that BQC is the geometrical realization of the Quillen Q-construction of C.
Addition is the usual addition of loops. This construction is the fundamental groupoid of the

space ΩBQC. In case C is not small we will always consider an equivalent small category, and

ignore any purely categorical issues this might cause.

Remark 2.0.1. V (C) is a groupoid, i.e. any morphism is an isomorphism, and the set of

equivalence-classes is in natural bijection with K0(C). For any object c ∈ obV (C), we have

AutV (C)(c) = π1(ΩBQC) = K1(C).

Deligne also provides a more algebraic and universal definition of V (C). We will give an

additional description in terms of derived categories in the next section (cf. Theorem 2.2 for a

precise statement).

2.1. Algebraic definition. The above category is a so called universal Picard category with

respect to C. We include the precise definition because of the role it will play in the rest

of the paper. A (commutative) Picard category is a groupoid C with an auto-equivalence

P 7→ P ⊕ Q for any object Q of C, satisfying certain compatibility-isomorphisms plus some
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commutativity and associativity-restraints (cf. [3], XVIII, Dfinition 1.4.2 for the definition of

a (strictly commutative) Picard category, or [26], 14.4, axiome du pentagone et de l’hexagone):

There is an associativity-isomorphism

ax,y,z : (x⊕ y)⊕ z → x⊕ (y ⊕ z)

such that
(w ⊕ x)⊕ (y ⊕ z)

w ⊕ (x⊕ (y ⊕ z))

w ⊕ ((x⊕ y)⊕ z)(w ⊕ (x⊕ y))⊕ z

((w ⊕ x)⊕ y)⊕ z

aw,x,y⊕z

''OOOOOOOOOOOOOOOOOOOOO

1w⊕ax,y,z

CC������������aw,x⊕y,z //

aw,x,y⊕1z

��7
77

77
77

77
77

7

aw⊕x,y,z

77ooooooooooooooooooooo

commutes. There is a commutativity-isomorphism cx,y : x⊕ y → y ⊕ x such that

(x⊕ y)⊕ z x⊕ (y ⊕ z)

x⊕ (z ⊕ y))

(x⊕ z)⊕ y(z ⊕ x)⊕ y

z ⊕ (x⊕ y)

1x⊕cy,z

��7
77

77
77

77
77

7

ax,z,y

CC������������cz,x⊕1y //

az,x,y

[[777777777777

aw⊕x,y,z

CC������������

ax,y,z //

commutes. It follows that a category such as this has a zero-object, has inverses etc. (see

[3], XVIII, 1.4.4). In other words, a Picard category is a symmetric monoidal groupoid whose

functor −⊕Q is an equivalence of categories for each object Q in C. It is moreover said to be

strictly commutative if cx,x : x⊕x → x⊕x is the identity. In general we denote by ϵ(x) = cx,x.

An additive functor between Picard categories is defined to be a monoidal functor between

Picard categories.

Observe we merely have isomorphisms B ⊕ (−B) → 0, not equality. For any exact category

C, the universal Picard category V (C) is a Picard category C with a functor [] : (C, is) →
V (C) which is universal with respect to morphisms T : (C, is) → P into Picard categories P ,

satisfying the following compatibility conditions:

(a): For any short exact sequence

A : 0 → A′ → A → A′′ → 0,

there is an isomorphism, functorial with respect to isomorphisms of exact sequences,

T (A) : T (A) → T (A′)⊕ T (A′′).

(b): For any 0-object of C, there is an isomorphism T (0) ≃ 0.

(c): If ϕ : A → B is an isomorphism, with exact sequence 0 → A → B → 0, the induced

map T (ϕ) is the composite

T (A) → T (0)⊕ T (B) → T (B).
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(d): The functor T is compatible with filtrations, i.e. for an admissible filtration A ⊂
B ⊂ C, the diagram

T (C) //

��

T (A) + T (C/A)

��
T (B) + T (C/B) // T (A) + T (B/A) + T (C/B)

is commutative (here the quotients are only defined up to unique isomorphism, but are

well-defined by the other conditions).

In [4] it is mentionned that the functor (C, is) → V (C) factors as

(3) (C, is) → (Db(C), is) → V (C).

Here Db(C) is the derived category of C (supposed to be the full subcategory of a fixed abelian

category), formed out of bounded complexes up to homotopy and then localized at the thick

subcategory of acyclic complexes. The extra suffix is to denote we consider the category where

the objects are the same, but the morphisms are the isomorphisms.

2.2. Additional descriptions. In this section we study the virtual category of a Waldhausen

category, proving it provides the same construction as that of virtual categories associated to

exact categories but extending the construction to the situation where we consider categories

with quasi-isomorphisms instead of just isomorphisms. This can be seen as an extension of

[23], Definition 4.

Definition 2.0.1. Let A be a Waldhausen category ([42], Example 1.3.6) with weak equiva-

lences w. By (A, w) we denote the category having the same objects as A but the morphisms

being weak equivalences. Given a Picard category P , a determinant functor from A to P is a

functor

[−] : (A, w) → P

which satisfies the following constraints:

(a): For any cofibration exact sequence

Σ : A′ � A � A′′

an isomorphism {Σ} : [A] → [A′]⊕ [A′′] functorial with respect to weak equivalences of

cofibration sequences.

(b): For any object A, the cofibration sequence Σ : A = A � 0 decomposes the identity-

map as:

[A]
{Σ}→ [A]⊕ [0]

δR→ [A]

where δR : [A] ⊕ [0] → [A] is given by the structure of [0] as a right unit (see Lemma

2.1 for a unicity and existence statement).
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(c): Suppose we have a commutative diagram

Σ′ : A′ // //
��

��

B′ // //
��

��

C ′��

��
Σ : A // //

����

B // //

����

C

����
Σ′′ : A′′ // // B′′ // // C ′′

ΣA ΣB ΣC

were all the vertical and horizontal lines are cofibration sequences. Then the diagram

[B′]⊕ [B′′]

{Σ′}⊕{Σ′′}
��

[B]
{ΣB}

oo
{Σ}

// [A]⊕ [C]

{ΣA}⊕{ΣC}
��

[A′]⊕ [C ′]⊕ [A′′]⊕ [C ′′]
[C′]+[A′′]→[A′′]+[C′]

// [A′]⊕ [A′′]⊕ [C ′]⊕ [C ′′]

is commutative whenever also the natural map

Pushout(A � A′ � B′) → B

is a cofibration.

It is furthermore said to be commutative if the following holds:

(d): The triangle

[A′]⊕ [A′′] //

&&NNNNNNNNNNN
[A′′]⊕ [A′]

xxppppppppppp

[A′
∪
A′′]

commutes.

We record the following lemma:

Lemma 2.1. Suppose [] : (A, w) → P is a determinant functor and P . Then for any 0-object

of A, [0] has the structure of a unit in P , i.e. there are canonical isomorphisms δL : [0]⊕B ≃ B

and δR : B ⊕ [0] ≃ B. In particular, there is a canonical isomorphism [0] ≃ 0 with any unit

object 0 of P .

Proof. Applying [] to the cofibration sequence

0 � 0 � 0

we obtain an isomorphism [] : [0] ⊕ [0] ≃ [0]. By [35], 2.2.5.1 [0] has a unique structure of a

unit such that [0] = δR([0]) = δL([0]). �

We note the following theorem which extends Deligne’s categorical description of the virtual

category:

Theorem 2.2. Let A be a small Waldhausen category with weak equivalences w. Then there

is a universal category for determinant functors:
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[−] : (A, w) → V (A).

More precisely, for any Picard category P , the category of determinant functors is equivalent

to the category of additive functors V (A) → P . Moreover, this category is the fundamental

groupoid of the Waldhausen K-theory space of A.

Proof. The proof organized as follows. We construct a certain (pointed) bisimplicial set

BiNerve(P ), functorial in P , and given a determinant functor (A,w) → P , a commutative

diagram

(A,w) //

��

P

��
πf (Ω|N•wS•A|) // πf (Ω|BiNerve(P )|)

where the lower horizontal map is a canonical map N•wS•A → BiNerve(P ) of bisimplicial

set. The right vertical functor is an additive equivalence of Picard categories, whose inverse is

unique up to unique natural transformation. We also prove that the left vertical morphism is

a determinant functor. This would prove the assertion.

Step 1 - the determinant functor (A,w) → πf (Ω|N•wS•A|)
Recall that the Waldhausen K-theory space is the loop space of the geometric realization of

the bisimplicial set N•wS•A where wSpA is the category whose objects are, for 0 ≤ i ≤ j ≤ p,

sequences Ai � Aj of cofibrations with A0 = 0 and with choices of quotients Aj/Ai, and

natural compatibility with composition so that Ai � Aj � Ak coincides with Ai � Ak for

i ≤ j ≤ k, and whose morphisms between two objects A and A′ are given by weak equivalences

Ai → A′i making all the diagrams commute. NpwSqA is the p-nerve of the category wSqA. The

categories wS0A, wS1A, wS2A are, respectively, the trivial category, the category of objects of

A and weak equivalences as morphisms, and the category of cofibration sequences with weak

equivalences of cofibration sequences as morphisms.

The geometric realization in question is the (left-right) realization

|q 7→ |p 7→ NpwSqA||,

which is functorially homeomorphic to the usual diagonal realization (see [32], Lemma, p. 86).

Thus we obtain from the above description that the ”0-simplices” are reduced to a point and

the ”1-simplices” in the S•-direction is obtained by adjoining the set

|p 7→ NpwS1A| ×∆1.

This defines a canonical map |wS1| ∧ S1 → |N•wS•A|, and by adjunction a map |wS1| →
Ω|N•wS•A| = K(A). By applying the fundamental groupoid-functor we obtain a functor

[] : A → (w−1A, w) = Πf (|wS1A|) → Πf (K(A)), by sending an object to the loop represented

by A ∈ N0wS1A. We verify that this is a determinant functor:

Axiom a: A cofibration sequence

Σ : A � B � C

defines an element in N0wS2(A), and the face-maps to N0wS1(A) are given by ∂0Σ = A, ∂1Σ =

B, ∂2Σ = C, thus providing a path from [B] to [A] + [C]. A weak equivalence of cofibration

sequences defines an element in

N1wS2A
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whose faces are in N1wS1A, which provides the necessary path.

Axiom b: This is just a simplicial identity corresponding to the degeneracy N0wS1(A) →
N0wS2(A) → N0wS1(A), A 7→ [A → A → 0] 7→ A.

Axiom c: We first show that the commutativity can be rephrased as: if A � B � C of

cofibrations then

[C] //

��

[A] + [C/A]

��
[B] + [C/B] // [A] + [B/A] + [C/A]

commutes. This is clear since

B ��

��@
@@

@@
@@

A
??

??~~~~~~~
// // C

is a 3-simplex (an object in N0wS3A) and provides the necessary relationship between mor-

phisms induced from the 2-simplices in N0wS2A (one also needs to use the commutativity

in Axiom d, which is easy). In the general case, as in the corresponding case in [4], Lemme

4.8 we compare the filtrations given by A′ � B′ � Pushout(A � A′ � B′) � B and

A′ � A � Pushout(A � A′ � B′) � B and we conclude as in loc. cit..

Step 2 - The BiNerve of P .

We need to prove this construction is universal. For this, given a Picard category P , consider

the associated bicategory, in fact bigroupoid, ([6]), P̃ . The objects are reduced to a single one,

the set of 1-morphisms/morphisms is the set of objects of P , and the set of 2-cells are given

by automorphisms A+B ≃ C. The nerve of this bicategory is constructed from the following

data.

• A0 is reduced to a single point.

• A1 is the set of objects of P , with degeneracy maps A1 ⇒ A0 being trivial. The choice

of a zero-object determines a face map s0 : A0 → A1.

• A2 is the set of σ = (g0, g1, g2,Σ), where Σ : g2+g1 ≃ g0, and comes equipped with three

face map, di : A2 → A1, di(σ) = gi, and two degeneracy-maps, s0(g) = (g, g, 0, 0+g ≃ g)

and s1(g) = (0, g, g, g + 0 ≃ g).

• A3 is the set of (g0, g1, g2, g3, g4, g5) ∈ obP 6 together with isomorphisms g0 + g1
f0≃ g2,

g5 + g0
f1≃ g3, g4 + g2

f2≃ g3, g4 + g1
f3≃ g5, such that the induced diagram

g3

++WWWWWWWWWWWWWWWWWWWWWWWWWW

ssgggggggggggggggggggggggggg

g4 + g2

''OOOOOOOOOOO
g5 + g0

wwooooooooooo

g4 + (g1 + g0)
associativity

// (g4 + g1) + g0

commutes (see [6], section 6.3, pp. 240-242). More concisely it can be written as the

set of 2-simplices (f0, f1, f2, f3) satisfying the above commutativity. The face maps di
send this 3-simplex to the 2-simplex corresponding to fi. We also set, for a 2-simplex
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σ,

s0(σ) = (σ, σ, s0(d1(σ)), s0(d2(σ))) ,

s1(σ) = (s0(d0(σ)), σ, σ, s1(d2(σ))) ,

s2(σ) = (s1(d0(σ)), s1(d1(σ)), σ, σ) .

• Nerve(P ) is the simplicial complex whose n-simplices An are the n-simplices of the

coskeleton

cosk3(A)• = lim←−
3≥k→•

Ak,

where A is the above constructed 3-truncated complex. Further, for i = 0, 1, 2, 3 it

defines a truncated simplicial category, by defining morphisms to be isomorphisms of

all the relevant objects making the diagrams commute, which also equips the coskeleton

with the structure of a simplicial category.

• The binerve BiNerve(P ) = BiNerve(P )•,• of P is bisimplicial set determined by the

nerve of the simplicial category Nerve(P ). In particular N•A1 is just the usual nerve

of the Picard category P and NkA2 is the set of isomorphisms Σi : gi1 + gi2 ≃ gi3,

i = 0, . . . k − 1 and ”isomorphisms” Σi ≃ Σi+1. The degeneracy and face maps are the

obvious ones one would expect from usual nerves. That this actually is a bisimplicial

set follows from functoriality of the constructions.

Let now [] : (A, w) → P be a determinant functor. We first define a simplicial functor

N•wS•A → BiNerve(P )•,• as follows. The map wS•A → Nerve• P is defined for i = 0, 1, 2, 3:

• For i = 0, the map sends the single object to the single object of A0.

• For i = 1, it sends 0 � A to [A] ∈ A1.

• For i = 2, it sends 0 � A1 � A2 to the 2-simplex ([A2/A1], [A1], [A2], [A1] + [A2/A1] ≃
[A2]).

• For i = 3, it sends 0 � A1 � A2 � A3 to the 3-simplex, written in short form,

([A2/A1]+[A3/A2] ≃ [A3/A1], [A2]+[A3/A2] ≃ [A3], [A1]+[A3/A1] ≃ [A3], [A1]+[A2/A1] ≃ [A2]).

This is really a 3-cell due to compatibility with filtrations for determinant functors. The

induced simplicial functor on the coskeleton then induces a map of nerves N•wS•A →
BiNerv•,• P .

There is an induced simplicial map of nerves and coskeletons, N•wS•A → BiNerv(P )•,•.

Step 3. The homotopy type of the binerve

We now claim that the loop space of the bisimplicial set BiNerv(P )•,• is naturally homotopic

to the realization of the nerve of the groupoid P . The ”1-skeleton” in the A•-direction is

the point |A0 with |A1| × |∆1| adjoined, whose natural map to |BiNerv(P )•,•| factors over

|A1| ∧ S1. By adjointness we obtain a natural map |A1| → Ω|BiNerv(P )•,•|. But the left

realization of BiNerv(P )•,• is the natural simplicial space ∆op → |A•| and |BiNerv(P )•,•| is
the realization of this space (up to functorial homeomorphism). The maps si in this simplicial

space are injective maps (in view of having a right inverse di of CW -complexes), and are thus

cofibrations. In particular the space ∆op → |Ai| is ”good” in the sense of Segal and the natural
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map |A1| → Ω|BiNerv(P )•,•| is a homotopy equivalence, if we can show that the natural

map |Ai| → |A1|i is a homotopy equivalence. By Whitehead’s theorem we need to verify

that the map induces isomorphisms on homotopy groups. The cases i = 0, 1 being trivial, we

treat first i = 2 and i = 3. The nerve N•Ai being fibrant, we can compute the homotopy

groups simplicially. The group π0(N•A2) is represented by pairs ([A], [B −A]) ∈ π0(A1)
2, and

π1(N•A2) is represented by isomorphisms of the objects A,B−A, i.e. two elements of π1(A1)
2.

The map on the homotopy groups is the one coming from this representation and induces an

isomorphism. Since |A2| is the realization of the nerve of the groupoid A2, there are no higher

homotopy groups. The same argument applies to |A3|. In the general case, |An|, n ≥ 4, is

constructed of those ”commutative n-simplices” constructed out the simplices of i = 0, 1, 2, 3.

An arrow-chasing shows that we have the necessary isomorphisms on homotopy-groups.

We leave to the reader to verify that the map |A1| → Ω|BiNerv(P )•,•| gives rise to an additive

functor after applying fundamental groupoids. This is so for the same reasons that the map

(A,w) → Πf (|wS1A|) → Πf (K(A)) was a determinant functor.

Step 4. We have constructed a commutative diagram, associated to a determinant functor

(A,w) → P :

|wS1A| //

��

|P |

��
Ω|N•wS•A| // Ω|BiNerve(P )|

and applying fundamental groupoids we obtain a commutative diagram of functors.

(A,w) //

��

P

��
Πf (|wS1A|) //

��

Πf (|P |)

��
Πf (Ω|N•wS•A|) // Πf (Ω|BiNerve(P )|)

which is moreover functorial in P and natural transformations of additive functors. Applying

fundamental groupoids we obtain a commutative diagram of Picard categories. The equivalence

of categories P = Πf (|P |) → Πf (Ω|BiNerve(P )|) admits a inverse, unique up to unique iso-

morphism. The functoriality of the above constructions shows that Homadd(Ω|N•wS•A|, P ) →
Homdet((A,w), P ) is an equivalence of categories.

�

Notice that the argument ”basically” considers the functor wSkA → P k, mapping A0 ↪→
A1 ↪→ . . . ↪→ Ak 7→ ([A0], [A1/A0], . . . , [Ak/Ak−1]) and equipping

∏k
1 P with the bar simplicial

resolution. This works well if P is actually a group (see the proof of the cofinality theorem

1.10.1 in [42] for this statement, on which the above theorem was also modeled), but since the

associator and the commutator are not identities this does not give a map of simplicial sets

and only defines a pseudo-functor of pseudo-simplicial categories. The above argument replaces

concretely the almost simplicial category
∏•

1 P with an actual one, which is still homotopic

term-wise to
∏•

1 P . I do not know if the above argument could have been replaced by a

Grothendieck rectification argument. I’m grateful to the referee for pointing out that
∏•

1 P

actually is not a simplicial category.
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Definition 2.2.1. Given a determinant (additive) functor F : P → P ′ of Picard categories,

we can define [45], the Kernel and Cokernel of F . We denote them by KerF and CokerF

respectively. If F : P → P ′ is an additive functor, we can define the cokernel of F , denoted by

P ′/P as the category whose objects are the same as that of P ′, and

HomP ′/P (A,A
′) = {B,B′ ∈ obP ′, f ∈ HomP ′(A+ F (B), A′ + F (B′))

s.th. f ∼ f ′, if ∃C,C ′ ∈ ob(P ′), f − f ′ ∈ FHomP (C,C
′)}.

In general the cokernel of F is the cokernel of the inclusion of the image in the target category.

For the kernel: if F : P → P ′ is an additive functor we define kerF as the category whose

objects are objects of P plus an isomorphism F (A) ≃ 0 in P ′. An isomorphism of two

objects are isomorphisms P respecting the isomorphisms in P ′. All these categories have

natural structures of Picard categories and the induced functors are additive functors. A more

functorial point of view is taken in [45], and we refer the reader there for such a definition.

Remark 2.2.1. Since any exact category can be equipped with the structure of a biWaldhausen

category, where the weak equivalences are the isomorphisms and the cofibrations are the ad-

missible monomorphisms, it is clear that the above definition generalizes that of Deligne [4],

4.3. It is a simple exercise to verify that in this case the above axioms for determinant functors

are equivalent to those given in loc.cit.

We also have the following stronger assertion:

Proposition 2.3 ([46] Theorem 1.9). The Waldhausen K-theory spectrum of an exact category

E, K(E), is naturally homotopy-equivalent to the K-theory spectrum of Quillen. A fortiori it

induces an equivalence of fundamental groupoids and Picard categories.

Proposition 2.4 ([42], 1.9.6). Suppose in addition that A is complicial biWaldhausen so that

it is a full subcategory of C(A) for an abelian an category A. Furthermore suppose that it is

closed under taking exact sequences in C(A), is closed under finite degree shifts and co(A).

Then Ho(A) = w−1A is a triangulated category and admits a calculus of fractions.

Remark 2.4.1. By [42], Theorem 1.9.2, we can suppose that cofibrations are the degree-wise

admissible monomorphisms with quotients in A.

Corollary 2.5. [Knudsen, [22]] Let i : E → A be an exact fully faithful embedding of an exact

category E in an abelian category A, such that for any morphism in E which is an epimorphism

in A, is admissible in E. Denote by C(E) the full subcategory of bounded complexes of the

category of complexes in A. Then we have a natural equivalence of categories between the

virtual category of (E , is) and the virtual category of (C(E), q.i.) of complexes in E with quasi-

isomorphisms in A.

Proof. Equip the category C(E) with the structure of a complicial biWaldhausen category

where the weak equivalences are given by quasi-isomorphisms and the cofibrations are either of

the two following: degree-wise admissible monomorphisms or degree-wise split monomorphisms

whose quotients lie in C(E). Denote the corresponding biWaldhausen categories by E and Ẽ.

By [42], Theorem 1.11.7, we have natural homotopy-equivalences

K(E) ≃ K(E) ≃ K(Ẽ)
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and hence equivalent virtual categories. Moreover, this does not depend on the choice of A. �

If i : E → A is the fully faithful Gabriel-Quillen embedding reflecting exactness (see [42],

Appendix A), or if E is the category of coherent vector bundles and A is the category of

coherent sheaves respectively on a scheme, i satisfies the above hypothesis.

3. Some operations on virtual categories

In this section we include some standard operations on the virtual category. Of special inter-

est is a splitting principle and the construction of Adams- and λ-operations. As an application

we deduce a relationship between the weight filtration and the Adams filtration on a regular

scheme for K1.

3.1. A splitting principle. Below we sketch a criterion for when we can descend a morphism

on the level of the complete flag-variety to the base 1. First, let E be an vector-bundle of rank

e + 1 on a separated algebraic stack X . Then p1 : Y1 = P(E) → X is a projective bundle

which on which we have a canonical sub-line bundle O(−1), and a canonical quotient-bundle

of p1
∗
E. Repeating this construction with the quotient-bundle, we eventually obtain a map

p : Y = Ye → Ye−1 → . . . → Y1 → Y0 = X , where the top space is the complete flag-

variety of E on X , which also comes equipped with a canonical complete flag. Suppose P is a

contravariant functor from the category of separated algebraic stacks to the category of Picard

categories such that for any X there is a distributive additive functor V (−) × P (−)
⊗→ P (−)

moreover satisfying the projective bundle axiom; for any X , the functor

×e
i=0P (X ) → P (PX (E))

given by (fi)
e
i=0 7→

∑e
i=0 p

1∗fi ⊗O(−i) is an equivalence of categories. Then the following is a

version of an observation of Franke in terms of Chow categories of ordinary schemes (see the

article by J. Franke, ”Chern Functors” in [11], 1.13.2):

Theorem 3.1. [Splitting principle] Let p1, p2 : Y ×X Y → Y be the two projections, and

r = pp1 = pp2. Then

(a) p∗ : P (X ) → P (Y) is faithful.

(b) Suppose we have two objects A,B ∈ obP (X), and f : p∗A → p∗B a morphism in

HomP (Y)(p
∗A, p∗B), then f comes from a (unique) morphism h : A → B if and only if

p∗1(f) = p∗2(f) in HomP (Y×XY)(r
∗A, r∗B).

Proof. From the projective bundle axiom it follows each pi
∗
is injective on the level of automorphism-

groups, i.e. for any object A in P (Yi), AutP (Yi)(A) → AutYi+1
(pi
∗
A) is injective, so the functor

is faithful. For (b), the condition is obviously necessary. To prove that the condition is suffi-

cient we can assume A = B. Let 0 = E0 ⊆ E1 ⊆ . . . ⊆ Ee = p∗E be the universal flag on Y ,

and Li = Ei/Ei−1, then by the projective bundle axiom we have natural isomorphisms

AutP (Y)(A) =
e⊕

j1=0

. . .

1⊕
je=0

Lj1
1 ⊗ . . .⊗ Lje

e ⊗ p∗AutP (X )(A)

1recall that a flag is a sequence of sub-vector bundles E0 ⊂ E1 ⊂ . . . ⊂ En whose successive quotients Ei+1/Ei
are also vector bundles. It is furthermore complete if each such quotient is a line bundle.
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and

AutP (Y×XY)(A) =
e⊕

j1,j′1=0

. . .
1⊕

je=0,j′e=0

p∗1L
j1
1 ⊗ p∗2L

j′1
1 ⊗ . . .⊗ p∗1L

je
e ⊗ p∗2L

j′e
e ⊗ r∗AutP (X )(A).

Representing f in the form suggested above, we see that p∗1(f) = p∗2(f) exactly when all

components of f are zero except for the one belonging to (j1, . . . , je) = (0, . . . , 0), which means

exactly that f is equal to p∗h for some morphism h : A → A. Moreover h is unique because of

(a). �

By basechange to the flag-variety we can suppose we have nice enough flags. If we define

an isomorphism dependent on this flag, the content of the proposition is that this descends to

the base whenever this isomorphism isn’t dependent on the flag.

3.2. Adams and λ-operations on the virtual category. Let S be a scheme, and X an

algebraic stack over S. Recall that we denote by P(X ) the category of vector bundles on

X . Denote by V (X ) the virtual category thereof. We have the following result which is an

adaption of the main result in [17] to our situation;

Proposition 3.2. There is a unique family of determinant functors Ψk : P(X ) → V (X ), and

thus Ψk : V (X ) → V (X ), stable under pullback, such that if L is a line bundle, Ψk(L) = L⊗k.

Proof. Unicity of the operations clearly follows from the characterizing properties and the

splitting principle (Theorem 3.1). To prove existence, we apply the ideas of loc.cit.. Let N

be a complex of vector bundles, and CN be the cone of the identity morphism id : N →
N . Furthermore, let Sk be the k-th symmetric power, so that the p-th term of SkCN is

Sk−pN ⊗ ∧pN , whenever N is reduced to a vector bundle in degree 0 (for details, see loc.cit.,

p. 4). Finally, for a bounded complex N• = [. . . → Ni−1 → Ni → Ni+1 → . . .], define the

secondary Euler characteristic χ′(N•) =
∑

(−1)p+1p[Np] ∈ V (X ). One of the key ideas of

loc.cit. (formula (3.1)) is the formula in K0(X ), for a vector bundle E,

Ψk(E) = χ′(SkCE).

We propose the same definition for Adams operations in the virtual category V (X ). Clearly

Ψk(L) = L⊗k for a line bundle L. Now, given a flag E1 ⊆ E2 ⊆ . . . ⊆ En, define E1 ·E2 . . . ·En

to be the image of E1 ⊗ E2 ⊗ . . . ⊗ En in SnEn. Suppose that we have an exact sequence of

vector bundles 0 → E ′ → E → E ′′ → 0, and consider the filtration

SkCE ′ = CE ′.CE ′. . . . .CE ′.CE ′

⊆ CE ′.CE ′. . . . .CE ′.CE

⊆ CE ′.CE ′. . . . .CE.CE ⊆ . . .

⊆ CE.CE. . . . .CE.CE = SkCE

induces by a certain addivity of the secondary Euler characteristic, isomorphisms

χ′(SkCE) = χ′(SkCE ′′) + χ′(SkCE ′) +
k−1∑
i=0

χ′(SiCE ′′ ⊗ Sk−iCE ′)

= χ′(SkCE ′′) + χ′(SkCE ′)
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since the secondary Euler-characteristic of a product of acyclic complexes is 0 and by the

multilinearity-property of loc.cit (formula (2.1)). We need only verify that this operation

respects filtrations. Let F ⊆ H ⊆ E be an admissible filtration, and consider the double

graded filtrations of SkCE, A•,•, where Ai,j = Sk−i−jCE.SjCF.SiCH. Applying secondary

Euler characteristics in every direction, we obtain that the diagram of isomorphisms

χ′(SkCE)

��

// χ′(SkCH) + χ′(SkCE/H)

��

χ′(SkCF ) + χ′(SkCE/F ) // χ′(SkCF ) + χ′(SkCH/F ) + χ′(SkCE/H)

constructed above commutes. We leave as an exercise to provide the isomorphism, a simple

manipulation of symbols, χ′(A ⊗ B) = χ(A) ⊗ χ′(B) + χ′(A) ⊗ χ(B). Condition ”b)” of

Definition 2.0.1 is trivial. Also everything is clearly stable under pullback. �

Remark 3.2.1. In the next chapter we will show that whenever we restrict ourselves to regular

schemes, the constructed Adams-operations are actually unique liftings of the usual Adams-

operations on the level of K0, at least whenever one inverts 2 or more primes in the virtual

category.

We record the following corollary (of the splitting principle applied to the above case):

Corollary 3.3. There is a mutliplicativity isomorphism

Ψk ◦Ψk′ ≃ Ψkk′

and Ψk : V (X ) → V (X ) is a ring-homomorphism in the sense that there are natural isomor-

phisms, for A,B ∈ obV(X),

Ψk(A⊗B) ≃ Ψk(A)⊗Ψk(B)

compatible with the above sum-operation and compatible with basechange.

Proof. The first point follows by unicity and the splitting principle. For the second, we only

need to verify the multiplicative operation. It suffices to show that for any A ∈ V (X ), B ∈
P(X ), Ψk(A⊗B) = Ψk(A)⊗Ψk(B) naturally. Or, by the splitting principle since Ψk is already

an additive determinant functor, that if B is a line bundle, then Ψk(A ⊗ L) = Ψk(A) ⊗ L⊗k

naturally. For this we can assume that A is also a line-bundle M , in which case we have

Ψk(M ⊗ L) = (M ⊗ L)⊗k = M⊗k ⊗ L⊗k = Ψk(M)⊗Ψk(L). �

Now define V Z(X ) to be the virtual category associated to the category of complexes on X
exact off Z. Then the method of [15] provides us with λ-operations:

Proposition 3.4. Let X be an algebraic stack and Z a closed substack thereof and let k be

a positive integer. There are naturally defined functors λk : V Z(X ) → V Z(X ) satisfying the

following compatibilities:

(a) λ1 = id.

(b) They are stable under basechange.

(c) If Z = X and E is a vector bundle, λkE = ∧kE.

(d) If

0 → E ′• → E• → E ′′• → 0
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is a short exact sequence of complexes of vector bundles exact off Z there is a canonical

isomorphism, where we set λ0 = 1:

λk(E•) =
∑
i+j=n

λiE ′• ⊗ λjE ′′• .

Proof. The method of loc. cit. provides us with a functor, via the Dold-Puppe construction,

a functor λk : PZ(X ) → PZ(X ) where PZ(X ) denotes the category of complexes of vector

bundles on X exact off Z. Thus a functor λk : (PZ(X ), q.i.) → V Z(X ). Writing V Z(X )[[t]] :=⨿
k≥0 V

Z(X )tk it is naturally a Picard category with respect to multiplication with unit element

1 ⊗ t0 +
∑

0 ⊗ tk. The usual proof shows that λt =
∑

k≥0 λ
ktk is a determinant functor

λt : (PZ(X ), q.i.) → V Z(X )[[t]] and hence the searched for functor. Notice that we use

Theorem 2.2 since the category in question is not an exact category with isomorphisms but a

Waldhausen category with quasi-isomorphisms. �

Corollary 3.5. Suppose that Z = X. Then, possibly up to sign, there is a canonical isomor-

phism

Ψk = λ1 ⊗Ψk−1 − λ2 ⊗Ψk−2 + . . .+ (−1)kλk−1 ⊗Ψ1 + (−1)k+1kλk

where Ψ∗ and λ∗ denotes the functors constructed in Proposition 3.2 and Proposition 3.4.

Proof. The left hand side is already an endofunctor on the virtual category of vector bundles.

We need to verify that the right hand side is additive since by the splitting principle we can

then reduce to the case of line bundles, for which the statement is clear. This follows by

induction on k and the property (d) in the above proposition. �

This also defines inductively Adams operations via λ operations (cf. Proposition 3.7 below)

to virtual categories with support. The following Corollary is a consequence of the calculation

on the level of complexes in loc. cit. :

Corollary 3.6. Let R be a ring with a a non-zero divisor of R. Denote by K(a) the complex

[R
a→ R] with R placed in degree 0 and 1 and X = SpecR, Y = SpecR/a. Then there is a

canonical isomorphism Ψk(K(a)) ≃ kK(a) in V Y (X).

Proposition 3.7. Suppose that X is regular. The Adams operations uniquely extend via

Corollary 3.5 to operations on virtual categories with support such that they are stable under

pullback and compatible with the functor i∗ : V
Y (X) → V (X) for a scheme X with i : Y ↪→ X

a closed subscheme.

Proof. By the general arguments of [21], any complex E• on a schemeX which is acyclic outside

of a closed subscheme Y pulls back from a universal complex C• on a classifying-type scheme

π : G → X acyclic outside of GY , such that the support of C• maps to the support of E•.

Moreover, this scheme has the property that the induced maps πi(V
GY (G)) → πi(V (G)) are

injective, using the localization exact sequence for K-theory in [42] and homotopy invariance

for regular schemes. By construction there is an equivalence of functors i∗λt(E•) → λt(i∗E•),
where E• is any complex of vector bundles on G with support on GY and λt is the functor in the

proof of Proposition 3.4. Restricting this isomorphism to G \GY gives both sides canonically

isomorphic to zero compatible with the identity map of the zero-object. By the exact sequence

0 → π1(V
GY (G)) → π1(V (G)) → π1(V (G \ GY )) → 0 this restriction comes from a canonical

element in π1(V
GY (G)). This argument proves that any functor λt on V Y (X) compatible with

pullback and ΦX
Y is unique up to unique isomorphism. �
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4. Rigidity and operations on virtual categories

In this section we exhibit certain rigidity-properties of the virtual categories we are working

on, and also the main technical results of this part of the article. As such, it rests heavily

on the results obtained in [29], [34] (largely published in [33]) and [30]. The formulation in

terms of K-cohomology was inspired from [43], and seems interesting if one wants to obtain

functorial Lefschetz-Riemann-Roch formulas.

4.1. The main result on rigidity. The main result of this section (Theorem 4.5) can be

phrased, in a certain situation, that there is a certain commutative diagram

homH(R)(KQ,KQ)

((RRRRRRRRRRRRR
homRop Set(K0(−)Q, K0(−)Q)

yy
hom(VQ, VQ)

99
.

Here homRop Set(K0(−)Q, K0(−)Q) is a set of natural endo-transformations of the presheaf

K0(−) on the category of regular schemes, and hom(VQ, VQ) is the set of endo-functors of

the virtual category of algebraic vector bundles strictly stable under pullback. Finally, KQ

is a simplicial sheaf representing (rational) algebraic K-theory. This allows us to associate

functorial operations on VQ via the corresponding operations on K0. We refer to the theorem

for a precise formulation.

Let X be a separated regular Noetherian scheme of finite Krull dimension d. Then it is well

known (see for example [13], chapter V, Corollary 3.10, [19], chapter VI, Thorme 6.9 or use

[42], Theorem 7.6 and (10.3.2)) then any element x of K0(X) of virtual rank 0 is nilpotent, and

moreover we have xd+1 = 0. One can prove this in several ways, but one of the most natural

ways is to construct a certain filtration on K0(X) which can be compared to other filtrations in

terms of dimension of supports, a filtration that will terminate for natural reasons (see loc.cit.).

One such filtration is the γ-filtration F p
γ , built out of the λ-ring structure on K0(X) (see [13],

chapter III, p. 48 or [19], chapter V, 3.10). We wish to incarnate this kind of nilpotence in

the virtual category of X. Obviously, if x is a virtual vector-bundle of rank 0, then we know

that a high enough power of it is isomorphic to a zero-object, but only non-canonically. A

naive idea is to search for a decreasing filtration Fili of V (X) which has the property that the

functors Fili → Fili−1 are faithful additive functors, and for big enough p, Filp is a category

with exactly one morphism between any two objects.

The approach we have chosen to the problem is to construct the filtration already on the level

of classifying spaces of the P1-spectrum representing rational algebraic K-theory in SH(S),

and then use simplicial realizations to obtain a canonical filtration of BQP(X) which eventu-

ally becomes trivial. For the notation used in this section we refer the reader to the Appendix

A. It should however be noted that we can still introduce some of the main results without

reference to A1-homotopy theory, but the formulation seems to suit us because of the strong

assertions it makes on existence of lifting of functors.

In [18] the author proposes that there should be a multiplicative filtration W i of a space K(X)

representing the K-theory of X;

. . . → W 2 → W 1 → W 0 = K(X)

such that the two following properties are satisfied:
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(a) For any t, the quotient W i/W i+1 is the simplicial realization of a simplicial abelian

group.

(b) The Adams operations Ψk act by multiplication by ki on W i/W i+1.

Such a filtration would immediately give an exact couple and thus give rise to an Atiyah-

Hirzebruch spectral sequence

Ep,q
2 = Hp−q(X,Z(−q)) ⇒ K−p−q(X)

relating ”motivic cohomology” (that is, cohomology of Z(i) = Z(i)W := Ω2i(W i/W i+1), in the

sense of spectra with negative homotopygroups) on the left with algebraic K-theory on the

right. In loc. cit. it is noted that the Postnikoff filtration satisfies the first but not the second

property. For smooth schemes over a field [28] constructed a coniveau-filtration which gives

the correct spectral sequence for smooth varieties over a field.

The starting point of this section is the following theorem, which states that if we tensor with

Q we can construct a Grayson-like filtration with various functorial properties. The author

ignores if the filtration of [28] coincides with the one considered in this section, both considered

as objects of the appropriate homotopy category of schemes.

Theorem 4.1. There are H-groups {Fil(i)}∞i=0 (i.e. group-objects) and {H(i)}∞i=0 of H(RS)•,

determined up to unique isomorphism, satisfying the following properties:

(a) Fil0 = (Z×Gr)Q and for any i ≥ 0, there are morphisms Fil(i+1) → Fil(i).

(b) For any i, j, there are natural pairings Fil(i) ∧Fil(j) → Fil(i+j) making, for i′ ≤ i, j′ ≤ j,

the following diagram commutes

Fil(i) ∧Fil(j) //

��

Fil(i+j)

��

Fil(i
′) ∧Fil(j

′) // Fil(i
′+j′)

.

(c) For any i, j, there are natural pairings H(i) ∧H(j) → H(i+j).

(d) There is a factorization Fil(i+1) → Fil(i+1) ×H(i) Φi≈ Fil(i) which is compatible with the

two above products. The pairings are also associative in the obvious sense.

(e) The Adams operations Ψk act on all the above objects and morphisms and acts purely

by multiplication by ki on H(i).

Proof. It follows from Theorem A.8 that we have a filtration of BGLQ in SH(RS) given

by Filp =
⊕

n≥pHn. By definition there is an evaluation-functor evn : SH(RS) → H(RS)•
sending a spectra (cf. Appendix A) E to En. Evaluating at 0 we obtain a canonical filtration of

ev0(BGLQ) ≃ (Z×Gr)Q, a filtration {Fil(i)}∞i=0 in H(RS)•. We similarly define H(i) = ev0(Hi)

so that Fil(i) = H(i)⊕Fil(i−1) . They are the 0-th space of a P1-spectrum and automatically H-

groups. We similarly define Adams operations Ψk on the various objects via the same functor

ev0. We need to verify the other claimed properties.

Let X be a pointed simplicial sheaf, and define ΩjX = Hom∆op Shv•(RS)
(Sj,X ), the right

adjoint to Sj ∧ −. Also denote by RΩj the total derived functor of Ωj in H(RS)•.
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Denote by Rc
S the category whose objects are open inclusions of regular schemes j : U → X.

Recall that the Yoneda functor Φ is defined by

Φ : RS → ∆op Shv(RS,sm) → H(RS)

and for any object G ∈ H(RS) we denote by ϕ(G) the presheaf

RS ∋ U 7→ HomH(RS)(ΦU,G)

as follows. We define the quotient Φ(U → X) := ΦX/Φ(X − U) in H(RS) and we set

ϕ(G)(U → X) = HomH(RS)(Φ(U → X), G). The following follows from the general theory in

[42]:

Proposition 4.2. Let U → X be an open inclusion of regular schemes. The homotopy fiber

of

Hom∆op Shv•(RS)
(X,Z×Gr) → Hom∆op Shv•(RS)

(U,Z×Gr)

identifies with the K-theory space of finite complexes of vector bundles on X exact on U .

We then have:

Lemma 4.3. Let j ≥ 0. We have the following natural isomorphisms of presheaves on Rc
S,

where we set Z := X \ U , in the following cases:

• ϕ(RΩj(Z×Gr))(U → X) = KZ
j (X). This also holds for localizations by integers n and

Q.

• ϕ(RΩjH(i))(U → X) = KZ
j (X)(i), the presheaf of sections of (U → X) 7→ KZ

j (X)Q with

Ψk-eigenvalue ki (which is independent of k ≥ 2).

• ϕ(Fil(i))(U → X) = F iKZ
0 (X)Q =

⊕
p≥iK

Z
0 (X)(p), where

F iKZ
0 (X)Q =

∪
Y⊂X

im[KZ∩Y
0 (X)Q → KZ

0 (X)Q]

and the union is over all closed subschemes Z ⊂ X of codimension at least i.

• Suppose U = ∅. Let P∞ = colimn Pn, then ϕ(P∞)(−) = Pic(−), ϕ(RΩP∞) = Gm and

ϕ(RΩjP∞) = 0 otherwise.

Proof. In view of how the Adams-operations act on the various objects involved, using Theorem

A.5 the first non-trivial part is the equality⊕
p≥i

K0(−)(p) = F iK0(−)Q

which is [37], chapter I, Lemma 6 . The last point is established as in [30], Section 4, Proposition

3.8. �

Lemma 4.4. [[34], proof of Thorme III.29 + 31, ] Suppose S is a regular scheme, and X and

Y are objects of H(RS)•. Then the natural maps

HomH(RS)•(X ,Y) → Hom•,Rop
S Set(ϕX , ϕY)

and

HomH(RS)(X ,Y) → HomRop
S Set(ϕX , ϕY)

are bijective in the case Y and X are products of any of the following:

• (Z×Gr) or any localization thereof by natural integers n or Q.
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• Fil(i) .

• H(i).

• P∞.

Proof. The cited proof goes through with the following remarks. By [34], Lemme III.19, for

any objects X and E in H(RS)• with E an H-group, there is an injection HomH(RS)•(X,E) →
HomH(RS)(X,E) whose image is that of morphisms X

f→ E such that

f ∗(•) = • ∈ HomH(RS)(S,E).

Thus one reduces to the non-pointed case. The objects in question are retracts of (Z × Gr)Q
or equal to P∞, which are the cases treated in the reference and one concludes. �

We are now ready to complete the proof of Theorem 4.1. Using the above two lemmas

we deduce morphisms Fil(i)×Fil(j) → Fil(i+j) from the morphisms F iK0(−) × F jK0(−) →
F i+jK0(−) and similarly for H(i) × H(j) → H(i+j). As in ibid, Lemma III.33 we have the

following proposition: for an H-group E and objects A,B of H(RS)•, the map

HomH(RS)•(A ∧B,E) → HomH(RS)•(A×B,E)

is injective and its image consists of morphisms A×B → E such that the restriction to •×B

and A× • is zero. It follows that both of the two morphisms factor as Fil(i) ∧Fil(j) → Fil(i+j)

and H(i) ∧H(j) → H(i+j). The same argument shows the necessary diagrams are commutative.

The Adams-operations act appropriately for the same reason. �

For the below, recall that VX is the associated virtual category to X as in Proposition A.9.

The main theorem of this section is now the following:

Theorem 4.5 (Rigidity). [proof of [34], Section III.10] Suppose S = SpecZ. In the cases

considered in the above lemma, except whenever Y involves a factor of P∞, the morphisms

Homf (VX , VY) → HomRop Set(ϕX , ϕY)

and

Homf,•(VX , VY) → Hom•,Rop Set(ϕX , ϕY)

have natural sections (and are thus surjective), which are canonical up to unique isomorphism

(see A.8.1 for a definition of the functor V ). Moreover, any natural transformation of two

functors VX → VY is unique up to unique natural transformation.

Proof. This follows directly from Lemma 4.4 and by considering the composition

HomH(RS)(X ,Y) → Homf (VX , VY) → HomRop Set(ϕX , ϕY)

obtained from pre-rigidity in Proposition A.9. The essential point is that HomH(RS)(X ,ΩY)

disappears since they can all be related to K1(Z) = Z/2-modules, and all the groups in

question are 2-divisible by construction. Now, suppose we have ϕ ∈ Homf (VX , VY) and an

automorphism ϕ, i.e. a functorial isomorphism of functors ϕ ≃ ϕ. Suppose for simplicity that

X = Y = (Z×Gr). It is easy to see it determines an element in HomRop Set(K0(−)Q, K1(−)Q),

and moreover that any such element determines an automorphism of ϕ. The latter group is

zero by Theorem A.5 and an argument analogous to the proof in the previous lemma. �
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Under the conclusion of the above theorem we say that the functor VX → VY lifts that

of ϕX → ϕY . We say the lifting given by the section of the theorem is given by ”rigidity”.

To state the next proposition, denote by Pic 1
n
(X ) and PicQ(X ) the Picard category of line

bundles on X localized at an integer n or Q respectively.

Proposition 4.6. Let RCh/S be the category of regular algebraic stacks over S, and RChc/S

the category of inclusions of regular algebraic stacks U → X. Put Φ′ : RCh/S → H(R)

be the functor determined by the extended Yoneda-functor (see Definition B.1.1) and for an

object X of H(R), denote by ϕ′(X ) the functor RCh/S → Grp such that ϕ′(X )(U → Y) =

VX (Φ
′(Y)/Φ′(U)). Then we have the following equivalences of functors:

• ϕ′((Z × Gr)Q) = the fibered Picard category over RChc/S that is the fundamental

groupoid of K-cohomology with support.

• Let n be an integer. Then ϕ′(P∞[ 1
n
]) = Pic[ 1

n
] and ϕ′(P∞Q ) = PicQ, the fibered category

of line bundles localized at n or Q over RCh/S, associating to any object of RCh/S the

category of localized linebundles thereupon.

Proof. The first statement is essentially by definition. Consider the second statement. For a

simplicial sheaf X and a sheaf of groups G, a G-torsor is a simplicial sheaf Y → X with a free

action of G such that Y/G = X . In other words, a collection of G-torsors Y [n] on X [n] such

that for a morphism ϕ : [n] → [m] there are induced morphisms ϕ∗ interchanging the data in

the obvious manner. Now, it follows from [30], Section 4, Proposition 3.8 that for a simplicial

sheaf X , ϕ′(P∞)(X ) is the category of Gm-torsors on X . Thus, for a regular algebraic space

U it is clear that this is the category of line bundles on U . Let U be an regular algebraic

stack with smooth presentation X → U with X an algebraic space. Then U identifies with

the simplicial sheaf whose n-simplices are given by X ×U X ×U . . .×U X, n-time, and face and

edge-maps by repeated diagonals and projections as face and edge-maps. Since a surjective

morphism of line bundles is necessarily injective one verifies that a Gm-torsor on U necessarily

has isomorphisms as transition-morphisms, and we conclude by smooth descent.

�

Remark 4.6.1. By [25], Lemma 3.2, it follows that a Deligne-Mumford stack M, separated and

of finite type over a Noetherian base scheme with coarse moduli space M , then Pic(M)Q →
Pic(M)Q is an equivalence of categories.

A priori the operations given by rigidity are abstract and one might want to relate them

to other operations. One standard way of doing so is as follows. Restricting any ”virtual”

operation given by a morphism (Z×Gr)Q → (Z×Gr)Q along P∞ → ({0}×Gr)Q → (Z×Gr)Q
gives us the behavior of the operation on an actual line bundle where we can often write down

explicitly what it does. Then by the splitting principle one can often compare this to other

operations. In the case of determinant functors we can say even more:

Proposition 4.7. If in the above theorem we restrict ourselves to determinant (i.e. additive)

functors between virtual categories of schemes, then all the arrows are isomorphisms and are

isomorphic to Q[[T ]] where T k corresponds to the k-th Adams operation. The Adams operations

are thus dense in the ring of endofunctors. Moreover, any additive functor is unique up to

unique isomorphism.
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Proof. Given any determinant endofunctor, it is determined by the splitting principle by its

valuation on line bundles. For any regular X, by Jouanolou-Thomason, [47], Proposition 4.4,

there is a torsor ξ → X under some vector bundle E such that ξ is affine. Then any line

bundle is affine and thus the pullback of O(1) on Pn
Z for some n. In this situation everything

is rigidified since the virtual category of Pn
Z doesn’t have any non-trivial automorphisms after

tensoring with Q. It is thus a rigid functor because it can be reduced to this situation. A Segre

embedding argument shows that the chosen isomorphism is independent of the morphism to

Pn
Z and n. The second statement is now Proposition 5.1.1 in [33]. �

Clearly, for the same reason, any functor of virtual categories stable under pullback is

uniquely determined on vector bundles by considering maps to Grassmannians instead of sim-

ply Pn.

4.2. Some consequences of rigidity.

Definition 4.7.1. We denote by F iW (−) (resp. W (i)) the category fibered in groupoids

ϕ′(Fil(i)) (resp. ϕ′(H(i))) over RChc := RChc/ SpecZ. We write furthermore F iW (U → X ) =

F iWZ(X) and W (U → X )(i) = WZ(X)(i). Notice that for an algebraic stack X that is not an

algebraic space F 0W (X ) = W (X ) is in general not the virtual category V (X )Q of X .

We record the following.

Theorem 4.8. The functors F iW (−) have the following properties.

(a) The functors F i−1W (−) → F iW (−) are faithful additive functors of Picard categories.

(b) There are pairings, unique up to unique isomorphism,

F iW (−)× F jW (−) → F i+jW (−)

lifting the pairings F iK0(X)Q × F jK0(X)Q → F i+jK0(X)Q on regular schemes, such

that for i′ ≤ i, j′ ≤ j, we have a commutative diagram

F iW (−)× F jW (−) //

��

F i+jW (−)

��

F i′W (−)× F j′W (−) // F i′+j′W (−)

.

In particular there are pairings

F iWZ(X )× F jWZ′
(X ) → F i+jWZ∩Z′

(X ).

(c) There are unique pairings W (i)×W (j) → W (i+j), extending the usual pairings K0(X)(i)×
K0(X)(j) → K0(X)(i+j) on regular schemes.

(d) The pairings are compatible with the isomorphism

F iW (−) = F i−1W (−)×W (i)

and they all satisfy the obvious associativity constraints.

(e) The above is compatible with zero-objects in that a zero-object in one variable maps to

a zero-object in the second.

(f) The Adams-operations act on all the objects and functors involved, and these operations

are moreover, up to unique isomorphism, uniquely defined as liftings of the usual Adams

operations.
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(g) Let X be a regular algebraic stack of dimension d with finite affine stabilizers and U → X
an open substack such that X \ U is of codimension m. Then F d+2W (U → X ) is

equivalent to the trivial category with one object and the identity as only morphism and

we have an equivalence of categories: WZ(X ) =
⊕d+1

i=mWZ(X )(i).

Proof. For simplicity we treat the case when U = ∅, the other cases are analogous. First,

(b),(c),(d) and (f) are clear from rigidity. For (a), it is enough to show that for any X and

object x of F i−1W (X ), AutF i−1W (X )(x) → AutF iW (X )(x) is injective. But this is clear since

this map identifies with the injection F i−1Ksm
1 (X ) → F iKsm

1 (X ). Now (e) follows from the

description of the pairing in Theorem 4.1. Since we will only be concerned with (g) for a

scheme we give the proof in this case. We give a proof along classical lines when U = ∅:

Lemma 4.9. Let X be a regular scheme with d = dimX, and i = 0, 1. Recall that F jKi(X)Q
is the filtration on Ki(X)Q determined by

F jKi(X)Q =
⊕
p≥j

Ki(X)(p).

Then F d+i+1Ki(X)Q = 0.

Proof. Consider the Quillen coniveau spectral sequence

Ep,q
1 (X) =

⊕
x∈X(p)

K−p−q(k(x)) =⇒ K−p−q(X)

where X(p) denotes the codimension p-points of X and k(x) is the residue field of x. By [36]

Thorme 4, iv), we have that, for i = 0, 1,

Ki(X)Q =
d⊕

p=0

Ep,−p−i
2 (X)Q.

Furthermore, it is remarked in [15], proof of Theorem 8.2, that the Adams operations Ψk act

on the spectral sequence and in particular on Ep,−p−i
r (X) by kp+i (i = 0, 1 and r ≥ 1). Also,

Ep,−p−i
r (Ψk) converge towards the Adams operations on Ki(X). Thus, for i = 0, 1, it follows

that Ki(X)(d+i+1+k) = 0 for k ≥ 0 so that F d+i+1Ki(X)Q = 0. �

We immediately deduce that the categories F iW (X) are trivial, i.e. all objects are uniquely

isomorphic, for i ≥ dimX + 2. �

Remark 4.9.1. The proof of property (g) in the case of a regular algebraic space goes through

verbatim. The general case is obtained in a similar way, but one has to work instead with the

spectral sequence Ep,q
1 (X ) =

⊕
ξ∈X(p) Ksm

−p−q(Gξ,red) =⇒ Ksm
−p−q(X ) which exists by a Brown-

Gersten argument applied to the flabby S1-spectrum representing cohomological K-theory and

by virtue of Gsm
p = Ksm

p by Poincar duality for the cohomology of the K-theory for regular

algebraic stacks (see Theorem B.4). Then each Gξ,red is a gerbe banded by some reduced

algebraic group H, which is in fact necessarily an abstract finite group over the algebraic

closure of the moduli space. To understand the Adams operations we can by tale descent

moreover suppose that the moduli space Spec k(x) of Gξ,red is separably closed so that the

gerbe is trivial and Gξ,red = [Spec k(x)/H]. By the arguments of [39], 2.3 there is a spectral

sequence

Ep,q
1 = Kq(

p∏
H) → Ksm

q−p(Gξ,red).
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Then Ksm
i (Gξ,red)Q = Ki(Spec k(x))

H
Q for all i. The Adams operations Ψk act on Ksm

i (Gξ,red)

via the restriction of Ki(Spec k(x)) to the H-invariant part and thus by ki. The rest is similiar

but skipped.

Remark 4.9.2. From [27], Theorem 11.5 it follows that if R is a Dedekind domain, and X is a

regular finite type SpecR-scheme, then the γ-filtration on Kn(X) for any integer n terminates

after d+ n+ 1 steps.

We harvest some obvious corollaries:

Corollary 4.10. Let X be a regular algebraic stack with closed substack Z. The Adams

operations on WZ(X ) are compatible with the Adams operations constructed on V Z(X ) in

Proposition 3.2 under the functor V Z(X ) → WZ(X ). Moreover, there is a determinant functor

det : W (X ) → Pic(X )Q such that the diagram

V (X ) //

Ψk

��

W (X )

Ψk

��
V (X ) //

det
��

W (X )

det
��

Pic(X ) // Pic(X )Q

commutes up to canonical natural transformation.

Proof. By rigidity the two Adams-operations coincide on line bundles and we conclude by the

splitting principle. Moreover, Pic(X )Q clearly satisfies coherent descent since it is a localization

of the category Pic(X ) which does. The determinant functor then exists by cohomological

descent and the diagram commutes again by rigidity and the splitting principle. �

Corollary 4.11. There are unique λ-operations on F iW (−) λ-operations satisfying, for a

regular algebraic stack X ,

λk(x+ y) =
k∑

j=0

λj(x)⊗ λk−j(y)

and moreover for a bounded complex of vector bundles E• one has tE• : λkE• ≃ ∧kE•, where

∧ refers to the already constructed operations in Proposition 3.4. For an exact sequence of

bounded complexes of vector bundles 0 → E ′• → E• → E ′′• → 0 a commutative diagram of

isomorphisms

λk(E•)

t

=
∑k

j=0 λ
j(E ′•)⊗ λk−j(E ′′• )

t

∧k(E•) =
∑k

j=0 ∧j(E ′•)⊗ ∧k−j(E ′′• )

with the lower row defined as in Proposition 3.4.

Proof. We assume again U = ∅, the general result follows from an argument of the type in

Proposition 3.7. We might also suppose that the complexes of vector bundles are actually

vector bundles, by the equivalence of the virtual category of complexes of vector bundles and

vector bundles and the equivalence of the constructed ∧-operations (cf. Proposition 2.5 and

Proposition 3.4 (c)).
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Unicity is then clear by the splitting principle. Existence of the λ-operations are given by

rigidity, and we suppose for simplicity that i = 0. For a line bundle rigidity provides us with

an isomorphism λkL ≃ ∧kL = L if k = 1 and an isomorphism with 0 if k > 1. The existence

of t and the commutativity now follows from Corollary 3.5, Corollary 4.10 and the argument

of Proposition 4.7 applied to the additive functor λt =
∑

λktk. �

Corollary 4.12. We restrict ourselves to the category of regular schemes. There are γ-

operations on the virtual category W (−), j ≥ 2, γj, inducing the natural operations on K0,Q.

For a virtual bundle of rank 0,

γj(v) ∈ F jW.

Furthermore, for any two virtual objects x of rank 0, we have a family of isomorphisms in

F kW , functorial in x and y;

(4) γk(x+ y) ≃
∑

γj(x)⊗ γk−j(y).

Since for a line bundle L, 1− L identifies with an object of F 1W , we have that (1− L)i is an

object of F iW . We then have canonical isomorphisms in F iW :

γi(1− L) ≃ (1− L)i

and

γi(L− 1) = 0 for i ≥ 2.

Moreover, for i ≥ 1, the trivialization

γe+i(E − e) ≃ 0

for e = rkE determined by the splitting principle coincides with the trivialization determined

by

γe+i(E − e) ≃ ∧e+i(E + i− 1) ≃ 0

determined by Corollary 4.11 and the fact that the exterior power vanishes for high enough

degrees.

Proof. All statement except the last one are direct consequences of rigidity. By definition (cf.

[13], chapter III) and rigidity we are given a relationship of γ and λ-operations
∑

i=0 γ
i(u)ti =∑

i λ
i(u)

(
t

1−t

)i
so that, in view of that 1/(1 − t)r+1 =

∑(
j+r
j

)
tj, the relationship, for k > 0,

in W (X )

γk(u) =
k∑

i=0

λi(u)

(
k − 1

k − i

)
= λk(u+ k − 1).

If u is a virtual bundle of rank 0 we deduce the equality in F kW compatible with sums and

the product on the filtration. We obtain a trivialization γk+n(E − n) = λk+n(E + k − 1) =

∧k+n(E + k − 1) = 0 and we want to prove that it is compatible with the trivialization given

by splittings of E into line bundles. As before we can suppose that X is affine. Given an

exact sequence of vector bundles we can suppose it is split: the variety of splittings of such a

sequence is a torsor under a vector bundle and thus passage to this variety is an equivalence

of categories by the homotopy invariance in K-theory. Finally, by considering surjections of

global sections we obtain maps to Grassmannians where the two definitions necessarily coincide

because they pull back from the arithmetic situation where there are no automorphisms. A
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Segre embedding argument shows that this is not dependent on the choice of surjections and

by the splitting principle we conclude.

�

Corollary 4.13. Let X be a regular scheme of dimension d. Then for any virtual bundle v in

W (X) of rank 0, k > 1,

γd+k(v) ≃ 0

canonically.

Proof. This follows from Theorem 4.8 and Corollary 4.12. �

Remark 4.13.1. It is not difficult to see that the above is really the Adams-eigenspace in

functorial form; we could also have taken this as the definition without any reference to A1-

homotopy theory of schemes: Let X be a scheme and Z a closed subscheme of X. Then for

any k, and a virtual bundle v, an isomorphism Ψk(v) = kiv in WZ(X) defines a projection of

v into WZ,(i)(X). Thus it implies that there is a canonical isomorphism Ψk(v) = kiv for any i.

An object of WZ,(i) is an element v of WZ(X) together with an isomorphism Ψk(v) = kiv and

the morphisms are described by isomorphisms of respecting this automorphism.

5. Comparison with constructions via algebraic cycles

Warning: This section is being re-written, the dimension theory as written is not the correct

one, but should be the relative dimension with respect to a regular base scheme.

In [10] and [11] there is a careful outline of his notion of Chow categories and Chern func-

tors. This section provides a comparison of the constructions therein and the constructions

above.

5.1. Rational Chow categories. In this section we define homological Chow categories.
Also, a scheme will be a scheme Z which is separated and of finite type over a regular scheme
S, so that particular Z is universally catenary. We will also suppose that Z admits an ample
family of line bundles. By supposing that Z has an ample family of line bundles, by Jouanolou-
Thomason (cf. [47], Proposition 4.4) Z has the A1-homotopy type of an affine scheme and by
Corollary 5.3 below we can often suppose that Z is affine and admits an embedding into a
scheme smooth over S. We will also suppose that any regular scheme is connected. The
dimension theory for the relevant schemes will be the relative dimension theory as given in
[12], chapter 20.

Definition 5.0.1. Suppose Z ⊆ X is closed immersion of a scheme into a regular scheme
X. Define the (rational) cohomological Chow category with support, denoted CHi

Z(X), as the
category WZ(X)(i) considered in the last section.

Recall also the construction of Chow categories of J. Franke. For a scheme X, write X(p)

for the codimension p-points of X. Suppose X is regular and connected and that Z is a closed
subscheme of X. Consider the coniveau spectral sequence

Ep,q
1 =

⊕
x∈Xp∩Z

K−p−q(k(x)) =⇒ KZ
−p−q(X)

deduced from the filtration by codimension, giving rise to⊕
z∈X(p−1)∩Z

K1−p−q(k(z))
d1−→

⊕
y∈X(p)∩Z

K−p−q(k(y))
d0−→

⊕
x∈X(p+1)∩Z

K−p−q−1(k(x)).
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Notice that since X is catenary and equidimensional, Z∩X(p) = Z(dimX−p), where Z(d) denotes
the dimension d-points of Z. Without the assumption that X is regular and taking Z = X,
this is the classical coniveau spectral sequence converging to G-theory. We have the following
from [10]:

Definition 5.0.2. The category CHi(X) is defined as follows. The objects are given by
codimension i-cycles on X, and homomorphisms between two cycles z and z′ are described by

Hom(z, z′) := {f ∈ Ei−1,−i
1 (X), d1(f) = z′ − z}/d1Ei−2,−i

1 (X).

The category CHi(X)Q is then the category CHi(X) localized at Q. They both have natural
structures of Picard categories.

Definition 5.0.3. Let X be regular and Z be a closed subscheme of X. The dimX − i-
th (homological) Chow category is the following: The objects are elements of ZdimX−i(Z) =
Zi

Z(X) and whose homomorphisms are given as Hom(z, z′) := {f ∈ Ei−1,−i
1,Z (X), d1(f) = z′ −

z}/d1Ei−2,−i
1,Z (X). Here Zi

Z(X) denotes the cycles of codimension i on X with support on Z.
It is moreover clear from the description of the coniveau spectral sequence that the categories
are independent of X, since it reduces to the niveau spectral sequence for Z and X(i) ∩ Z =
Z(dimX−i) since X is catenary and equidimensional. The category localized at Q is the rational
(homological) Chow category and we denote it by CHdimX−i(Z). In view of that for a field
k, K2(k) = k∗ ⊗Z k∗ modulo symbols of the form (x, 1 − x), x ∈ k \ {0, 1}, K1(k) = k∗ and
K0(k) = Z, it is thus a Picard category related to a complex (in the above sense)⊕

z∈X(i−2)∩Z

k(z)∗ ⊗Z k(z)
∗ d1−→

⊕
y∈X(i−1)∩Z

k(y)∗
d0−→

⊕
x∈X(i)∩Z

Z

defined elementary in terms of fields and where d0 is the associated divisor to a rational function
and d1 is the (generalized) tame symbol (cf. [14], Theorem 7.21).

We included X to emphasize that it is clearly equivalent to the category CHi(Z)Q, as noted
in the next proposition, but it also has an obvious definition in terms of the niveau filtration
as the Picard category associated to the resulting exact sequence

E1
k+2,−k(X) → E1

k+1,−k(X) → E1
k,−k(X)

where E1
p,q(X) = ⊕x∈X,dim {x}=pKp+q(k(x)) and the maps are the analogues of the above.

Proposition 5.1 (Poincar duality). Keep the above notation and assumptions. Then:

(a) The category CHi
Z(X) be identified with the cycle-groupoid giving a Poincar duality-type

equivalence:
CHi

Z(X) ≃ CHdimX−i(Z).

(b) Suppose moreover Z is equidimenional of dimension d, then there is a natural equiva-
lence of Picard categories

Ψ : CHi(Z)Q → CHd−i(Z)

.

Proof. We already mentioned the second part is true. For the first, given a cycle z in the latter
category, associate to it the natural edge in G-theory. Ek−1,−k

2,Z (X) in turn admits a canonical

map to the G-theory space by sending an element f ∈ k(x)∗, x ∈ X(k−1) ∩ Z to the associated

map of linebundles O ≃ O(div f) on {x}. By [15] the projection onto the proper Adams
eigenspace in V Z(X) induces an isomorphism on the level of π0. The statement for π1 is an
analogous result which is not made explicit therein but which follows analogously. Thus the
map induces an equivalence of categories.

�
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Remark 5.1.1. If Z is normal and locally factorial, then there is an equivalence of categories

CH1(Z) ≃ Pic(Z), the category of linebundles with isomorphisms (cf. [10], section 2). If

furthermore Z is equidimensional of dimension d, by (b) above CHd−1(Z) ≃ Pic(Z)Q.

We go on to note that basically all the properties described in [14] of a ”Chow homology

theory” carry over to this situation. At certain points we emphasize theK-theoretical approach

by working with the Adams filtration (cf. Definition 5.5.1 below) since it will be closer to some

of our aims.

Proposition 5.2 (Flat pullback). Suppose there is a flat morphism of schemes f : X → Y

of relative dimension d. Then there is a natural functor f ∗ : CHi(Y ) → CHi+d(X) compatible

with composition. It maps an i-dimensional cycle V to the closure of f−1V in X.

The proof is obvious from niveau spectral sequence and the description of the map f ∗ which

is part of the definition of pullback of cycles.

Remark 5.2.1. In the language of [10], section 3.6, this makes the association Z 7→ CHi(Z) =

CHdimZ−i(Z) with flat pullbacks into a fibered Picard category over the schemes for which these

are defined, and moreover satisfy Poincar duality. In other words, a contravariant assignment

of Picard categories Z 7→ PZ for appropriate Z together with associativity and composition

constraints for the class of pullback morphisms.

Corollary 5.3 (Homotopy invariance). Let Y → Z be a torsor under a vector bundle on Z,

and Z of finite type over a regular scheme S. Then the flat pullback f ∗ : CHi(Z) → CHi+d(Y )

induces an equivalence of categories.

Proof. This follows from the homotopy invariance on the second page of the weight spectral

sequence by [14], Theorem 8.3, and thus induces isomorphisms on π0 and π1 and thus equiva-

lences of categories. �

The following is obvious:

Proposition 5.4 (Topological invariance). Let Z be a closed subscheme of a regular scheme

X. If Zred denotes the associated reduced scheme the natural map gives an equivalence of

categories

CHi(Z) = CHi(Zred).

Proposition 5.5 (Proper pushforward). Suppose f : Z → Z ′ is a proper morphism of schemes.

There is an induced pushforward f∗ : CHk(Z) → CHk(Z
′).

Proof. The proof of [14], Theorem 7.22 (iii) shows that there is a push-forward on the complexes

given by the first page of the niveau spectral sequence. It follows that there is a pushforward

f∗ : CHi(X) → CHi(Y ) on the cyclelevel, already without rational coefficients, given by the

classical formulas on the level of objects (also cf. [12], section 1.4). �

Definition 5.5.1. Define Filk(Z) =
⊔

i≤k CHi(Z). By the proof of Proposition 5.1, if X is a

regular containing Z, this is equivalent to F dimX−k
Z (X) considered in Theorem 4.8. Moreover,

we have

Filk(Z)/Filk−1(Z) ≃ CHk(Z)

where the quotient denotes cokernel of an additive functor of Picard categories (cf. Definition

2.2.1). In general we can consider it as a faithful (but not full) subcategory of C(Z)Q (the
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virtual category of coherent sheaves on Z, cf. Definition C.0.1) since the weight spectral

sequence degenerates modulo Q at the second page (cf. the proof of Proposition 5.1. We can

always reduce to this case by Jouanolou-Thomason as follows. If Z is defined over S, we can

find an affine S with a morphism S ′ → S which is a torsor under a vector bundle, and the

basechange Z×S S
′ → Z induces an equivalence of categories on the revelent categories. Using

the same argument, we can assume Z itself is affine, having gained that it is affine over an

affine scheme. If it is of finite type, we can find an embedding into An
S for some n, which is

smooth over S. This fact will be often be used implicitly hereafter).

Notice that if f : Z → Z ′ is a proper morphism of schemes, the functor Rf∗ : C(Z) → C(Z ′)

restricted to Filk(Z) has essential image in Filk(Z
′). Indeed, we know from the above that any

object in Filk(Z) is represented by sheaves of the form OV for closed subschemes V of Z of

dimension at most k. It is obvious that Rf∗OV is a sum of sheaves with support on sheaves

with support on points with dimension at most k on Z ′. We need to prove that the induced

map on Rf∗ : G1(Z)Q → G1(Y )Q has the same properties with respect to the niveau filtration.

Now Z ′ is defined over a regular scheme S, and by Jouanolou-Thomason we can assume first

that S and then that Z ′ is affine. By Chow’s lemma ([5], Lemme 5.6.1)we can find a morphism

p : Z̃ → Z such p and fp are projective and that Rp∗(OZ̃) = OZ and hence we can replace, if

we can show that Rp∗ : G1(Z̃)Q → G1(Z)Q is surjective on every step of the niveau filtration,

Z by Z̃ and thus that f itself is projective. To prove this we can also replace Z by an affine

scheme so there is a closed embedding Z ⊆ An
S for suitable n and since p is projective it fits

into a natural compatible diagram (cf. Proposition 5.8). Then the statement follows from

the already cited [14], Theorem 7.22 (iii) which gives the map on the first page of the niveau

spectral sequence where surjectivity is clear, and [36], Thorme 4, iv) from which it follows that

the isomorphic coniveau spectral sequence with supports in question degenerates at the second

page when passing to rational coefficients. In the case of a projective morphism f : Z → Z ′

factoring as Z → Pn
Z′ → Z ′, embedding Z ′ into a regular scheme X ′ and Z into Pn

X′ reduces us

to the same considerations as above. With this pushforward we have the following corollary:

Corollary 5.6. Let f : Z → Y be a proper morphism of schemes. The pushforward Rf∗ :

C(X)Q → C(Y )Q restricted to Filk X has essential image in Filk(Y ). The induced functor f∗ :

Filk(Z)/Filk−1(Z) → Filk(Y )/Filk−1(Y ) is equivalent to the pushforward on Chow categories.

Proof. For the second one, we note that the comparison is trivial in the case of close immersions

and to compare the two pushforwards f∗(OV ) and Rf∗(OV ), we can then assume V = Z and

Y = f(Z). If f : Z → Y is not generically finite, f∗OZ = 0 and Rf∗OZ is in Filk−1(Y ).

Generally, pick an open U of Y such that f is generically finite of degree d and OZ free

over OY . In this case, the pushforward is described as Od
U . In general, by [13], Ch. IV,

Lemma 3.7 there is a coherent sheaf G on Y , surjective morphisms G → Od
Y and G → R0f∗OZ

such that the restriction to U is an isomorphism and is compatible with the isomorphism

Rf∗OZ |U = R0f∗OZ |U ≃ Od
U . This defines an isomorphism of the two pushforwards, and it

doesn’t depend on G. Indeed, we only need to prove that if we have a surjective morphism

of coherent sheaves g : G ′ → G on a scheme Z which is an isomorphism over some dense

open U whose complement is of dimension k − 1 or less, then it defines an isomorphism in

CHk(Z). In this case Filk(Z) = V (Z)Q and CHk(Z) don’t have any automorphisms and is

equivalent to the group of zero-cycles of dimension k on Z, so the natural determinant functor
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C(Z) → Filk(Z) → CHk(Z) is realized by taking lengths of coherent sheaves along subschemes

of dimension k and any exact sequence defines an isomorphism of an object of dimension less

than k with zero. �

Proposition 5.7. Let f : Z → Z ′ be a proper morphism. Suppose that V is a virtual vector

bundle of Z Then there is a projection formula isomorphism

V ⊗Rf∗(F) ≃ Rf∗(Lf
∗V ⊗F)

in Filk(Z
′) where F is an element of Filk(Z). It is also stable under composition of proper

morphisms in the naive way and if furthermore V is of rank 0, this is an isomorphism in

Filk−1(Z
′).

Proof. We prove the formula by noting it is true if we replace the filtration by the virtual

category of coherent sheaves and then proving that f∗(f
∗V ⊗F) ≃ V ⊗F in CHk. The formula

then follows from the above since the pushforward and pullbacks in question are compatible

with the ones on the level of virtual filtration by dimension by the previous corollary and

functoriality of the kernel of an additive morphism. By functoriality of pushforward we can

suppose that Z is a k-dimensional integral scheme, that A is OZ and f is finite of degree

d and by the splitting principle (or a slight modification thereof since the projective bundle

formula for Chow groups is slightly different from that of K-theory in terms of indices) we

can assume that V is a line bundle. In this case the formula reduces to show that for a

rational section s of L, there is an isomorphism f∗ div f
∗s = f∗f

∗(div s) = d(div s) and the

projection formula on the level of G1. These are actual equalities that already holds on the

level of cycles (cf. Example 1.7.4 of [12]) so that the ”isomorphism” is actuality the identity-

map. For the second part, we can suppose that V is an actual difference E − e where E is

a vector bundle and e = rkE. By the splitting principle we can furthermore suppose E is a

sum of line bundles so we can suppose E = L is a line bundle. By the previous argument,

it is enough to verify that the two sides are naturally equivalent to the identity equivalence

of the 0-functor on CHk(Z
′) = Filk(Z

′)/Filk−1(Z
′) and to prove this we start by proving that

for any line bundle L of Z, the functor (L − 1) ∩ − : Filk(Z) → C(Z) has essential image in

Filk−1(Z). Any object in the source category Filk(Z) can be written as a sum of objects
∑

iy∗F
where iy∗ is the pushforward associated to a point y in Z such that Y := z has dimY ≤ k and

F is a coherent sheaf (with rational coefficients). By already established projection formula

(L− 1)⊗ iz∗(F) ≃ iz∗(i
z∗(L− 1)⊗F) and so we see that we must show that iz∗(L− 1)⊗F has

essential image in Filk−1(Z). We can thus assume Z = Y and F = OZ . Given a rational section

s of L the divisor defines a sheaf whose support is of dimension k − 1 and thus an element

of Filk−1(Z). Another choice of rational section defines an isomorphism of the two sheaves

and it is obvious the data glues together to an object iy∗(L− 1)⊗ F in Filk−1(Z). Moreover,

by the arguments of the proof of [20], Theorem 4, ii), there natural pairing of K− and G-

theory restricts to a pairing F 1K0(X) × F dim
k G1(X) → F dim

k−1G1(X) where F 1K0(X) denotes

the virtual bundles of K0(X) of rank 0 and F dim
k−1G1(X) denotes the filtration by dimension of

G1(X). Thus F dim
k G1(X) map into the F dim

k−1G1(X). By passing to quotients we obtain the

result. Also compare [14] Theorem 7.24.

�
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Remark 5.7.1. Since the diagram

V ′ ⊗ V ⊗Rf∗(F) //

��

V ′ ⊗Rf∗(Lf
∗V ⊗F)

��
Rf∗(Lf

∗(V ′ ⊗ V )⊗F) // Rf∗(Lf
∗V ′ ⊗ Lf ∗V ⊗F)

is commutative any virtual bundle of the form (E1 − e1)(E2 − e2) . . . (Em − em) where each Ei

is a vector bundle of rank ei defines by multiplication a functor Filk(Z) → Filk−m(Z). In the

next chapter we establish further properties of this functor.

Proposition 5.8 (Gysin-type functors). Suppose that Z → X and Z ′ → X ′ are closed em-

beddings of schemes into regular schemes X and X ′ and that there is a commutative square

(which we call a compatible diagram)

Z //

f
��

X

F
��

Z ′ // X ′

with f and F any two morphisms of schemes such that F induces a morphism X \Z → X ′\Z ′.
Then there is a functor

F ! : CHi
Z′(X ′) → CHi

Z(X)

compatible with composition of these types of diagrams. If f is a projective local complete

intersection morphism of relative dimension d, then there is also a functor f ∗ : CHi(Z) →
CHi+d(Z

′), stable under composition and independent of X and X ′ and which coincides the

functor F ! in case X ′ = Z ′, X = Z.

Proof. Given the above data there is clearly a functor Lf ∗ : HZ′(X ′)(i) → HZ(X)(i) which

induces the map in the first part of the proposition. For the construction of the other map,

one uses the flat map to define the pullback along projective bundle projections. Standard

techniques reduces us to consider the case of a regular closed immersion f . We then need

to prove that the functor Lf ∗ : CHi(Z
′) → C(Z) induced from Lf ∗ : C(Z ′) → C(Z) has

essential image in CHi−d(Z) and define the sought for functor in that manner. Instead, we

follow the approach of [12] and define for the zero-section s of the projection p : E → X for

a vector bundle E on X of rank d, s∗ : CHi(E) → CHi−d(X) to be the inverse equivalence

of Corollary 5.3. For a given subscheme V of dimension i on Z, consider the normal cone

CV ∩Z′(V ) in the normal bundle N = NZ′(Z) of the embedding Z → Z ′. This defines an object

of CHi(N)
s∗≃ CHk−d(Z

′). We verify that it defines a functor and that it is compatible with the

pullback on the level of Lf ∗ : C(Z ′) → C(Z). The specialization σ : CHi(Z) → CHi(N) can

also be defined as the composition CHk(Z) → CHk+1(A1
Z) → CHk(C) where the first functor

is the pullback morphism, and the second functor is given by functoriality of the cokernel of

i∗ and the diagram

CHk+1(N)
i∗ //

��

CHk+1(M)
j∗

//

i∗

��

CHk+1(A1
Z)

wwo o o o o o

0 // CHk(N)
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where i : N → M is the embedding of N in the scheme for the deformation to the normal

cone, and j : A1
Z → M is the open immersion. To see that coker i∗ = CHk+1(A1

Z) it suffices to

consider the homotopy sequence induced from the functors H∗ after a choice of embedding of

M into a regular scheme. This can be accomplished either directly or by applying Jouanolou-

Thomason to find such an embedding. The functor i∗ is defined here since it is the embedding

of a Cartier divisor and can thus be defined via the argument of the proof of Proposition 5.7.

The composition i∗i∗ is also naturally the zero functor. The rest follows the verification of [12],

Proposition 5.2. Finally, if V is any subvariety of X, then s∗[p−1V ] = V naturally for any of

the two definitions of pullback functors along the zero-section of a vector bundle projection

p : E → X which is again verified as in [12] so the definitions are compatible. To verify that

these two constructions coincide in the case X ′ = Z ′, X = Z, apply the reasoning in [12], the

proof of step 10 of Theorem 8.2.

�

The same construction also proves that f ∗ : CHi(Z) → CHi+d(Z
′) coincides with the pullback

Lf ∗ : C(Z ′) → C(Z) after passing to suitable quotients as everything can be represented by

explicit sheaves and one can again follow [12], the proof of step 10 of Theorem 8.2. It also

proves that F ! = f ∗ whenever F (and thus f) is flat.

5.2. Chern intersection classes. In this section we define Chern intersection functors on the

rational Chow categories in two fashions; via rigidity and via using the filtration Filk introduced

in the previous section. Finally we compare it to the already constructed Chern intersection

functors given by Franke in [11]. We will suppose Z has the same properties as in previous sec-

tion, i.e. that Z is a separated scheme of finite type over a regular scheme moreover admitting

an ample family of line bundles, for example any quasi-projective scheme over a regular scheme.

Recall that, by the projection formula the space ((Z×Gr)Q)
n represents the functor sending a

regularX toK0(Pn
X)Q. Indeed, if p : Pn

X → X is the projection there is the natural isomorphism

K0(Pn
X) ≃

n−1⊕
i=0

O(−i)⊗ Lp∗K0(X).

Denote now by c1(O(j))i ∩ − = c1(O(j))∩ the homomorphism projecting multiplication by

O(j) on K0(X)(i) to K0(X)(i+1) and c1(O(j))k the iterated homomorphism k times. Then

there is a decomposition of Adams-eigenspaces

K0(Pn
X)

(i) =
n−1⊕
j=0

c1(O(−1))j ∩ Lp∗K0(X)(i−j).

This is a consequence of [13], Chapter III, Theorem 1.2 and a comparison with the usual first

Chern class is well-known.

Definition 5.8.1. Thus by rigidity we obtain an intersection functor

c′1(OPn(1)) ∩ − : CHi
Pn
Z
(Pn

X) → CHi+1
Pn
Z
(Pn

X).

Given a scheme Z in a regular scheme X and a surjection On+1 ϕ−→ L, where L is a line

bundle on Z, there is an induced functor, where we use that CHk+n(Pn
Z) = CHdimX−k

Pn
Z

(Pn
X) and
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CHk+n−1(Pn
Z) = CHdimX−k+1

Pn
Z

(Pn
X),

c′1(L, ϕ) ∩ − : CHk(Z)
p∗−→ CHk+n(Pn

Z)
c′1(OPn (1))∩−−→ CHk+n−1(Pn

Z)
s∗−→ CHk−1(Z)

where s is the section to p : Pn
Z → Z induced by ϕ. We call it the rigid first Chern class-functor,

induced by ϕ.

Definition 5.8.2. The functor c1(−)∩− : VectZ ×CHi(Z) → CHi−1(Z) is defined as follows.

For a fixed vector bundle E, c1(E) ∩ − is the functor

CHi(Z)
πn−i−→ G(Z)

(E−rkE)⊗−−→ G(Z)
πn−i+1−→ CHi−1(Z)

where the non-trivial functors are given by the natural inclusions and projections. We call it

the first Chern class-functor.

Proposition 5.9. The rigid first Chern class-functor does not depend on the particular choice

of X and ϕ and when E is a line bundle L both can be identified with the induced intersection

functor

(L− 1) ∩ − : CHi(Z) → CHi−1(Z)

from the proof of Proposition 5.7.

Proof. To prove that the functor is not dependent on the choice of X and ϕ, it is enough to

prove that the two functors coincide for O(i) over Pn
Z since the first Chern class-functor does

not involve either and is compatible with projection formula together with that p ◦ s = id

where s is the section induced by ϕ in Definition 5.8.1. Now, in this case we can describe

both intersection functors explicitly and for this we can suppose that Z = X itself is regular.

The rigid functor is characterized by compatibility with pullback and acting on the class [Pk
Z ],

where Pk
Z ⊆ Pn

Z is a linear subspace, by restricting it to Pk−1
Z = Pk

Z \ Ak
Z on the level of Chow

groups. But the same is true for multiplication by (L − 1) by the description in the proof of

Proposition 5.7 and it is easily seen to be functorial with respect to basechange. This obviously

also holds when restricting to the case Z = X and X a Grassmannian and thus by rigidity

they must coincide in general. �

Let X now be a noetherian scheme of finite Krull dimension of finite type over a regular

scheme S. For the following proposition, consider the presheaf of U 7→ Gk(U)Q, for Gk(U)

being the middle cohomology of the exact sequence defining the Chow categories, on the

Grothendieck site where an open set U is an open set such that if x is a point of dimension

k′ < k, then x ∈ U or x /∈ U . A pretopology is given by requiring that a covering of U is a

covering of such open sets Ui with the condition that U \ Ui has dimension less than k. Then

Gk is easily seen to be a sheaf for this topology. Then the category of principal homogenous

Gk,Q-sheaves is equivalent to the rational Chow category CHk(X) (cf. [10], section 3.1). An

equivalence is set up as follows: If z is a cycle of dimension k, it is mapped to the Gk-principal

homogenous sheaf

U 7→ HomCHk(U)(0, z) = {f ∈ Ek+1,−k
1 (U), df = z|U}/Ek+2,−k

1 (U).

An inverse to this functor is given by picking a rational section aA of a Gk-sheaf A with

”divisor” c(aA) (cf. loc. cit. section 3.3). One can verify that this is well behaved on the

level of isomorphisms as well and that it sets up an equivalence of categories. Because of the
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topology the construction of an intersection product is a purely local question. If f is a local

section of one such principal homogenous sheaf A, and if ℓ is a local trivializing section of L,

we define a local section in one dimension lower by the product

Ki(X)⊗ E1
p,q(U) → E1

p,q+i(U).

Concretely, for i = 0, 1, Ki(X) just multiplies just multiplies the groups by the virtual rank and

the determinant (det : K1(X) → OX(X)∗) along the respective points. By a Čech cohomology

argument this data glues together to an object of CHk−1(X) (cf. [11], section 1.2 and also the

proposition below) which he also denotes c1(L)∩A. We will see that this leads to no confusion:

Proposition 5.10. The two above constructions define canonically isomorphic functors.

Proof. Let K∗ be a sheaf of complexes and let U be an open cover of X. Then there is

a Čech type resolution sheaf such that the k-degree global sections have Čk(U , K∗)(V ) =

⊕i+j=kČ
i(U ∩V,Kj) where the parts of the right hand side denote the usual Čech resolution of

Kj. The differential is given by the usual total complex differential, d = (−1)jd0+d1 where d0
is the Čech differential. If there are products K∗ ⊗G → F ∗, for K∗ and F ∗ (resp. G) sheaves

of complexes (resp. presheaf of groups) we obtain products on the Čech resolutions compatible

with the products on the complexes K∗ and G, denoted by {, }. In our case, let us take the

complex K∗ = E1
∗,−k , G = K1, and F ∗ = E1

∗,−k+1. If L is a line bundle on X, let U = {Ui}
be a covering of X with a choice of trivializing sections ℓi for ever cover Ui and denote by φ

the collection of φij = ℓj/ℓi ∈ K1(Ui ∩ Uj). The element {a, φ} then take values in the Čech

cocycles of Čk(E1
∗,−k+1,U), which is (−1)k times the naive definition. Since the sheaves E1

p,q

are flabby the obvious spectral sequence argument shows that the Čech resolution complex

actually calculate the cohomology of the complexes defining CHk(X). Keeping track of the

differentials, the inclusion E1
j,−k(X) → Čj(U , E1

∗,−k) must be multiplied with (−1)j to obtain an

isomorphism compatible with localization. In a completely analogous way we obtain a pairing

Filk(X) × V (X)0 → Filk−1(X) where V (X) denotes the full subcategory of rank 0 virtual

bundles of V (X) and thus a pairing Čk(F ∗,U)× Č(V (−)0,U) → Čk−1(F ∗,U). If u is a virtual

object which is trivialized over each Ui, the second Čeck differential of u in the component

V (Uij) is u|Uij
− u|Uij

= 0, which, if we trivialize u on each Ui, defines an automorphism of the

zero-object which we denote by φij. Its clear that in the above case u = L−1 for a line bundle

L the trivialization is given by invertible sections ℓi of L on Ui. Both of the products coincide

with the product in [14], p. 277, because the product of a vector bundle on the complexes

defining CH∗ and the product on G-theory coincide under the natural identifications and thus

the two constructions coincide for the cover U . This also clearly respects refining the cover

U and changing the trivializations, and thus simultaneously glue together to the same object

c1(L) ∩ A in CHk−1(X).

�

Theorem 5.11. Let Z be a scheme as in the beginning of this section and A an object of

CHk(Z). The Chern intersection functors are additive in A and satisfy the following properties.

(i): [Projection formula] Suppose f : Z → Z ′ is a proper morphism of schemes embeddable

into regular schemes, and L is a line bundle on Z ′, there is a functorial isomorphism

of functors in CHk−1(Z
′)

f∗(c1(f
∗L) ∩ A) ≃ c1(L) ∩ f∗A.
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(ii): [Additivity] If L and M are line bundles on Z, there is a canonical isomorphism

c1(L⊗M) ∩ A ≃ c1(L) ∩ A+ c1(M) ∩ A

which is commutative.

(iii): [Commutativity] If L and M are line bundles on Z, then there is a canonical iso-

morphism

c1(L) ∩ (c1(M) ∩ A) ≃ c1(M) ∩ (c1(L) ∩ A)

functorial in A.

(iv): [Flat basechange] Let f : Z → Z ′ be flat. Then there is a canonical isomorphism

f∗(c1(L) ∩ A) ≃ c1(f
∗L) ∩ f∗A

Proof. For (i), it follows by Proposition 5.7. Thus by (i) we can assume that A is the unit

object for the other properties. For (ii), the isomorphism follows from the the fact that

(L−1)⊗(M−1)∩− defines a functor Filk(Z) → Filk−2(Z) and the isomorphism LM−L−M =

(LM − 1)− (L− 1)− (M − 1) = (L− 1)⊗ (M − 1) which is independent of choices by the fact

that we have inverted two (cf. [4], 9.7.4). The commutativity follows from the isomorphism

(L−1)⊗(M−1) ≃ (M−1)⊗(L−1) which is canonical for the same reason. For (iii), suppose

first that we are given two rational section l (resp. m) of L (resp. M) so that L (resp. M)

is isomorphic to O(div l) (resp. O(divm)). If they are given by irreducible effective divisors

which meet properly so that their scheme-theoretic intersection is of codimension 2 they define

the same element in CHk−2(Z) by the calculation in [12], Theorem 2.4 and the general case

done in ibid using blowups and induction on the excess intersection. Given another set of

rational sections l′ and m′ the quotients l/l′ and m/m′ define rational functions and we obtain

an isomorphism using the argument of the main result of [24] (basically Weil reciprocity) so

that the data glues together. The final point follows from the basechange formula in (i) which

reduces to the case A = OZ where the isomorphism is obvious. �

Lemma 5.12. For any virtual bundle V , there is a canonical isomorphism c1(V ) ∩ − ≃
c1(detV )∩− compatible with, for an exact sequence of vector bundles 0 → E ′ → E → E ′′ → 0,

c1(detE
′ ⊗ detE ′′) ∩ − = c1(detE

′) ∩ −⊕ c1(detE
′′) ∩ −

induced by the canonical isomorphism detE ≃ detE ′ ⊗ detE ′′.

Proof. The proof of the corresponding theorem in ”Chern Functors” in [11], 1.13.2 carries over

to this situation.

�

The method of ”Chern Functors” in ibid, 1.13.2, reminiscent of Grothendieck’s construction

of Chern classes using the projective bundle formula for Chow groups, provides the construction

of functors cj(E) ∩ − : CHi(Z) → CHi−j(Z). Alternatively (or analogously), one defines the

Segre classes by

sk(E) ∩ A = p∗(c1(O(1))e+j ∩ p∗A)

where rkE = e+ 1 and define ck(E) ∩ A inductively via c0(E) ∩ A = A and∑
i+j=k

ci(E) ∩ sj(E) ∩ A = 0.

For this we notice that there is an isomorphism s0(E) ∩ A ≃ A.
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Proposition 5.13. Let p : X → S be a projective flat local complete intersection morphism of

constant relative dimension d. Then there is a canonical isomorphism

p∗(c1(L1) ∩ c1(L2) ∩ . . . ∩ c1(Ld+1) ∩ p∗A) ≃ c1(⟨L1, . . . , Ld+1⟩) ∩ A

stable under the projection formula in A . Here ⟨L1, . . . , Ld+1⟩ is the line bundle introduced in

[4] and [7].

Proof. By the projection formula we can suppose that A = OS so that we are reduced to

constructing a natural isomorphism

detRf∗((L1 − 1)⊗ . . .⊗ (Ld+1 − 1)) ≃ ⟨L1, . . . , Ld+1⟩

of rational line bundles (i.e. for a big enough power of both sides there exists an isomorphism).

The necessary work has been effectuated in [4], Construction 7.2 after the considerations in [7]

where this was not effectuated because of signproblems (cf. loc. cit. ”Parenthse” pp. 213-214)

which we by construction ignore here. �

Remark 5.13.1. Also recall that that the remark in [11], p. 151 already implies that the

construction by Franke coincides with the constructions in [7]. Since our construction coincides

with that of Franke (in the equidimensional cases) this would be enough. This assertion is

however not carefully written down.

The same argumentation provides an isomorphism

p∗(P (m) ∩ p∗A) ≃ c1(⟨P (m)⟩) ∩ A

where P (m) is a homogenous polynomial in Chern classes of degree d + 1 and ⟨P (m)⟩ is the
corresponding bundle considered in [7].

Proposition 5.14 (Whitney sum isomorphism). There are natural Chern intersection-functors,

for any vector bundle E,

cj(E) ∩ − : CHi(Z) → CHi−j(Z)

satisfying, for a short exact sequence 0 → E ′ → E → E ′′ → 0 we have an equivalence of

functors

cj(E) ∩ − ≃ ⊕j
i=0ci(E

′) ∩ cj−i(E
′′) ∩ −

and they are isomorphic to the functors in ”Chern Functors” in [11], 1.13.2.

Proof. We don’t provide a detailed proof, but notice instead that by Proposition 5.10 the

construction is basically equivalent to that of [11] and thus the same reasoning applies. �

It follows that the total Chern class c(E) ∩ − =
∑

ci(E) ∩ − is a determinant functor

from the category of vector bundles to the Picard category of natural transformations of CH∗.
By the universal property of virtual categories it factors over the virtual category and we

can define the Chern intersection functor for any virtual bundle. In the next proposition we

want to compare the above Chern intersection functors with γ-operations. Recall that we

have introduced λ-operations in Proposition 3.4, and to these we can relate γ-operations via

γk(u) = λk(u + k − 1) as in Corollary 4.12. By the same reasoning as in the last mentioned

corollary, the functors γj(E − rkE) ∩ − : Fili(Z) → C(Z) factor through Fili−j(Z) and have

the same distributive property as in the Whitney sum isomorphism. With this we have:



36 DENNIS ERIKSSON

Corollary 5.15. Let V be a virtual vector bundle on Z. The Chern intersection functors

coincide with the functors determined by γ-operations, i.e. the functor

cj(V ) ∩ − : CHi(Z) → CHi−j(Z)

is canonically equivalent to the functor

γj(V − rkV ) ∩ − : Fi(Z)/Fi−1(Z) → Fili−j(Z)/Fili−1−j(Z).

Proof. One needs to compare the two determinant functors V (Z) → Hom(CH∗(Z), CH∗(Z))
determined by the total Chern class and the corresponding ”total γ”-class, defined as

∑∞
i=0 γ

i(V−
rkV ) ∩ −. This follows from the splitting principle and the fact that that they coincide for

line bundles. �

Appendix A. A1-homotopy theory of schemes

This section is to recall some necessary results and and to fix some notation regarding . In

what follows we have but slight extensions of the theorems in the reference-list, and we hope

the reader agrees that not spelling out the proofs does not cause any harm. One word of

warning though, we have almost completely ignored issues related to smallness of categories.

This can be amended by inserting the word ”universe” at the appropriate places.

Denote by ∆ the category of totally ordered finite sets and monotonic maps. Hence, the

objects are the finite sets [n] = {0 < 1 < 2 < . . . < n} and the morphisms of ∆ are generated

by the face and degeneracy maps

δi : [n− 1] → [n], defined by δi(j) =

{
j, if j < i

j + 1, if j ≥ i

and

σi : [n] → [n− 1], defined by σi(j) =

{
j, if j ≤ i

j − 1, if j > i

which satisfy the usual simplicial relationships ([16], chapter 1). If C is any category, we

denote by sC or ∆opC the category of simplicial objects of C, i.e. the category whose objects

are functors ∆op → C, and morphisms are natural transformations of functors.

Let T be a site, and denote by Shv(T ) the category of sheaves of sets on T , and ∆op Shv(T )

the category of simplicial sheaves. Note that if we are given a simplicial set E, we can associate

to it the constant simplicial sheaf, which we also denote by E, and thus we obtain a functor

∆op Set
constant−→ ∆opShv(T ).

The standard n-simplices ∆n define thus by the Yoneda lemma a cosimplicial object

∆ ∆•
−→ ∆op Shv(T )

n 7→ ∆n

and we give the category ∆op Shv(T ) the structure of a simplicial category with a simplicial

function object hom(−,−) given by

hom(X ,Y) := Hom∆op Shv(T )(X ×∆•,Y).
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Before continuing, we recall the fundamental lemma of homotopical algebra

Theorem A.1. [[16], II.3.10] Let C be a closed simplicial model category with associated

homotopy-category H, and X ,Y ∈ ob(C). Suppose furthermore that X ′ → X is a trivial

fibration with X ′ cofibrant and Y → Y ′ is a trivial cofibration with Y ′ fibrant. Then we have a

natural identification

homH(X ,Y) = π0(hom(X ′,Y ′)).

An adjoint to the functor ∆op Set → ∆opShv(T ) given by X 7→ hom(∗, X), which we

sometimes write as X 7→ |X|.

Definition A.1.1. Let f : X → Y be a morphism of simplicial pre-sheaves. Then

(a) f is said to be a (simplicial) weak equivalence if, for any conservative family {x :

Shv(T ) → Set} of points of T , x(f) : x(X ) → x(Y) is a homotopy-equivalence of

simplicial sets.

(b) f is called a cofibration if it is a monomorphism.

(c) f is called a fibration if it has the right lifting property with respect to trivial cofibra-

tions, i.e. cofibrations which are also weak equivalences.

Theorem A.2. [[30], Theorem 2.1.4] For any (small) site with enough points T , the above

equips ∆op Shv(T ) with the structure of a closed model category.

We denote by Hs(T ) the corresponding homotopy-category obtained by inverting the weak

equivalences in ∆op Shv(T ). To fix ideas, unless explicitly mentioned, from here on S will

denote a regular scheme and T a full subsite with enough points of Sch/Ssm the category of

S-schemes equipped with the smooth topology 2 , and denote the corresponding homotopy-

category byHs(T ). Most often, we will be concerned with the categoryRS of regular S-schemes

with the smooth topology. When S = SpecZ, we write RZ = R. Since any smooth morphism

locally for the tale topology has a section we can identify the various topoi of sheaves of regular

S-schemes with tale or smooth topology or of affine regular S-schemes with the tale or smooth

topology with a ”big regular tale S”-topoi. They are given a conservative set of points by

regular local strict henselian rings.

Definition A.2.1. Suppose T is such that for any X ∈ ob(T ), A1
X is also an object in T . We

say that X ∈ Hs(T ) is A1-local with respect to T , if for any Y ∈ Shv(T ) the map

HomHs(T )(Y × A1,X ) → HomHs(T )(Y ,X )

is bijective. We say a morphism f : X → Y in ∆op Shv(T ) is A1-local if for any A1-local object

Z, the natural map

HomHs(S)(Y ,Z) → HomHs(T )(X ,Z)

is bijective. Now equip ∆op Shv(T ) with A1-local weak equivalences, cofibrations and A1-local

fibrations. Then we have:

Theorem A.3 ([30], Theorem 2.3.2). This equips ∆op Shv(T ) with the structure of a closed

model-category.

2i.e. a full subcategory such that any open cover of T is an open cover of Sch/SSm.
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Definition A.3.1. We denote the corresponding homotopy category by H(T ). Whenever

T = Sm/SNis, the corresponding homotopy-category is the A1-homotopy category of schemes

over S defined by loc.cit., but it will not directly play a role in what we do. When the site is T =

Rsm, the category of regular schemes with the smooth topology, the corresponding homotopy

category is denoted by H(R). We also have natural pointed analogues. Replacing in all

previous definitions pointed versions, we obtain the A1-homotopy category of pointed simplicial

sheaves H•(T ) as a localization of the category of pointed simplicial sheaves; ∆op Shv(T )•. For

two objects (X , x), (Y , y) ∈ H•(T ) we define X ∧ Y in the usual way as the coequalizer of

X × y, x× Y ⇒ X × Y .

For a simplicial sheaf X , we denote by X+ the simplicial presheaf with a disjoint point. The

functor X → X+ is left adjoint to the forgetful functor H•(T ) → H(T ).

The stable homotopy-category of schemes is stabilized out of the ”unstable” one with the

proper notion of a circle. As before, let T denote a (small) site with enough points.

Definition A.3.2. Let T ∈ ∆op Shv(T )•. A T-spectra is a set E = (dn,En)n∈N of objects in

∆op Shv(T )• with morphisms

dn : T ∧En → En+1.

A morphism of T-spectra f : E → F is a set of morphisms fn : En → Fn such that the diagram

commutes

T ∧ En
//

��

En+1

��
T ∧ Fn

// Fn+1

.

Definition A.3.3. Let E be a T-spectra, and denote by ΩT(−) = Ω(−) = RHom(T,−) the

total derived functor (in H•(S)) of the right adjoint to T ∧ −. We say that E is a Ω-spectra

if for any n the induced morphism

En → Ω(En+1)

is in fact an isomorphism. We can naively construct ”a” stable homotopy-theory by taking

the category of Ω-spectras with respect to T = (P1,∞), and denote it by SHnaive(T ), and

giving morphisms E → F by morphisms En → Fn in H•(S) for any n such that the obvious

diagram commutes (cf. [34], Dfinition I.124).

Definition A.3.4. Let be a morphism f : E → F of T-spectras. Then f is a projective

cofibration if f0 is a monomorphism and for any n > 0,

T ∧ Fn

∨
T∧En

En+1 → Fn+1

is also a monomorphism. Its an A1-projective fibration (resp. A1-projective equivalence) if

every map fn is a A1-fibration (resp. A1-weak equivalence).

Theorem A.4 ([34], Premire partie). Let T = (P1,∞). The category of T-spectras equipped

with projective cofibrations as cofibrations, A1-projective fibrations as fibrations and A1-projective

equivalences as weak equivalences is a closed model-category.

Definition A.4.1. Let T = (P1,∞). Then the stable homotopy-category SH(T ) is the full

subcategory, of the corresponding homotopy-category, of Ω-spectras.
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Definition A.4.2. For a fixed scheme S, let Grd,r be the Grassmannian of locally free quotients

of rank r of Od+r
S viewed as an object of Shv(T ). Notice that Grd,r ≃ Grr,d. Let F be a locally

free sheaf of rank r. We have natural morphisms Grd,r → Grd+1,r and Grd,r → Grd,r+1 by

sending ϕ : Od+r � F to Od+r+1
(ϕ,0)
� F and Od+r+1

ϕ,id
� F ⊕ O respectively. We denote

by Grd = lim→Grd,r and Gr = lim→Grd for these maps. Here the direct limits are taken in

Shv(T ). Since all things here naturally pointed (by Grd,0 for any d), we also obtain a pointed

element Gr ∈ H•(T ). Notice that Pd = Grd,1 ≃ Gr1,d and denote by P∞ = Gr1.

By the method of [34], Dfinition III.101, it is possible to define a sheaf (Z × Gr)[ 1
n
] and

(Z×Gr)Q with a natural morphism Z×Gr → (Z×Gr)[ 1
n
] and Z×Gr → (Z×Gr)Q. In a similar

fashion to loc. cit. , to lax notation first put Grd,r = Grd+r,r so that Pd = Grd+1,1 and define a

morphism ma,d : Grd,1 → Grd
a,1 by sending a surjection p : Od � L to p⊗a : (Od)⊗a � L⊗a.

One verifies the relation

Grd,1
ma,d //

��

Grd
a,1

��

Grd+1,1
ma,d+1 // Gr(d+1)a,1 = Gr(d

a+[(d+1)a−da],1

and define ma : P∞ → P∞ to be the induced morphism. The relation mab = mamb is easy.
3

Definition A.4.3. One defines P∞[ 1
n
] (resp. P∞Q ) as the inductive limit over ma’s ordered by

division for a = nk, k ∈ N (resp. ma’s ordered by division for all a ∈ N).
One of the main observations of [30] is the following theorem, which states that algebraic

K-theory is represented by an infinite Grassmannian. The version presented below is proven in

exactly the same way as in the article in question, with the exception of using smooth descent

for rational K-theory instead of Nisnevich descent. Note that since any smooth morphism

locally for the tale topology has a section we have tale descent whenever we have smooth

descent, and in the former case the statement we are looking for is [42], Theorem 11.11;

Theorem A.5 ([30], Theorem 4.3.13). Let S be a regular scheme. Then we have canonical

functorial isomorphisms

HomH•(RS,sm)(S
n ∧X+, (Z×Gr)Q) = HomH(RS,sm)(X,Ωn (Z×Gr)Q) ≃ Kn(X)Q

for X a regular S-scheme, where Kn refers to Quillen’s K-theory defined as above. In partic-

ular, we have an isomorphism

HomH(RS,sm)(X, (Z×Gr)Q) ≃ K0(X)Q.

Proceeding as in [34], Chapitre III, one constructs a product

(Z×Gr)Q ∧ (Z×Gr)Q → (Z×Gr)Q

in H•(RS,sm).

3To make the above a proper definition and make the diagram commute on the nose, one needs to define
a natural isomorphism δa,d : (Od)⊗a → Oda

. It can be done as follows. We define a strict total order on
{e11, e12, . . . e1d} × . . . × {ea1 , ea2 , . . . ead}, i.e. the structure of the category [na − 1] inductively as follows. First
e1i1 × e2i2 × . . .× eaia < e1j1 × e2j2 × . . .× eaja : If max ik < max jl. If there is equality im = max ik = max jl = jn ,
then if max ik\in < max jl\jm. Repeatedly removing such m,n’s we obtain an order on all objects except when
the ik are a permutation of the jl’s. With these, pick the lexicographic order. We then define an isomorphism
δa,d : (Od)⊗a → Oda

by sending a basis-element e1i1 × e2i2 × . . . × eaia to the basis fi with i ∈ [na − 1] via the
ordering just constructed.
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Proposition A.6. Consider the natural map t : P1 → {0} ×Gr → (Z×Gr)Q. Then the data

E = (Ei, di) defined by Ei = Z×Gr and the product

di : P1 ∧ (Z×Gr)Q
t∧id→ (Z×Gr)Q ∧ (Z×Gr)Q → (Z×Gr)Q

is a naive spectrum, which we denote by Knaive.

Proof. We need to show that the natural map

(Z×Gr)Q → RHom•((P1,∞), (Z×Gr)Q)

is an isomorphism. However, this follows from the fact that for any S-scheme X, the map

Kn(X) → {y ∈ Kn(P1
X),∞∗y = 0 ∈ Kn(X)}

given by x 7→ x � u, where u = O(1) − 1, is bijective, which in turn is a consequence of the

projective-bundle-formula for K-theory. �

Let S be a Noetherian, regular scheme. By the Yoneda lemma, we have a functor

Φ : T → Shv(T ) → ∆op Shv(T ) → H(T ).

If G is any object of H(T ), we denote by ϕG the presheaf on T defined by

T ∋ U 7→ HomH(T )(ΦU,G).

In particular, we have an isomorphism

ϕ(Z×Gr)Q ≃ K0(−)Q.

Theorem A.7 (Thorme III.29 in [34]). Let S be a regular scheme. Given two (pointed)

presheaves F ,G on RS denote by HomRop
S Set(F ,G) (resp. Hom•,Rop

S Set(F ,G)) the set of (pointed)
natural transformations from F → G. Then the natural morphism

HomH(RS,sm)((Z×Gr)Q, (Z×Gr)Q) → HomRop
S Set(K0(−)Q, K0(−)Q)

(resp.

HomH•(RS,sm)((Z×Gr)Q, (Z×Gr)Q) → Hom•,Rop
S Set(K0(−)Q, K0(−)Q))

is bijective.

Theorem A.8. [Thorme IV.72 in [34]] We have a natural decomposition in terms of ”Adams

eigenspaces”,

Z×GrQ ≃
⊕
i∈Z

H(i)

in H(RS)•. More precisely there is a decomposition in a certain stable homotopy category

SH(RS) of a stable model

BGLQ ≃
⊕
i∈Z

H(i).

Definition A.8.1. Let C be a closed simplicial model category, and suppose that X is an object

of C. Given a fibrant replacement X → X ′, consider the functor VX taking an object X of C
to the fundamental groupoid of hom(X,X ′). This is independent up to unique isomorphism

of the choice of fibrant replacement by abstract nonsense. We call VX the associated category

fibered in groupoids over C. A 1- and 2-morphism of categories fibered in groupoids over C is

the standard one and we denote by Homf (VX , VY) the set of 1-morphisms VX → VY strictly

functorial with respect to pullback.
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Very often, these groupoids have the structure of Picard categories and they form Picard

categories fibered in C. Recall from [11], 3.6 that a Picard category fibered over C, P , is, for

every object X of C, a Picard category PX and for every morphism X → Y an additive functor

PY → PX compatible with composition in the obvious sense.

The following proposition is formal, and is surely known in more generality:

Proposition A.9. [Pre-rigidity, proof of [34], Chapitre III, section 10] Let T be as above

and consider the category of pointed or unpointed simplicial (pre-)sheaves on T . Suppose X
and Y are objects thereof, with X cofibrant and Y fibrant, with associated fibered categories in

groupoids VX , VY , and suppose that

• HomH(C)(X ,ΩY) = 0.

• hom(X ,Y) is an H-group.

Then we have a canonical map

HomH(C)(X ,Y) → Homf (VX , VY)

which associates to an element of the left a functor of fibered categories ϕ : VX → VY , canonical

up to unique isomorphism.

Proof. If Φ is in HomH(C)(X ,Y) = π0(hom(X ,Y)), it induces for any X ∈ C a map ϕX :

VX (X) → VY(X), functorial in X, by choice of a representative ϕ of Φ in hom(X ,Y) . If ϕ

and ϕ′ induce the same homotopy-class, there is a homotopy h : ∆1 × X → Y from ϕ to ϕ′

which gives an isomorphism isoh,X : ϕX → ϕ′X . Moreover, it is easy to see that if there are

two homotopies h and h′ which are homotopic, they induce the same isomorphism of functors.

The obstruction for isoh,X to be canonical lies in the fundamental group of hom(X ,Y) which

can be identified with HomH(C)(X ,ΩY) which is 0 by assumption. �

Appendix B. Algebraic stacks

In this section we recall the necessary facts about algebraic stacks that will be needed. It

is neither self-contained nor complete, and we refer the reader to for example [26] or [1] for

more exhaustive treatments. We refer to Dfinition 3.1 and Dfinition 4.1, [26] for the necessary

definitions of algebraic stacks. In particular an S-stack is a sheaf in groupoids on (Aff/S)et.

Furthermore, let T be a full subsite of (Aff/S)et (i.e. a full subcategory with a Grothendieck

topology such that a cover in the former is one in the latter). By abuse of language, we

say that that a category fibered in groupoids over T is resp. a stack, an algebraic stack or

Deligne-Mumford stack if it is the restriction of a stack, algebraic stack or Deligne-Mumford

stack.

Again to fix notation we recall [26], Application 14.3.4:

Definition B.0.1. We say that a representable 1-morphism F : X → Y of algebraic stacks

is projective (or quasi-projective) if there is a coherent locally free sheaf E on Y and 2-

commutative diagram

X
I //

!!DD
DD

DD
DD

D P(E)

P

��
Y
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with I a (representable) closed immersion (resp. quasi-compact immersion) and P is the

canonical projection.4

By [41] there are many examples of when an equivariant scheme which is projective as a

scheme is also equivariantly projective. Given an algebraic stack X , an algebraic space X and

a fppf-morphism X → X , the associated groupoid [X1 ⇒ X0] is an fppf-presentation of X (cf.

[26], Corollaire 10.6). We now recast the above in a setting which will make it more natural

to apply various auxiliary results, which is that of a simplicial setting.

Definition B.0.2. Let T be a site. The category of presheaves and sheaves on this site is

denoted by pShv(T ) and Shv(T ) respectively.

The category of simplicial objects of a category C, i.e. functors ∆op → C, is denoted by

∆opC or sC.

Recall that whenever T has enough points a morphism of simplicial presheaves in T is said

to be a local equivalence if it induces weak equivalences of simplicial sets on all stalks.

Let U → X be a morphism of an object X in T . The nerve of this morphism is the simplicial

object N (U/X) whose n-simplices are given by the product U ×X U ×X U . . .×X U (n times).

Given a presheaf of simplicial sets on T we have an associated cosimplicial functor ∆ → Set,

[n] 7→ F(N (U/X)n). The Cech cohomology with respect to the covering U → X is the

simplicial set

H(U/X,F) := holim∆ F(N (U/X)n).

We say that F satisfies descent if for any X and any covering U → X in T , the map

F(X) → H(U/X,F)

is a weak equivalence.

Definition B.0.3. A presheaf F of simplicial sets on a site T is said to be flabby, if for any

(and thus each) simplicially fibrant replacement F → F ′, and any X ∈ T , the map

F(X) → F ′(X)

is a weak equivalence of simplicial sets.

Theorem B.1 ([43], Thorme 1.2). F is flabby if and only if it satisfies descent.

Thus any simplicially fibrant simplicial presheaf satisfies descent. It follows from the defini-

tion that a groupoid is flabby if and only if it is a stack.

If X is an S-stack, there is sheaf of simplicial sets defined as follows: Let U be an object

in (Aff/S), and let X be the associated fibered category over (Aff/S). The category

FX (U) := HomCat/S(U,X ) is a groupoid, and its nerve is a simplicial set BFX .

Definition B.1.1. Let T be a site, and consider the category of simplicial presheaves on T ,

∆oppShv(T ). The full subcategory of simplicial sheaves is denoted by ∆op Shv(T ). If Ch is

the category of stacks on T , we call the functor B : Ch(T ) → ∆op Shv(T ) constructed above

the extended Yoneda functor.

4This is what many authors call a ”strongly projective” (or ”strongly quasi-projective”) 1-morphism.
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Furthermore, a (cartesian) quasi-coherent OX -module on an algebraic stack X viewed as a

simplicial set is an assignment of a quasi-coherent (resp. coherent, locally free, etc) Fn on each

Xn such that for any ϕ : [n] → [m] we have an isomorphism ϕ∗ : ϕ∗Fn → Fm compatible with

compositions [n] → [n′] → [n′′]. Coherent and locally free sheaves are defined analogously.

As an example (cf. [2], 6.1.2), let G be a group scheme, finitely presented, separated and

faithfully flat over a scheme S. Let X be an algebraic space over S. We say that G acts on X

if there is a morphism µ : G×S X → X satisfying the usual associativity and unit-constraints.

If F is a OX-module, we say that G acts on F , or that F is G-equivariant, if there is an

isomorphism of OG×SX-modules

ϕ : µ∗F = p∗2F
satisfying the associativity constraint, on G×S G×S X:

p∗23(1× µ)∗ϕ = (µ× 1)∗ϕ.

We employ the analogous definition for complexes of quasi-coherent OX-modules. To an alge-

braic space X with a group action G, we can form the following simplicial algebraic space:

[X/G/S] := X
//
G×S Xoooo

//// G×S G×S X . . .oooooo

Here the maps are either projection or multiplication-maps, and the non-written arrows in the

other directions are given by repeated applications of the unit-map e. The above condition that

F is G-equivariant can equivalently be rephrased as that F is the degree 0-part of a cartesian

O[X/G/S]-module on [X/G/S] with descent-data.

Yet another way of defining a quasi-coherent OX on an algebraic stack X , is in the following

way: Given an algebraic space U and a 1-morphism with U an algebraic space, s : U → X ,

we have a quasi-coherent OU -module Fs on U . Given two 1-morphisms of algebraic spaces

s : U → X , t : V → X , a morphism f : U → V , and a 2-isomorphism h : t ◦ f V s, an

isomorphism

ϕf,t,h : f ∗Ft ≃ Fs.

Given morphisms of algebraic spaces U
f→ V

g→ W , and 1-morphisms s : U → X , t : V →
X , w : W → X , and 2-isomorphisms h : t ◦ f V s and j : w ◦ g V t an equality

ϕf,t,h ◦ f ∗ϕg,w,j = ϕf◦g,w,h◦j.

Given two quasi-coherent OX -modules F and E , a morphism between them is morphism Fs →
Es for every morphism s : U → X with U an algebraic space compatible with the isomorphism

ϕ in the obvious way.

Definition B.1.2. The Quillen K-theory space of an algebraic stack X , K(X ) is defined to

be the space ΩBQC, with C being the exact category of (coherent) vector bundles on X.

The K-theory groups Ki(X ) are defined to be πi of the corresponding loops-space ΩBQC.

Similarly, one defines the G-theory space and G-theory of an algebraic stack X , Gi(X ), as the

corresponding object considering the category of coherent OX -modules instead.

The main standard properties of K− and G-theory are summarized in the following theorem

(compare with [43], Proposition 2.2, note however that it does not seem to be true that most

of the results in this proposition automatically generalize from the case of schemes. Indeed,
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this is the main point of the article [40] where the equivariant versions of non-cohomological

K and G-theory are studied):

Theorem B.2. Fix a separated algebraic stack X . Then we have

• K(−) is contravariantly functorial with respect to 1-morphisms of algebraic stacks, and

is covariantly functorial with respect to representable projective morphisms between al-

gebraic stacks with the resolution property.

• G(−) is covariantly functorial with respect to proper representable 1-morphisms.

• Let E be a vector bundle of rank n on X, and consider the canonical bundle O(1) on

π : ProjX(Sym
•E) = P(E) → X . Then we have a homotopy equivalence

n−1∨
j=0

K(X) → K(P(E))

induced by (fj)
n−1
j=0 7→

∑n−1
j=0 π

∗fj ⊗O(−j). Same formula holds for G.

• Let E be a vector bundle on X , and T a torsor of E over X . Then G(X ) → G(T ) is a

homotopy equivalence.

Proof. The first result is proven as in [40], Theorem 3.1. and most of the results are proven

using the classical techniques or modifying the same using loc.cit. As we shall only need

the above theorems in the special cases of their associated virtual categories we will contend

ourselves with the above statements without proofs. �

An additional object will enter onto our stage, K-cohomology, which in this form is borrowed

from [43].

Definition B.2.1. Let T = Aff/Ssm, the category of affine S-schemes with the smooth

topology. Denote by KTT
Q a T -simplicially fibrant model of the simplicial presheaf on T

that represents rational Thomason algebraic K-theory and let X be a simplicial T -sheaf.

The K-cohomology Ksm is the simplicial presheaf (automatically flabby) X 7→ Ksm(X) :=

hom(X,KTT
Q ). We define the K-cohomology groups Ksm

i (X) to be πi(hom(X,KTT
Q )). Also

define Gsm
Q to be the G-cohomology of [43].

The definition of Ksm(X) of [43] is different, and exhibits Ksm(X ) more properly as a

S1-spectrum. But by ibid Proposition 2.2, the given spectrum is flabby when restricted

to the small smooth site on the algebraic stack (i.e. a smooth presentation is a cover) and

equal to ordinary (rational) Thomason K-theory for a regular Noetherian finite dimensional

algebraic space or scheme. Because holim preserves weak equivalences, for a regular stack

with smooth presentation X → X , we have weak equivalences Ksm(X ) = H(X/X ), Ksm) =

H(X/X , KTT
Q ) = hom(X , KTT

Q ) so Toen’s K-cohomology necessarily coincides with our K-

cohomology in this case. Also recall that for a scheme in addition to being finite dimensional

Noetherian admit an ample family of line bundles KTT
Q (X) represents rational Quillen K-

theory. By [38], Theorem 2.15 rational G-theory has tale descent for separated Noetherian

schemes of finite Krull-dimension and thus rational G-theory has descent for algebraic spaces.

It should be noted that Toen’s corresponding G-cohomology theory does not have smooth

descent in general so cannot be defined as values of an algebraic stack in some simplicial sheaf

representing G-theory in A1-homotopical theory.

By [43], Proposition 1.6, there is a natural transformation K → KTT
Q that can be realized as,
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for a smooth presentation X → X , the augmentations K(X ) → H(X/X , KQ).

With these remarks it follows from Theorem A.5 that we have the following proposition:

Proposition B.3. Let T = RS,sm be the category of regular S-schemes with the smooth

topology. Then for any regular algebraic S-stack X there is an A1-weak equivalence KTT
Q →

(Z×Gr)Q so that

Ksm
i (X ) = HomH(T )(X , RΩi(Z×Gr)Q).

Proposition B.4 ([43], Proposition 2.2). The conclusions of Theorem B.2 hold with K (resp.

G) replaced by Ksm (resp. Gsm), at least whenever restricted to the category of regular stacks.

Moreover, for a regular algebraic stack there is Poincar duality; the natural map Ksm(X ) →
Gsm(X ) is a weak equivalence.

Appendix C. Various virtual categories and some fundamental properties

We will freely use the language of Appendix B in this chapter where we expand slightly on

the concept of a virtual category of an algebraic stack. We will always consider the a stack as a

simplicial sheaf via the extended Yoneda functor B.1.1. Also, for the purposes of this section, all

algebraic stacks are separated locally of finite type over some (non-fixed) Noetherian scheme S.

Definition C.0.1. Given an algebraic stack X , there are for our purposes four main candidates

for virtual categories one might consider, namely any one of the following Picard categories

(a) the virtual category of locally free sheaves on X , V (X ) = Vnaive(X ).

(b) the virtual category of coherent OX -modules on X , C(X ).

(c) if Z is a closed substack of X , the fundamental groupoid of theK-theory of the category

of finite complexes of vector bundles on X with support on Z, V Z(X ).

(d) if Z is a closed substack of X , the fundamental groupoid of theK-theory of the category

of complexes of vector bundles on X with support on Z, CZ(X ).

(e) the fundamental groupoid of Ksm(X ), the cohomological virtual category, W (X ).

(f) the fundamental groupoid of Gsm(X ), the coherent cohomological virtual category,

WC(X ).

By the remarks concluding the Appendix B we have additive functors of fibered Picard

categories, V (−) → W (−) and C(−) → WC(−). Notice that since the automorphism-group of

any object ofW (X ) orWC(X ) is aQ-vector space they are automatically strictly commutative.

Definition C.0.2. Since Ksm is flabby, to give operations involving W (X ) it is sufficient to

construct functorial homotopies on the K-theory spaces of the vertices of simplicial algebraic

space N (X/X ) for some presentation of X . The same remark applies to WC(X ). We will say

that any such constructed operations are given by cohomological descent.

Given a morphism F : X → Y of algebraic stacks locally of finite type over a Noetherian

scheme S, recall that for a coherent sheaf F we can define RiF∗F by a Cech-cohomology

argument (compare [2], Dfinition 5.2.2.). We know by [31], Theorem 1.2, that whenever F

is moreover proper, RiF∗F is coherent whenever F is coherent. Suppose in addition that F

is of finite cohomological dimension so that RiF∗(F) = 0 for large enough i. Then the usual

formula

RF∗(F) =
∑

(−1)iRiF∗F
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defines a pushforward on RF∗ : C(X ) → C(Y). It is more subtle to define the corresponding

functor WC(X ) → WC(Y). If F : X → Y is a proper morphism, and given a proper surjective

morphism X → X with X a scheme, we obtain a diagram of

N (X/X )
q

$$HH
HH

HH
HH

HH
p

��
X

F // Y

with proper morphisms and applying the functor Gsm() we obtain a diagram

Gsm(N (X/X )) = G(N (X/X ))
q∗

**TTTTTTTTTTTTTTTTT
p∗

��
Gsm(X ) Gsm(Y)

.

By [43], Théorème 2.9, given a proper surjective morphism X → X with X a scheme and X
is Deligne-Mumford, there is a weak equivalence G(N (X/X )) → Gsm(X ). Applying the fun-

damental groupoid-construction thus gives an equivalence of categories Πf (G
sm(N (X/X ))) →

WC(X ) and we define RF∗ = q∗(p∗)
−1 : WC(X ) → WC(Y) (compare [44], Section 3.2.2). We

have essentially proved:

Proposition C.1. Suppose F : X → Y is a proper of finite cohomological dimension morphism

of separated Deligne-Mumford stacks of finite type over a Noetherian base-scheme S. It is

possible to define a functor RF∗ : WC(X ) → WC(Y) such that the diagram

C(X ) //

RF∗
��

WC(X )

RF∗
��

C(Y) // WC(Y)

is commutative up to canonical equivalence of functors.

Proof. The statement is clear as soon as we can show that there is always a choice of a proper

surjective X → X with X a scheme. It is clearly independent of such a choice. But this is

[31], Theorem 1.1, which moreover shows we can pick X to be quasi-projective over S. �

The following uses a standard argument factorizing a projective morphism as a closed im-

mersion and a projective bundle projection, we refer to [13], chapter V for the definition.

Proposition C.2. Suppose F : X → Y is a (representable) projective local complete inter-

section morphism of algebraic stacks with Y quasi-compact and Y has the resolution property,

i.e. any coherent sheaf is the quotient of a locally free sheaf. Then there is a natural functor

RF∗ : V (X ) → V (Y)

compatible with the functor defined on C under the natural functor V (−) → C(−).

Remark C.2.1. Whenever we are working in a category of stacks where perfect complexes can be

used to define algebraic K-theory the above is just a consequence of preservation of perfectness

of a complex under proper local complete intersection morphisms. The compatibility under

composition is given by Grothendieck’s spectral sequence.
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Similarly, if E is a vector bundle on Y , and F : X → Y is any morphism, we define a functor

LF ∗ : V (Y) → V (X ) via LF ∗[E] = [F ∗E].

Let us just recall the usual definition of the basechange morphism, which always exists. Let

X ′
g′

//

f ′

��

Y ′

f

��
X

g
// Y

be a Cartesian diagram of schemes. By adjointness, we have an equality of morphisms in the

derived category of quasi-coherent complexes schemes;

Hom(Lf ∗Rg∗E,Rg′∗Lf
′∗E) = Hom(Rg∗E,Rf∗Rg′∗Lf

′∗E)

and since Rf∗Rg′∗ ≃ Rg∗Rf ′∗ this is equal to

Hom(Rg∗E,Rg∗Rf ′∗Lf
′∗E).

By the adjunction morphism E → Rf ′∗Lf
′∗E we thus obtain a map

Hom(Rg∗E,Rg∗E) → Hom(Lf ∗Rg∗E,Rg′∗Lf
′∗E).

The basechange morphism is the morphism which is the image under the identity-map on the

left-hand-side.

Definition C.2.1. Let

X ′
g′

//

f ′

��

Y ′

f

��
X

g
// Y

be a commutative diagram of schemes. We say the diagram is transversal or Tor-independent or

that X and Y ′ are transversal or Tor-independent over Y ([19], III, Dfinition 1.5) if the diagram

is a Cartesian diagram of schemes, with Y quasi-compact, f quasi-compact and quasi-separated

and if for any x ∈ X, y′ ∈ Y ′ mapping to the same point y ∈ Y , we have

Tor
OY,y

i (OX,x,OY ′,y′) = 0, for i > 0,

and f is of finite Tor-dimension.

Lemma C.3. [SGA6, IV 3.1] Let

X ′
g′

//

f ′

��

Y ′

f

��
X

g
// Y

be a transversal diagram, and let E ∈ Db(X) be a complex with quasi-coherent cohomology. In

this case the basechange morphism is an isomorphism

Lf ∗Rg∗E ≃ Rg′∗Lf
′∗E.

Since it is natural it also satisfies descent with respect to any smooth equivalence relationship

and thus we have
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Corollary C.4. Let

X ′
g′

//

f ′

��

Y ′

f

��
X

g
// Y

be a transversal Cartesian diagram of quasi-compact algebraic stacks with the resolution prop-

erty and representable morphisms, f and f ′ local complete intersection projective morphisms.

Then there is a natural transformation

Lg∗Rf∗ = Rf ′∗Lg
′∗

of functors V (Y ′) → V (X ).

Proof. From the above one readily obtains that if a vector bundle E is f∗-acyclic, f∗E is

also g∗-acyclic and that g′∗E is f ′∗-acyclic, inducing an isomorphism g∗f∗E → f ′∗g
′∗E. If

f is a projective bundle-projection we can, by Theorem B.2, assume that E is of the form∑
f ∗Ei ⊗ O(−i) which is a sum of f∗-acyclic objects. In the case f is a closed immersion f∗

is automatically exact. The general case is obtained via the composition of the two which by

standard techniques is seen to be independent of the choice of the factorization. �

We record the following:

Lemma C.5. The following diagrams are commutative whenever all of the morphisms are

defined:

(a) Let

X ′′
g′′

//

e′

��

Y ′′

e

��
X ′

f ′

��

g′
// Y ′

f

��
X

g
// Y

be the composition of two transversal cartesian diagrams. Then the third diagram is

also transversal and the diagram

Lg∗R(fe)∗ // R(f ′e′)∗Lg
′′∗

Lg∗Rf∗Re∗ // Rf ′∗Lg
′∗Re∗ // Rf ′∗Re′∗Lg

′′∗

is commutative.

(b) Let

X ′′
h′

//

f ′′

��

X ′
g′

//

f ′

��

X

f

��
Y ′′

h // Y ′
g

// Y
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be composition of two transversal cartesian diagrams.Then the third diagram is also

transversal and the diagram

L(gh)∗Rf∗ //

��

Rf ′∗L(g
′h′)∗

��
Lh∗Lg∗Rf∗ // Lh∗Rf ′∗Lg

′∗ // Rf ′∗Lh
′∗Lg′∗

Proof. Left to the reader (compare the unproved result of [3], XII, Proposition 4.4). �

The following is trivial:

Lemma C.6 (Projection formula). Let f : X → Y be a local complete intersection projective

morphism of algebraic stacks with the resolution property. Suppose F is a virtual bundle on Y
and E is a virtual bundle on X . Then there is a functorial isomorphism Rf∗(E ⊗ Lf ∗F ) →
Rf∗(E) ⊗ F compatible with transversal basechange, i.e. for a diagram as in Corollary C.4,

there is a commutative diagram

Lg∗Rf∗(E ⊗ Lf ∗F ) //

��

Lg∗(Rf∗(E)⊗ Lf ∗F )

��

Rf ′∗(Lg
′∗E ⊗ Lgf ′∗F ) // Rf ′∗(Lg

′∗E)⊗ Lg∗Lf ∗F )

where the horizontal lines are given by the projection-formula and the vertical lines are given

by basechange. Moreover it is stable under composition in the naive way.

Remark C.6.1. We also have a projection formula isomorphism in the case instead of the virtual

category of vector bundles we consider the virtual category of coherent sheaves as input for E.
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[37] C. Soulé. Lectures on Arakelov Geometry. Cambridge studies in advanced mathematics 33, 1992.

[38] R.W. Thomason. Algebraic K-theory and étale cohomology. Ann. Sci. Ec. Norm. Sup., 18:437–552, 1985.

[39] R.W. Thomason. Lefschetz-Riemann-Roch theorem and coherent trace formula. Invent. Math., 85(3):515–

543, 1986.

[40] R.W. Thomason. Algebraic K-theory of group scheme actions. In Algebraic topology and algebraic K-

theory, Ann. of Math. Stud. 113, pages 539–563, Princeton, N.J.,1983, 1987. Princeton Univ. Press.

[41] R.W. Thomason. Equivariant resolution, linearization and Hilbert’s fourteenth problem over arbitrary

base-schemes. Adv. Math., 65:16–34, 1987.



REFINED OPERATIONS ON K-THEORY BY LIFTING TO THE VIRTUAL CATEGORY 51

[42] R.W. Thomason and T.Trobaugh. Higher algebraic K-theory of schemes and of derived categories. In

Grothendieck Festschrifft III, pages 247– 435. Birkhäuser, 1990.
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