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1. Introduction

Let C be a smooth, projective and geometrically connected curve, defined
over the quotient field K of a complete discrete valuation ring R. In
the literature, one finds many numerical invariants attached to C, which
measure various properties of C connected to degeneration. In this paper,
we investigate the relationship between two such invariants, the base change
conductor, which is defined in terms of the Néron model of the Jacobian
variety of C, and the Artin conductor, which can be defined for any regular
model of C.

The base change conductor was introduced for tori by Chai and Yu [CY01]
and in general for semi-abelian varieties by Chai [Ch00]. If A/K is a semi-
abelian variety with semi-abelian reduction after a finite extension L/K, the
base change conductor c(A) ∈ Q yields a measure of how the Lie algebra
of the Néron model A /R of A differs from the Lie algebra of AL/RL of
A ×K L. In fact, it is known that c(A) is zero if and only if A has semi-
abelian reduction over R. Thus, for a curve C, one can view c(Jac(C)) as
an obstruction for C to have semi-stable reduction over R.

On the other hand, given a proper regular model X /R of C, the
Artin conductor ArtX /R is defined as the difference of the `-adic Euler
characteristics of the generic and special fibers, with a correction term
provided by the so called Swan conductor. The definition goes back at
least to Bloch.

It is easy to see from the definitions that if C has semi-stable reduction
over R, but not good reduction, the Artin conductor is non-zero for every
regular model of C. Thus, one should expect some kind of correction
term when comparing the base change conductor with the Artin conductor
of a regular model of C. In the main result of this paper, Theorem
5.1.4, we compute explicitly this correction term when X /R is a strict
normal crossings model of C, under a certain tameness assumption of C.
In fact, Theorem 5.1.4 yields a closed formula for the difference between
the two invariants under consideration, expressed entirely in terms of the
combinatorial data associated with the special fiber Xs of X , i.e., the
intersection graph, and the genus and multiplicity of each component.

1.1. Notation. Throughout the paper, we will let R denote a complete
discrete valuation ring, with quotient field K and residue field k. We will
assume that k is algebraically closed, with characteristic exponent p ≥ 1.

We fix a separable closure Ksep of K. For any integer d ∈ N prime to
p, we let K(d) denote the unique tamely ramified extension of K in Ksep
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of degree d. We let R(d) be the integral closure of R in K(d), it is again a
complete discrete valuation ring with residue field k.

We will denote by C a smooth, proper and geometrically connected K-
curve of genus g > 0. We also assume that C has index 1. The Jacobian
variety of C is denoted J .

For any flat scheme Z over S = Spec(R), we denote by Zs := Z ×R k
the special fiber of Z . We moreover denote by Zη = Z ×R K the generic
fibre, and by Zη = Z ×R Ksep the geometric generic fiber.

2. Preliminaries on models of curves and Jacobians

2.1. Regular models of curves. A model of C/K is a flat and proper
R-scheme X , endowed with an isomorphism of K-schemes

X ×R K ∼= C.

Of particular importance is the minimal regular model Xmin, which is
characterized by the property that there does not exist any smooth rational
curve E in the special fiber with E2 = −1. In many situations however, it
is more convenient to work with the so called minimal regular model with
strict normal crossings Xsncd. It is minimal among all regular models Z of
C such that Zs is a divisor with strict normal crossings (for short, we shall
call any such model an sncd-model of C).

For the applications in this paper, it is crucial to be able to compare
regular models of C with regular models of C×KK ′, where K ′/K is a finite
separable field extension. If K ′/K is a tame extension, we shall frequently
use the following procedure (for details and proofs we refer to [Ha10a]).

Let C be an sncd-model of C, and let S′ = Spec(R′), with R′ the integral

closure of R in K ′. We denote by C̃ the normalization of C ×S S′. Then C̃
has at most tame cyclic quotient singularities, whose local analytic structure
can be determined purely in terms of the combinatorial properties of the
special fiber Cs, together with the degree e(K ′/K). Now let

ρ : C ′ → C̃

be the minimal desingularization of C̃ . Then C ′ is in fact an sncd-model of
C ×K K ′ with strict normal crossings.

No such ”explicit” procedure is known in case K ′/K is wild, a fact which
often complicates matters substantially.

2.2. Logarithmic differential forms. If C is a model of C, we will denote
by ωC /R(log Cs) the sheaf of logarithmic differential forms on C over R.

More precisely, if we denote by C+ the scheme C endowed with the log
structure induced by Cs and by S+ the scheme S = SpecR with the log
structure induced by the closed point s, then

ωC /R(log Cs) = Ω1
C+/S+ .

This is a coherent sheaf on the scheme C , whose restriction to C is naturally
isomorphic to the canonical bundle ωC/K .

Now assume that C+ is log smooth over S+ (this is the case, for instance,
if C is an sncd-model of C and all the multiplicities of the components of
Cs are prime to p). Then ωC /R(log Cs) is a line bundle. Let K ′ be a finite
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extension of K. We denote by R′ the integral closure of R in K ′ and we set
S′ = Spec (R′) and

D+ = C+ ×S+ (S′)+

where the product is taken in the category of fine and saturated (fs) log
schemes. Let D be the underlying scheme of D+. Then the log structure on
D+ is the divisorial log structure induced by Ds. Moreover, D is canonically
equipped with a finite morphism

D → C ×R R′

which is an isomorphism on the generic fibers since there the log structure
is trivial. We also know that D+ is log smooth over the log regular scheme
(S′)+, because log smoothness is preserved by base change in the category
of fs log schemes. Thus D+ is itself log regular [Ka94, 8.2], which implies
that the underlying scheme D is normal [Ka94, 4.1]. Therefore,

D → C ×R R′

must be a normalization map. Since the sheaves of log differentials are stable
under fs base change, we find that

ωD/R′(log Ds)

is canonically isomorphic to the pullback of

ωC /R(log Cs)

to the normalization D of C ×R R′.
If C is any regular model of C, then we can also consider the canonical

sheaf ωC /R, which is a line bundle on C that extends the canonical
bundle ωC/K . Its relation with ωC /R(log Cs) is explained in the following
proposition.

Proposition 2.2.1. If C is a regular model of C such that C+ is log smooth
over S+, then

ωC /R(log Cs) = ωC /R((Cs)red − Cs)

as subsheaves of j∗ωC/K , where j denotes the open immersion j : C → C .

Proof. The statement is local for the étale topology. By Kato’s toroidal
description of log smooth morphisms [Ka94, 3.5], we know that étale-locally
at every double point of (Cs)red, the model C is of the form

X = SpecR[x, y]/(π − xayb)

where π is a uniformizer in R and a, b are non-negative integers such that
a is prime to p (see also [St05, 5.2]). The standard computation of the
relative canonical sheaf (see for instance [Li02, 6.4.14]) shows that ωX /R is

generated by x1−ay−bdy at every point of Xs. On the other hand, the sheaf
of logarithmic differentials ωX /R(log Xs) is generated by dy/y. �
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2.3. Néron models of Jacobians. Let X be a regular model of C, let
J be the Néron model of J and let J 0 be its identity component. Since
C, by assumption, has index 1, there is a natural isomorphism

Pic0X /R
∼= J 0

(cf. [BLR90]). Via this description of J 0, it is possible to reduce many
computations concerning Néron models to computations on regular models
of curves, something which is often very useful. In particular, this is true in
the case of base change conductors of Jacobians.

2.4. Let
f : X → S = Spec (R)

be a regular model of C with relative dualizing sheaf ωX /S . Let eJ : S →
J be the unit section of the Néron model of J = Jac(C). Recall that the
module of invariant differentials

ωJ /S := e∗J Ω1
J /S

is a locally free sheaf on S of rank equal to g, the relative dimension of J /S.
Let now F denote either of J and PicX /S . Following [LLR02], let

Lie(F ) be the fppf Lie algebra sheaf on S associated to F . We can
similarly speak of Lie(F 0) and since the natural map

Lie(F 0)→ Lie(F )

is an isomorphism by [LLR02, Prop. 1.1 (d)], these two sheaves will in what
follows be identified. Finally, we write Lie(F 0) for the restriction of Lie(F 0)
to the (usual) Zariski topology on S. By [LLR02, Prop. 1.1(b)] there is a
canonical OS-module isomorphism

Lie(J 0)→ ω∨J /S .

Proposition 2.4.1. There is an OS-module isomorphism

αX : ωJ /S → f∗ωX /S .

Proof. By [LLR02, Prop. 1.3], there exists a canonical isomorphism

R1f∗OX → Lie(Pic0X /S)

of fppf -sheaves of OS-modules. Restricting to the Zariski topology on S we
find an isomorphism

R1f∗OX → Lie(Pic0X /S).

Composing with the isomorphisms

Lie(Pic0X /S) ∼= Lie(J 0) ∼= ω∨J /S

and dualizing, yields an isomorphism

ωJ /S → HomOS (R1f∗OX ,OS).

Here we have identified ωJ /S with its double dual. On the other hand,
Grothendieck duality provides an isomorphism

HomOS (R1f∗OX ,OS)→ f∗ωX /S ,

so by composition we get the desired map

αX : ωJ /S → f∗ωX /S .
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�

3. The base change conductor

3.1. Definition of the base change conductor. Let A be an abelian
K-variety and let A denote its Néron model over R. Let moreover K ′/K
be a finite separable field extension of ramification index e(K ′/K). We let
A ′ denote the Néron model of A ×K K ′ over R′, the integral closure of R
in K ′. Since A ×R R′ is smooth and A ′ is a Néron model, there exists a
unique morphism

hA,K′ : A ×R R′ → A ′

extending the canonical isomorphism of the generic fibers. We shall refer to
this morphism as the base change morphism. For simplicity, we will usually
denote it simply by h.

On the level of Lie algebras, the base change morphism induces an
injective homorphism

Lie(h) : Lie(A )⊗R R′ → Lie(A ′)

of free R′-modules of rank g = dim(A).

Definition 3.1.1. We call the rational number

c(A,K ′) :=
1

e(K ′/K)
· lengthR′(cokerLie(h))

the K ′-base change conductor associated to A.
If A ×K K ′ has semi-abelian reduction over R′, we simply write c(A) :=

c(A,K ′), and call this value the base change conductor of A.

It is easily checked that the definition of c(A) is independent of choice of
extension K ′/K over which A has semi-abelian reduction. For our purposes,
it is important to also discuss an alternative way in which one can compute
the base change conductor.

Let K ′/K be a finite separable extension as above. Then, pulling back
the canonical map

Ω1
A ′/R′ → Ω1

A /R ⊗R R
′

through the unit section eA ′ of A ′, one obtains an injective homomorphism

κ : ωA ′/R′ → ωA /R ⊗R R′.

Then we can also compute the base change conductor as

c(A,K ′) =
1

e(K ′/K)
· lengthR′(coker(κ)).

3.2. Edixhoven’s filtration and ctame(A). Edixhoven [Ed92] constructed
a descending filtration FαAk for α ∈ Z(p) ∩ [0, 1[, where F0Ak = Ak and
FαAk is a smooth connected k-group for each α > 0. This filtration jumps
at finitely many values j ∈ [0, 1[, by the multiplicity m(j) we mean the drop
in dimension at the jump j.
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Definition 3.2.1. The tame base change conductor of A is the value

ctame(A) =
∑
j∈JA

m(j) · j,

where JA denotes the (finite) set of jumps.

We will use the following key properties of ctame(A) in this paper.

Fact 1 : If A acquires semi-abelian reduction over a tamely ramified
extension of K, then the equality c(A) = ctame(A) holds.

Fact 2 : If A is the Jacobian of a curve C, the jumps and their multiplicities
only depend on the combinatorial data of the special fiber of the minimal
sncd-model of C. In particular, one finds that j ∈ Q∩[0, 1[ for every j ∈ JA.

4. Base change conductor and Riemann-Roch theorem with
supports

4.1. Let h : M → M ′ be an injective homomorphism of free R-modules,
which is an isomorphism when tensored with K. Then there is an induced
map detM ⊆ detM ′, and the length n of coker(h) is the same as the k-
dimension of the cokernel detM ′/ detM . Alternatively, detM = πn detM ′.
It seems reasonable to introduce the additive notation

detM ′ + n = detM.

Hence, to understand the base change conductor for the Jacobian of a
curve C/K, it suffices to understand the difference between detR1f∗OX

and detR1f∗OX ′ , where X , resp. X ′, is a regular model of C, resp. C ′ =
C×KK ′, and where K ′/K is chosen such that C ′ has semi-stable reduction
over R′, the integral closure of R in K ′. Recall that the last condition is
equivalent to Jac(C ′) having semi-abelian reduction over R′.

For a relative curve f : C → S and a line bundle L on C , denote
by λ(L ) = detRf∗L the determinant of the perfect complex Rf∗L (cf.
[?]). It has the property that for any point s ∈ S, the restriction λ(L )s =
(det f∗L |Cs)⊗ (detR1f∗L |Cs)∨. In the particular case when L = OC and
f∗OC = OS , then

λ(OC ) = (det f∗OC )⊗ (detR1f∗OC )∨ = (detR1f∗OC )∨.

We recall the following well known result.

Lemma 4.1.1 (SGA 7, Exp. X, Théorème 1.13). Suppose that the fibers of
f : C → S are geometrically connected, and that the greatest common divisor
of the lengths of the local rings of the closed points of the geometric fibers
is 1. This is in particular satisfied if C/K admits a zero-cycle of degree 1.
Then the natural morphism OS → f∗OC is an isomorphism and commutes
with arbitrary base change.

For two line bundles L ,M on C , denote by

〈L ,M 〉(C /S)
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the Deligne brackets. This is a line bundle on S, and is locally generated
by symbols 〈`,m〉 (modulo some relations), where ` (resp. m) is a rational
section of L (resp. M ), such that their divisors have disjoint support. It
defines a bimultiplicative functor from the category of line bundles on C ,
to the category of line bundles on S [?]. The interest in this formulation
comes from [?], which states that if the family C → S is smooth, there is
an isomorphism

λ(OC )12 ' 〈ωC /S , ωC /S〉,
and if the family is only generically smooth and C is regular, then

λ(OC )12 ' 〈ωC /S , ωC /S〉 −ArtC /S

(see Proposition 4.2, [Er13], for the formulation for non-regular models C ).

Theorem 4.1.2. Let K ′/K be a finite extension of fields, and let X be a
regular model over R of a curve C, and X ′/S′ be a regular model of C ′,
dominating X ×S S′. Denote by π : X ′ → X the natural morphism, and
by Γ = ωX ′/S′−π∗ωX /S the discrepancy. Then the following formula holds:

12
(
λ(OX ′)−R′ ⊗R λ(OX )

)
=

Γ2 + 2Γ · π∗ωX /S −ArtX ′/S′ +[K ′ : K] ArtX /S .

Proof. It is immediate that the difference 12 (λ(OX ′)−R′ ⊗R λ(OX )) is
given by

〈ωX ′/S′ , ωX ′/S′〉 −R′ ⊗R 〈ωX /S , ωX /S〉 −ArtX ′/S′ +[K ′ : K] ArtX /S .

By functoriality of base change of the Deligne brackets, and the proof of
Theorem 4.1, [Er13],

R′ ⊗R 〈ωX /S , ωX /S〉(X /S) = 〈π∗ωX /S , π
∗ωX /S〉(X ′/S′).

By [Er13], if D is a Cartier divisor supported on the special fiber of X , and
L is any line bundle on X , then the order of the trivialization of the line
bundle

〈O(D),L 〉(X /S)

determined O(D)|Xη ' OXη is given by D ·L := degD(L |D). The result
follows. �

The above theorem reduces the problem of computing the base change
conductor for Jacobians to that of understanding the Artin conductors and
discrepancies, for some well chosen models.

Proposition 4.1.3. Suppose that C /S is a regular normal crossings model
of C/K, with no components in the special fiber with multiplicities divisible
by p. Let K ′/K be an arbitrary finite separable field extension, with integer

ring S′. Denote by C̃ the normalization of C ×S S′, and by p : C̃ → C the
induced morphism. Then

ω
C̃ /S′ − p∗ωC /S = p∗Cs,red − C̃s,red.
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Proof. Under the assumption, the relative cotangent bundle of logarithmic
differentials ΩC /S(log / log) is locally free. By [?], it is isomorphic
to ωC /S(Cs,red − Cs). The sheaf ΩC /S(log / log) commutes with base
change, followed by normalization, to the effect that p∗ΩC /S(log / log) =

Ω
C̃ /S′(log / log). The sheaf Ω

C̃ /S′(log / log) is isomorphic to ω
C̃ /S′(C̃s,red −

C̃s) for similar reasons.
�

Proposition 4.1.4. Keep the assumptions of the previous proposition.

Then C̃ /S′ has only canonical singularities. In particular, if

ρ : C ′ → C̃

denotes the minimal desingularization, then ρ∗ω
C̃ /S′ = ωC ′/S′, and

ωC ′/S′ − π∗ωC /S = π∗Cs,red − p∗C̃s,red.

Proof. Omitted. �

5. Relating the base change conductor and the Artin
conductor

Let us denote by X /S a regular model of C such that Xs =
∑

i∈I niEi
is a divisor with strict normal crossings. Recall that we have

χ(Xs) = χ(Xs,red) =
∑

χ(Ei)−#X sing
s,red =

∑
χ(Ei)−

∑
i<j

Ei · Ej .

We use the notation E◦i = Ei \ ∪j 6=iEj for the open part of Ei that does
not meet the rest of the special fiber. The `-adic Euler characteristic of the
generic fiber can be computed by the formula

χ(Xη) =
∑
i

niχ(E◦i ).

This is a general fact for degenerations over discrete valuation rings,
with normal crossing special fiber, and is essentially a consequence of the
Lefschetz trace formula. Hence, the ”tame” part of the Artin conductor

Arttame(X ) = χ(Xη)− χ(Xs)

can be computed entirely in terms of the special fiber.

5.1.

Proposition 5.1.1. Let C and X /S be as at the start of this section, and
assume in addition that (p, ni) = 1 for all i ∈ I. Then the following formula
holds

c(Jac(C)) =

−1

4
·ArtX /S −

1

12
·
∑
i<j

(Ei · Ej)
n2i + n2j + (ni, nj)

2

ninj
.
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Proof. By the assumptions made, C is tamely ramified. We fix an extension
K ′/K (of sufficiently large degree) that realizes semi-stable reduction of C.

By the above proposition, Γ = π∗(Xs,red −Xs), since (X̃s)red = X̃s. It
follows that

Γ2 = (π∗Xs,red)
2 = [K ′ : K]X 2

s,red

and

Γ · π∗ωX /S = [K ′ : K]Xs,red · ωX /S + [K ′ : K]χ(Xη).

Since the component Ei of Xs,red is smooth, by adjunction (cf. [?], Exp.
X, Proposition 1.11) the `-adic Euler characteristic satisfies χ(Ei) = −Ei ·
(Ei + ωX /S) = −E2

i − Ei · ωX /S , so

Xs,red · ωX /S =
∑
i

(
−χ(Ei)− E2

i

)
.

It follows that

[K ′ : K]−1
(
Γ2 + 2Γ · π∗ωX /S

)
=

2
∑
i<j

Ei · Ej −
∑
i

E2
i − 2

∑
i

χ(Ei) + 2χ(Xη).

It is not difficult to see that

E2
i = −

∑
i 6=j

nj
ni
Ei · Ej

so that ∑
E2
i = −

∑
i<j

n2i + n2j
ninj

Ei · Ej .

Now we compute ArtX ′/S′ . In order to do this, we use the explicit

description provided in [Ha10a] of the natural map p : X̃ → X and the

minimal desingularization ρ : X ′ → X̃ .

For each Ei, let us denote by Ẽi
◦

the inverse image of E◦i under p. Then
the induced map

Ẽi
◦
→ E◦i

is étale of degree ni, hence

χ(Ẽi
◦
) = niχ(E◦i ).

Consider now a point x ∈ Ei ∩ Ej , where i 6= j. The inverse image of x
under p consists of (ni, nj) distinct points, each of them being a transversal

intersection of distinct branches of X̃s. Moreover, the formal structure of

X̃ at any of these points is that of an Anx singularity, where

nx =
[K ′ : K](ni, nj)

ninj
.

The exceptional locus of this singularity consists of a chain of nx−1 smooth
rational curves Fk. In particular, we find that χ(F ◦k ) = 0 and that each of
the (ni, nj) preimages of x give rise to nx singular points in the special fiber
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of X ′. Then, using the additivity of the Euler characteristic with respect
to disjoint unions, we compute that

χ(X̃ ′
s ) =

∑
i′

χ(E′i′)− |(X̃ ′
s )sing| =

∑
i

χ(Ẽi
◦
) +

∑
i<j

(Ei · Ej)
[K ′ : K](ni, nj)

2

ninj
=

∑
i

niχ(E◦i ) +
∑
i<j

(Ei · Ej)
[K ′ : K](ni, nj)

2

ninj
.

Here E′i′ denotes the components of X̃ ′
s . This finally allows us to conclude

that

ArtX ′/S′ = −[K ′ : K]
∑
i<j

(Ei · Ej)
(ni, nj)

2

ninj
.

Now we use Theorem 4.1.2. After dividing by [K ′ : K], we find that

−12 · c(Jac(C)) =

2
∑
i<j

Ei · Ej −
∑
i

E2
i − 2

∑
i

χ(Ei) + 2χ(Xη)+

∑
i<j

(Ei · Ej)
(ni, nj)

2

ninj
+ χ(Xη)− χ(Xs) =

3 (χ(Xη)− χ(Xs)) +
∑
i<j

(Ei · Ej)
n2i + n2j + (ni, nj)

2

ninj
,

which easily yields the desired formula.
�

Remark 5.1.2. Observe that if C has good reduction over R, both sides
of the equation are zero. Moreover, the correction term is now expressed in
terms of the singular points only, which is what one would expect in case C
has semi-stable reduction over R, but not good reduction.

We will now show that the above formula in fact holds for any curve
C/K and any strict normal crossings model X /S of C, provided that we
replace c(Jac(C)) and ArtX /S by their tame counterparts ctame(Jac(C)) and
Arttame(X ). We would like to point out that, already in the case where C is
tamely ramified, this does not follow directly from Proposition 5.1.1, because
it may very well happen that p divides ni for some i. (In fact, it can happen
that this is the case for every sncd-model of C!) Instead, we will show that
the formula can be ”transported” from characteristic zero.

Definition 5.1.3. For any curve C and any regular model X /S such that
the special fiber Xs is a normal crossings divisor, we define the virtual
number of nodes to be the value

R(X ) =
1

3
·
∑

x∈X sing
s,red

n2x + n′2x + (nx, n
′
x)2

nxn′x
,

where nx and n′x denote the multiplicities of the two formal branches of the
special fiber crossing transversally at x.
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There are several reasons why one should think of R(X ) as a virtual
number of nodes. First, R(X ) in fact frequently coincides with the number
of nodes, one obvious case being the semi-stable case. However, it turns out
to also be true in less obvious cases; we show in 5.2 that this property holds
when C has potential purely multiplicative reduction. On the other hand,
it is not hard to give examples R(X ) is not the number of nodes, or even
an integer. We provide several examples of this in Example 5.2.4.

Second, R(X ) behaves like the number of nodes with respects to blow
ups. More precisely, if X ′ →X is the blow up of X in a point in x ∈Xs,
it is straightforward to check that R(X ′) = R(X ) + 1.

Theorem 5.1.4. Let C/K be a curve, and let X /S be a model of C such
that Xs =

∑
i niEi is divisor with strict normal crossings. Then

ctame(Jac(C)) = −1

4
· (Arttame(X ) +R(X )) .

Proof. Let Γ(X ) be the dual graph of the special fiber Xs, and denote by
Γlab(X ) the labelled dual graph, where each vertex [Ei] has been labelled
by the numerical data (g(Ei), ni). By [Ha10b] and [HN11], ctame(Jac(C))
only depends on Γlab(X ), and we have already observed that the same is
true for Arttame(X ).

By a result of Winters [Wi74], we can find a smooth geometrically
connected curve B/C((t)) and a regular model Y of B with Ys a strict
normal crossings divisor, such that

Γlab(X ) = Γlab(Y ).

This implies that ctame(Jac(C)) = ctame(Jac(B)) = c(Jac(B)), and that
Arttame(X ) = Arttame(Y ) = ArtY /C[[t]]. Obviously, we also have that
R(X ) = R(Y ). By Proposition 5.1.1, we have that

c(Jac(B)) = −1

4
·
(
ArtY /C[[t]] +R(Y )

)
,

and the theorem follows immediately from this. �

It may also be interesting to note the following alternative version of the
formula.

Corollary 5.1.5. Let u denote the unipotent rank of Jac(C). Then

ctame(Jac(C)) =

− 1

12
·

Arttame(X )− 4u−X 2
s,red +

∑
i<j

(Ei · Ej)
(ni, nj)

2

ninj

 .

5.2. Curves with potentially purely multiplicative reduction. It
is natural to ask if the formula in Theorem 5.1.4 can be established also
between the base change conductor c(Jac(C)) and the Artin conductor
ArtX /S in the wildly ramified case. Next we show that this is indeed the
case, when we assume that C has potentially purely multiplicative reduction.
As a corollary, we obtain an interesting interpretation of the correction term
R(X ).
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Throughout this section, C/K denotes a curve with potentially purely
multiplicative reduction, and X /S denotes an sncd-model of C, with special
fiber Xs =

∑
i niEi. For simplicity, we write J = Jac(C). We denote by

T`(J) the `-adic Tate module associated to J , and we put V`(J) = T`(J)⊗Q`.
The inertia group I = Gal(Ksep/K) acts on V`(J), we write V for the semi-
simplification of this representation.

Theorem 5.2.1. Let C and X be as above. Then

c(Jac(C)) = −1

4
·
(
ArtX /S +R(X )

)
.

Proof. The Artin conductor of the Galois representation V can be written

Art(V ) = dim(V )− dim(V I) + Sw(V ).

Since C has potentially multiplicative reduction, Chai’s formula (add ref.)
states that

c(J) =
1

4
·Art(V ).

Rewriting slightly, we find that

c(J) =
1

4
· (2g − (2a+ 2t) + Sw(H1(C ×K Ksep,Q`)).

(In fact, a = 0 under our assumptions.) Moreover, since the toric rank t
only depends on the combinatorial data, it is immediate that

ctame(J) =
1

4
· (2g − (2a+ 2t)),

so that c(J) = ctame(J) + 1
4 · Sw(H1(C ×K Ksep,Q`)). On the other hand,

our formula above states that

ctame(J) = −1

4
· (Arttame(X ) +R(X )) ,

and we arrive at the desired formula, since

ArtX /S = Arttame(X )− Sw(H1(C ×K Ksep,Q`)).

�

Corollary 5.2.2. Let C and X be as above. Then

c(Jac(C)) = −1

4
· (ArtX /S +|X sing

s,red|).

In particular, R(X ) = |X sing
s,red|.

Proof. We will once again use Chai’s formula. Observe first that, since t
equals the first Betti number of Γ(Xs), we have an equality

t = −|I|+
∑
i<j

(Ei · Ej) + 1.

We can write

χ(Xs) =
∑
i

χ(Ei)−
∑
i<j

(Ei · Ej) = 2|I| −
∑
i<j

(Ei · Ej),

since g(Ei) = 0 for all i ∈ I, by our assumption of potential multiplicative
reduction.
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Now Chai’s formula yields

1

4
· (2g − 2(−|I|+

∑
i<j

(Ei · Ej) + 1)) =

−1

4
·

2− 2g − (2|I| −
∑
i<j

(Ei · Ej)) +R(X )

 .

After performing some cancellations, this expression reduces to

|X sing
s,red| =

∑
i<j

(Ei · Ej) = R(X ),

and the formula in the assertion is established.
�

Note that Corollary 5.2.2 yields an interesting necessary condition for a
curve C to have potential purely multiplicative reduction: For any sncd-
model X , R(X ) should equal the number of nodes of Xs,red.

Remark 5.2.3. If we also assume that C is tamely ramified in the above
corollary, it is not hard to see that the formula implies that c(J) = u/2,
with u being the unipotent rank of J .

The following example shows that, even in the tamely ramified case, one
should not expect that the formula in Corollary 5.2.2 holds without the
assumption that C has potentially purely multiplicative reduction.

Example 5.2.4. In this example, we assume that C is a tamely ramified
elliptic curve, and that we are in one of the following cases: C has reduction
type (a) II∗, resp. (b) III∗, resp. (c) IV ∗. In each of these cases, the
minimal regular model is an sncd-model, we denote it by X . Then it is

straightforward to compute that (a) R(X ) = 6 + 2/3 and |X sing
s,red| = 8,

resp. (b) R(X ) = 6 and |X sing
s,red| = 7, resp. (c) R(X ) = 5 + 1/3 and

|X sing
s,red| = 6.

In all these examples, we see that R(X ) does not equal the number of
nodes in the special fiber, moreover, it need not even be an integer.

5.3. Relation to Saito’s minimal discriminant. Let C/K be a curve,
and denote by C /S its minimal regular model. Following Saito [Sa88], the
correct notion of minimal discriminant for C is

∆(C)min = −ArtC /S .

Our results allow us compare the base change conductor and the minimal
discriminant, at least in the case where C /S is a model with normal
crossings.

Corollary 5.3.1. Assume that the minimal regular model C /S of C has
normal crossings. Assume moreover that either C is tamely ramified, or
that C has potential purely multiplicative reduction. Then

c(J) =
1

4
· (∆(C)min −R(C )).
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Proof. Let X the minimal sncd-model of C, and consider the unique
morphism X → C which blows up the ”internal” nodes in the special fiber
of C (i.e., nodes belonging to a unique irreducible component). Denote the
number of internal nodes by δ. Then R(X ) = R(C ) + δ, and since the base
change conductor is invariant with respect to the choice of regular model, it
only remains to compute the difference ArtC /S −ArtX /S , or, what amounts
to the same, the difference χ(Xs) − χ(Cs). It is easily checked that this
value equals δ.

�

5.4. Curves with potential good reduction. Throughout this section
we assume that C is a tamely ramified curve with potential good reduction.

5.4.1. The quotient construction. Let L/K be a tame extension such that
C ×K L has good reduction over RL. Then G = Gal(L/K) acts on the
smooth model Y /RL, and the quotient Z := Y /G is a normal R-model of
C. Moreover, Z has tame cyclic quotient singularities at each of its (finitely
many) singular points, which we denote by Q1, . . . , Qr. These singularities
can be resolved explicitly. Let

ρ : Z̃ → Z

denote the minimal desingularization. Then Z̃ is an sncd-model of C,
and the special fiber can be described as follows. Let F0 denote the
strict transform of Zs (which is irreducible). For each Qj , the exceptional

locus ρ−1(Qj) is a chain Fj of smooth rational curves F j1 , . . . , F
j
lj

, with F j1
intersecting F0 transversely in a unique point.

In combinatorial terms, one can formulate this by saying that Γ(Z̃ ) is star
shaped, i.e. it has a unique node, corresponding to the irreducible component
F0, and otherwise terminal chains attached to that node.

We make a simple observation:

Lemma 5.4.2. Let us assume that g = g(C) > 0. Then Z̃ coincides with
the minimal sncd-model X of C.

Proof. By minimality of ρ, all exceptional components have self intersection
≤ −2, hence are not contractible. By the assumption that g = g(C) > 0,
F0 must be a principal component [Ha10a], i.e., either g(F0) > 0 or r > 2.
In the former case, F0 can never be contracted, and in the latter case, if F0

is contractible on Z̃ , the contracted scheme is not an sncd-model. �

Let us write Xs =
∑

i∈I niEi for the special fiber of X (∼= Z̃ ), and let
X ′ be the normalization of X ×R RL. Previously, we computed that

[L : K]−1 ·ArtX ′/RL = −
∑
i<j

(Ei · Ej)
(ni, nj)

2

ninj
.

Under the assumption of tame potential good reduction, we will now provide
another interpretation of this formula, in terms of intersection theory on X .
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5.4.3. Let us fix one of the chains Fj . For simplicity, we drop reference to
the index j. The chain has components F1, . . . , Fl, we’ll denote by mi the
multiplicity of Fi. It is easy to check that (mn−1,mn) = ml for all 1 ≤ n ≤ l.

For each 1 ≤ n ≤ l we put

tn :=
n∑
i=1

1

mi−1mi
,

and define a divisor (with rational coefficients)

DF =
ml

m0
·

l∑
n=1

mntnFn.

By the results in [BL02] (there is a sign error in their paper), computing the
self intersection of this element, we find that

DF ·DF = −m2
l · tl = −m2

l · (
1

m0m1
+ . . .+

1

ml−1ml
).

For notational reasons, we put tF = tl, so that DF ·DF = −m2
l · tF .

5.4.4. Let Z|I| be the free module with generators corresponding to the
irreducible components Ei of Xs. Let M = (Ei · Ej) be the intersection
matrix, and let Rt = (. . . , ni, . . .) be the multiplicity vector. In particular,

Φ(J) = Ker(Rt)/Im(M).

For each chain F , consider the vector

E(F0, Fl) := (0, . . . , 1, 0, . . . , 0,
−m0

ml
, 0, . . . , 0),

where the first non-zero coefficient is in the position corresponding to F0,
and the second in the position corresponding to Fl. Then E(F0, Fl) belongs
to the kernel of multiplication by Rt, and descends to give an element in the
component group Φ(J). We denote this element by γF . We also denote by

<;>: Φ(J)× Φ(J)→ Q/Z
Grothendieck’s canonical pairing. It is proved in [BL02, Prop. 5.1] that,
modulo Z, the equality

< γF ; γF >= −m2
0 · tF

holds (note that there is a sign error in their paper).
Combined with our previous results, this discussion gives an interesting

relation between the base change conductor and data concerning the
component group. Before we state our result, a word on notation. We
write γj instead of γFj .

Proposition 5.4.5. With notation as above, the formula

12c(J) =
∑
j

(mlj/m0)
2 < γj ; γj >

holds modulo Z. Here j runs over the number of terminal chains.

Proof. This is clear when one combines the discussion above with the
formula in Corollary 5.1.5. �
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5.4.6. Now let’s return to the the divisors DFj we constructed above. Since
every two distinct chains Fj and Fj′ are disjoint, we find that

DFj ·DFj′ = 0

whenever j 6= j′. Therefore, if we define D := DF1 + . . . + DFr , it follows
that

D ·D = −
∑
i<j

(Ei · Ej)
(ni, nj)

2

ninj
.

Using the formula in Corollary 5.1.5, we find that

c(J) = − 1

12
·
(
ArtX /S −4u−X 2

s,red −D ·D
)
.

5.4.7. We make one further assumption, called (∗), in order to reduce
somewhat the complexity of our problem. (Hopefully this assumption can
be removed or weakened at a later point.)

(∗) We assume that all exceptional components E of the minimal
desingularization ρ have self intersection E2 = −2.

Lemma 5.4.8. Assume that (∗) holds. Then Z̃ coincides also with the
minimal regular model Xmin of C.

Proof. Let E be one of the exceptional chains, with components E1, . . . , El,
where El intersects F . We denote by Ni the multiplicity of Ei, and to get
easy notation, we put El+1 := F . Let us first observe the easy fact that the
sequence of multiplicities N1, . . . , Nl, Nl+1 is strictly increasing. Indeed, if
we put bi = −E2

i for 1 ≤ i ≤ l, we first find that b1N1 = N2 (recall also that
bi = 2 for all j by assumption). This gives Ni+1 = biNi −Ni−1 > Ni, since,
by induction Ni > Ni−1.

In particular, let us write N for the multiplicity of F . Then, for every
1 ≤ j ≤ r, we observe that the bound

Nlj < N = Nlj+1 < 2Nlj

holds. Intersecting F with the special fiber yields the formula

−F 2 =
1

N

r∑
j=1

Nlj .

Let us choose j0 so that N0 := Nlj0
is minimal. Then we find that

−F 2 ≥ 1

N
rN0 ≥

1

N
3N0 >

3N0

2N0
=

3

2
.

Consequently, −F 2 ≥ 2, and thus F is not contractible. This finishes the
proof. �
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5.4.9. The correction term. We will now compute the correction term

Err := −
∑
i

E2
i +

∑
i<j

(Ei · Ej)
(ni, nj)

2

ninj
.

In fact, we will compute a contribution Err(Ej) for each chain Ej , so that

Err = −F 2 +

r∑
j=1

Err(Ej).

Let E be a chain, with components E1, . . . , El, and write El+1 = F . In
this situation, we put

Err(E) = −
l∑

i=1

E2
i +

l∑
i=1

(Ni, Ni+1)
2

NiNi+1
.

Observe that −
∑l

i=1E
2
i = 2l, so the difficult part is to compute the other

term. For this, we heave the following lemma.

Lemma 5.4.10. The error term associated to E equals

Err(E) = 2l +
l

l + 1
.

Proof. It is easily seen that (Ni, Ni+1) = N1 for all 1 ≤ i ≤ l. Moreover, one
also checks easily that Ni = iN1. It then follows that

l∑
i=1

(Ni, Ni+1)
2

NiNi+1
= N2

1

l∑
i=1

1

iN1(i+ 1)N1
=

l∑
i=1

1

i(i+ 1)
.

Then use
l∑

i=1

1

i(i+ 1)
=

l

l + 1
.

�

Proposition 5.4.11. The correction term equals

Err = −2F 2 + 2|X sing
s,red|

Proof. For each 1 ≤ j ≤ r, we write E
(j)
lj

for the component of Ej intersecting

F and we denote by N
(j)
lj

its multiplicity. By what we have seen, we can

then write

N
(j)
lj

N
=

lj
lj + 1

.

Now, intersecting F with the special fiber yields the equality

−F 2 =
1

N

r∑
j=1

N
(j)
lj
,

hence we get that

−F 2 =

r∑
j=1

lj
lj + 1

.
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Summing up everything, we find

Err = −F 2 +

r∑
j=1

(2lj +
lj

lj + 1
) =

−F 2 + 2|X sing
s,red| − F

2,

which gives the formula we are after. �

Combining everything, we arrive at the following result.

Theorem 5.4.12. Let C be a curve with potential good reduction, and
assume that (∗) holds. Then the base change conductor and the Artin
conductor are related by the formula

c(J) = −1

4
· (ArtX /S +

2

3
(|X sing

s,red| − F
2)).
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