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1 Introduction

This is the final article in a series of papers on questions that arose in Deligne’s article [Del87]
and is a direct sequel to [Eria]. It is in preliminary form, only the construction of the functorial
Adams operations and Bott’s cannibalistic class has been effectuated. However, as soon as
operations of this form have been constructed, the proofs of [Rös99] apply, as they are already
”functorial”, but work with equivalence classes of hermitian vector bundles in arithmetic K-
theory. Beyond the Adams operations and Bott’s cannibalistic class, we also include a section
on arithmetic Chern classes in the setting of virtual categories.

2 Review of metrized virtual categories

In this section S always denotes a regular scheme, together with a set of complex points Σ. If
the point admits a complex conjugate we require that this set also contains it. If X → S quasi-
projective morphism and X a regular scheme, we say that a vector bundle E is a hermitian
vector bundle if it is a hermitian vector bundle on X (C) :=

∐
s∈Σ X ×S s(C) invariant under

complex conjugation. A real differential (p, p)-form ω on X will be a real differential (p, p)-form
on X(C) such that for any complex conjugation F∞, F ∗∞ω = (−1)pω. Recall that there is the

Bott-Chern class associated, c̃hE ∈ Ã(X) := ⊕∞p=0A
p,p(X,R)/(Im ∂, Im ∂) to an exact sequence

E : 0→ E
′ → E → E

′′ → 0 (1)

such that
chE = chE + chE + ddcc̃hE

where a hermitian line bundle is denoted by a bar over it, and ch (E) denotes the Chern
character form of E. It is uniquely characterized by this property together with compatibility
with pullback and by being 0 whenever E is orthogonally split by the two other vector bundles.

Definition 2.0.1. Let X be a regular scheme which is quasi-projective over a base S, which
admits a set of complex points, such that it contains any complex conjugation point in case
the point comes from a real point. Let KM(X) be the virtual category of metrized vector
bundles on X, determined by a functor µ of commutative Picard categories V (X) to the Picard

category of Ã(X) − torsors. Given x ∈ V (X) and g ∈ µ(X), (x, g) determines an element of
KM(X). It is uniquely determined by a theory of secondary Bott-Chern classes as in [Del87].

In particular, if we are given an exact sequence of vector bundles with hermitian metrics
as in (1), we have an isomorphism

E ' E
′
+ E

′′
+ c̃h(E).

3 Metrized Chow categories and Green currents

Definition 3.0.2. Let X be an arithmetic variety. Define for a point x ∈ X , Greenx to be the
set pairs (x, g) such that g is a Green current for x: g is a (p− 1, p− 1)-current where p is the
dimension of x(C) and

ddcg + [x] = ω

is a smooth form, where [Y ] is the Lelong-integration current associated to Y (this Green
current condition is understood to be void if x(C) = ∅. We define the metrized Chow categories

ĈHk(X ) as the Picard category associated to the complex⊕
z∈Xk+2

K2(k(z))
d1−→ ⊕

⊕
y∈Xk+1

k(y)∗
d0−→
⊕
x∈Xk

Greenx /(Im ∂ + Im ∂).
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Here d1 is the usual (generalized) tame symbol and d0 takes a rational function f to (Divf,− log |f |2).
The images of ∂ and ∂ are under the differential maps on currents of the proper bidegree. It
follows from Lemma 1, Ch. III, [Sou92] that this is indeed a complex. This Picard category
has objects

⊕
x∈Xk

Greenx /(Im d + Im dc) and a morphism from two objects s and s′ is an
element f ∈

⊕
y∈Xk+1

k(y)∗ such that d0f = s− s′ modulo the image of d1.

Notice that the category ĈH
1
(X ) is equivalent to the category of hermitian vector bundles

on X , via the association (D, gD) maps to the line bundle O(D) with metric locally given by
‖f‖2 = |f |2e−gD . Also, there is a forgetful functor

ĈHk(X )→ CHk(X )

sending (Z, gZ) to Z. Suppose that Z and Z ′ intersect properly in X and that gZ and gZ′ are
Green currents for Z and Z ′. Then the star product is defined (see [Sou92], chapter II, for the
analytical issues of multiplication of currents) as

gZ ? gZ′ = gZ ∧ δZ′ + ωZ ∧ gZ′ .

Suppose f : X → S is a flat projective morphism of integral schemes of relative dimension
n. Consider the line bundle 〈L1, L2, . . . , Ln+1〉 constructed in [Del87] and [Elk89]. If `i is
(locally on S) a rational section of Li, such that their divisors have no intersection the symbol
〈`1, . . . , `n+1〉 defines a base (locally on S) and if S is a point it is defined this way. We equip
this line bundle with the Green current-metric by setting

− log |〈`1, . . . , `n+1〉|2 = f∗(gD1 ∗ . . . ∗ gDn+1)

where gDi
is the Green current defined by − log |`i|2. There is a question in [Sou92], III.5.3,

whether this coincides with the metric defined in [Elk90] (where their equality in P̂ic(S) was
asserted).

Proposition 3.1. The Green current-metric and the Elkik metric coincide.

Proof. First of all we can assume S = SpecC. Secondly, we can assume that all the line
bundles are ample line bundles by a standard addition-subtraction argument. In this case,
we can find by Bertini a smooth connected hyperplane section of Ld+1. Then both natural
restriction isomorphisms

〈L1, . . . , Ld, Ld+1〉 ' 〈L1|D, . . . Ld|D〉

both have the norm

exp

(∫
X

log |`d+1| ∧i=1,...,d c1(Li)

)
where `d+1 is a section of Ld+1 with divisor D. Since both metrics are given by exp

(∫
X/S

log |`|
)

when X → S is finite and flat and ` is an invertible section of L we are done.

Definition 3.1.1. Let L be a metrized line bundle and A an object in the metrized Chow
category. Given a rational section ` of L and and a rational section g of the sheaf associated
to A over X \Div`. Then the object metric on the object ĉ1(L)∩A is the one which associates
to g ∩ ` the star product of the Green currents associated to ` by Poincaré-Lelong and to g by
definition of a metrized object.
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4 Adams operations and Bott’s cannibalistic class

Suppose that we have a functor F : V (X) → V (X). To give a lifting of F to KM(X) is
equivalent to constructing a commutative diagram, for any vector bundle V ,

V (X)

F

��

// Ã(X)− torsors

F̃
��

V (X) // Ã(X)− torsors

which is in turn equivalent to constructing a commutative diagram

M(V )
F

%%KKKKKKKKKK
// µ(V )

��
µ(F (V ))

satisfying the compatibility conditions needed for this to descend to the virtual category, in
particular compatibility with filtrations (c.f. [Del87], section 5). Notice that if there are two
metrized virtual bundles (V, g) and (V ′, g′), and an isomorphism of the two underlying virtual

bundles V and V ′, it follows from functoriality of the functor µ : V (X) → Ã(X) − torsors

that the difference (V, g) − (V ′, g′) is a natural object of Ã(X). For an automorphism of an
object this is quite explicit: an element in v ∈ K1(X) acts as (V, g) 7→ (V, g + δv) where

δ : K1(X) → Ã(X) is the natural map from the localization exact sequence. In each of the

cases, we call the object constructed in Ã(X), by slight abuse of language, the Bott-Chern class
of the isomorphism. Notice that if V and V ′ are hermitian line bundles an the isomorphism in
question is given by an isomorphism of line bundles, this is nothing but the logarithm of the
usual norm.

Lemma 4.1 (Splitting principle). If E is a holomorphic vector bundle on a Kähler manifold

X with p : P(E) → X the natural projection, then the map p∗ : Ã(X) → Ã(P(E)) is injective
when restricted to the subspace of ker ddc.

Proof. Because X is Kähler the subspace in question is identified with the Dolbeault cohomol-
ogy groups ⊕∞p=0H

p,p(X), which has the desired property.

Lemma 4.2. The category KM(V ) admits a biadditive product

⊗ : KM(X)×KM(X)→ KM(X)

which lifts the usual tensor product on V (X) and such that for a pair of metrized vector bundles
the product is just given by the products of the metrized vector bundles, and if η and η′ are two
elements of Ã(X), then η ⊗ η′ = ddcη ∧ η′ = η ∧ ddcη′.

Proof. This is trivial, the key point being that c̃h(E ⊗ F ) = c̃h(E) ch(F ).

Consider now the Koszul complex

Kk(E) : 0→ ∧kE → ∧k−1E ⊗ E → ∧k−2E ⊗ S2E → . . .→ E ⊗ Sk−1E → SkE → 0,

which was used, following [Gra92], the functorial Adams operations in [Erib].
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Definition 4.2.1. Let E = (E, h) be a metrized vector bundle, then we define,

Ψk(E) =
k∑
p=0

(−1)p+1(k − p)[Sk−pE ⊗ ∧pE]

where ∧k denotes the exterior product and Sk the symmetric product, with the following
metrics: If e1, . . . , en is an orthonormal frame of E, then the elements of the form ei1 ∧ . . .∧ eik
is an orthnormal frame of ∧kE. We equip SkE inductively with the virtual metric such that
the isomorphism SkE '

∑k−1
i=0 (−1)i+1 ∧i E ⊗ Sk−iE deduced from the Koszul complex is an

”isometry”. We call it the virtual quotient metric.

Remark 4.2.1. In particular, for a line bundle L, SkL ' L⊗k is an isometry where the latter
one is given the actual product metric whenever L has a metric. Unfortunately this does not
induce an actual metric on SkE, but rather a virtual one in general.

Proposition 4.3. Suppose that E = E
′⊥E ′′. Then the natural additivity isomorphism in

V (X) of the Adams operations induces an isomorphism

Ψk(E) ' Ψk(E
′
) + Ψk(E

′′
).

Proof. Recall that the secondary Euler characteristic of a complex E• is

χ′(E•) =
∑

(k − p)(−1)p+1Ek−p.

If E : 0 → E ′ → E → E ′′ → 0 is an exact sequence of acyclic complexes of vector bundles, it
is immediate that we have the isomorphism

χ′(E) = χ′(E ′) + χ′(E ′′)

of secondary Euler characteristics in the virtual category. Moreover, if we have a product of
acyclic complexes, A⊗B, with the total complex structure, the secondary Euler characteristic
is 0, and the isomorphism is induced by the isomorphism

χ′(A⊗B) = χ′(A)χ(B) + χ′(B)χ(A) (2)

and the acyclicity of A and B. If

Kk(E) : 0→ ∧kE → ∧k−1E ⊗ E → ∧k−2E ⊗ S2E → . . .→ E ⊗ Sk−1E → SkE → 0

denotes the k-th Koszul complex of E, we have an isomorphism

Kn(E + F ) ' ⊕ni=0Ki(E)⊗Kn−i(F ).

Our first observation is that with the above given metrics, this is also a isometry in the
virtual category of hermitian vector bundles. Indeed, a formal identity shows that the natural
isomorphism

Sn(E + F ) ' ⊕nk=0S
n−kE ⊗ SkF

is an isometry when equipped with metrics and the same statement is true whenever E + F
is replaced by a hermitian exact sequence E : 0 → E ′ → E → E ′′ → 0 (i.e. with trivial
Bott-Chern class). In this case one sees immediately that the maps are compatible with the
metrics. Note that by definition of the metric on the symmetric product the Bott-Chern class
of the Koszul complex is 0. Thus, by (2), it follows that the secondary Euler characteristic of
the isometry Kn(E+F ) ' ⊕ni=0Ki(E)⊗Kn−i(F ) induces isometries ΨkE ' ΨkE ′+ΨkE ′′.
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Corollary 4.4. Consider the general case of an exact sequence of vector bundles with metrics

E : 0→ E
′ → E → E

′′ → 0

and denote the norm of the isomorphism by Ψkc̃h(E). Then this class is given by Ψk acting on
Ap−1,p−1(X,R)/(Im∂, Im∂) by multiplication by kp.

Proof. By the above, the class is necessarily 0 whenever the sequence is orthogonally split, and
it is clearly stable under pullback and satisfies, by definition, the equation

ch(Ψk(E)) = ch(Ψk(E
′
)) + ch(Ψk(E

′′
)) + ddcΨkc̃h(E).

It follows from the usual axioms of Bott-Chern theory that the class Ψkc̃h(E) is necessarily
given in the form ∫

P1
C

ch(ΨkẼ) log |z|

where Ẽ is a certain auxiliary hermitian vector bundle which is orthogonally split over ∞ into
E
′
+E

′′
and over 0 is the hermitian vector bundle E. Since we are integrating away (1, 1)-forms

over P1 it suffices to verify that ch ΨkE is chE with degree (p, p) multiplied by kp. For this
we notice that the differential form in question is a certain combination of coefficients in the
curvature matrix. For a diagonal or more generally a semi-simple such matrix the equality in
question is trivial, and these elements are dense in the matrix-algebra Mr×r(C).

Corollary 4.5. It follows that Ψk has a natural additive lifting from V (X) to KM(X), by
defining Ψk to act by multiplication by kp on the graded piece Ap−1,p−1(X,R)/(Im∂, Im∂).

Proposition 4.6. The Adams operations in question are ring homomorphisms in the sense
that there is a natural biadditive isomorphism

Ψk(V )⊗Ψk(V ′) ' Ψk(V ⊗ V ′).

Proof. The difference of the natural isomorphism on the level of V (X) shows that Ψk(V ) ⊗
Ψk(V ′) − Ψk(V ⊗ V ′) is in Ã(X), and one verifies easily that if V ′ is a sum of two virtual
metrized bundles, both sides transform in the same way leaving the excess term constant and
thus we can assume that V and V ′ are actual hermitian vector bundles. It is also stable under
pullback, and as such we can pass to a flag variety and filter both V and V ′ by flags with
quotients being line bundles. Thus we can finally assume that both V and V ′ are hermitian
line bundles, in which case the statement is trivial. Finally to deduce that the class is already
zero before passing to the flag we use the above computations for the Chern character of the
Adams operations to deduce that the class is in ker ddc. The statement then follows by the
splitting principle.

By the same method of proof, we have:

Proposition 4.7. The Adams operations also satisfy ΨkΨl ' Ψkl.

Remark 4.7.1. It should be noted that the Adams operations constructed by [Fel10] differ by
some factors. In our case we have equipped the symmetric product with a virtual metric,
whereas in the loc.cit. it is equipped with the symmetrization metric. In this case unfortu-
nately we do not obtain the above Propositions giving the ring-type structure. Indeed, for the

symmetrization metric, for a hermitian line bundle L, Ψk
EL = AkL

⊗k
where Ak denotes mul-

tiplying the natural product metric with the constant 1/
√

(k − 1)!. In particular, considering

the operations in K̂0(Z) ' R ⊕ Z, we can compute formally and get that in this group that:

Ψk
EL⊗Ψk

EM = A2
kL
⊗k ⊗M⊗k 6= AkL

⊗k ⊗M⊗k
= Ψk

E(L⊗M) and we would have equality in
R if and only if A2

k = Ak.
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Finally, let Ωf be the cotangent bundle of the map f . We can define a Bott cannibalistic
class element θk(Ωf ) with metrics defined as 1 + L + . . . + Lk−1 in case L is a line bundle
and compatible with metrics. More precisely, we can express θk(E) in terms of γ operations,
and the multiplicativity of the Bott class then follows from multiplicativity properties of the γ
operations. This in turn follows from multiplicativity of λ-operations with the usual metrics.

Proposition 4.8. There is a natural arithmetic Bott cannibalistic class θ(E) ∈ KM(X), asso-
ciated to a hermitian vector bundle E. Moreover, for a projective generically smooth arithmetic
variety X/S with a fixed Kähler metric, there is a class θk(ΩX/S)−1 ∈ KM(X). Moreover, this
is the inverse of a natural element θk(ΩX/S) ∈ KM(X).

Proof. First of all, the Bott cannibalistic classes are in [Eria] constructed as classes in the
virtual category lifted by rigidity from the standard Bott-class, which are characterized by
functoriality with respect to pullback, θk(L) = 1 + L + . . . + Lk−1 for a line bundle, and
θk(E + F ) = θk(E)θk(F ) for general vector bundles E and F . By rigidity, these classes
also have unique expressions in terms of the γ-operations, which come with natural metrics
from the λ-operations. Since the λ-operations satisfy λn(E + F ) ' ⊕λkEλn−kF , even with
metrics, the same properties are inherited by the γ-operations. We equip θk(E) with this
natural metric on the γ-operations. By rigidity again, the multiplicitativity relation on θk
is reflected on the multiplicativity relation on the γ-operations, and it follows directly that

θk(L) = 1 + L+ . . .+ L
k−1

and θk(E + F ) = θk(E)θk(F ) (with metrics) as well.
The equivalence class of θk(E) in K̂0(X)Q is invertible by [Rös99], Proposition 4.2. It follows
by general nonsense (see [Eria], ”Explicit construction of characteristic classes”), that there
is an element θk(E)−1, characterized up to unique isomorphism by an isomorphism θk(E) ⊗
θk(E)−1 ' 1 in KM(X).
Consider a factorization of X/S as X → P(E)→ S, where the first map is a closed immersion
with normal bundle N , and the second map is a projection with tangent bundle T . We are
given a short exact sequence

N : 0→ N∨ → T∨ → ΩX/S → 0.

Endow P(E) with a Kähler metric and the normal bundle with a hermitian metric and let N
represent the exact sequence with metrics. We define

θk(ΩX/S)−1 = θk(N
∨)θ̃k(N ) + θk(N

∨)θk(i
∗T∨)−1

where θ̃k(N ) denotes the Bott-Chern secondary class associated to θk. By the argument of
[Rös99], after Proposition 7.3, this is independent of the factorization and the auxiliary metrics
and has, by the same token, an inverse determined up to unique isomorphism.

5 Higher analytic torsion

To define the higher analytic torsion, we will need some yet not introduced notions. For
simplicity, we will already assume that f : X → Y is a proper smooth Kähler fibration of
complex smooth varieties, and that all the higher direct images of a vector bundle E on X
vanishes. In this case Rf∗E = f∗E is necessarily a vector bundle. For any holomorphic
bundle E, denote by ER the underlying real bundle, so that ER ⊗R C = E. There is a
C∞-splitting (normally by considering the orthogonal complement of Tf with respect to some
metric) TX = f ∗TY ⊕Tf , and for a tangent-vector v ∈ TS, we denote by vH its ”horizontal lift”
to TX . If we have a metric on TX and TS, we get induced metrics on TS and Tf . On TS,R, take
the Levi-Civita-connection, on Tf,R the real connection induced by the Chern-Weil-connection
on Tf,C. The corresponding connection on TX has a torsion-element T , which is a real 2-form
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with values in TM,R. Now, a super vector-bundle is a vector bundle E with an involution ε,
which in turn defines an involution on End(E) by α 7→ εαε. Henceforth, for super-vector-
bundles, ⊗̂ denotes the obvious tensor-product of super-vector-bundles, and we will freely use
the natural concepts such as ”End” of super-objects.
The metric on E gives rise to a Clifford-action of A1(X) on ⊕qA0,q(X,E) as follows. Let
W ∈ A1(X) and W = W ′ + W ′′ with W ′ ∈ A1,0(X) and W ′′ ∈ A0,1(X). We define for
s ∈ ⊕qA0,q(X,E),

c(W )s :=
√

2(W ′′ ∧ s− iW ′(s))

where iW ′ is the contraction; left adjoint to W ′ ∧− with respect to the pairing defined by the
metric on E. Let f1, . . . , f2n be a local frame for TRY and f 1, . . . , f 2n be its dual frame in
T ∗RY . Define the element

c(T ) ∈ f ∗(∧T ∗CY )⊗̂End(∧T ∗(0,1)
f ⊗ E)odd

by the formula

c(T ) =
1

2

(∑
fα ∧ fβ⊗̂c(T (fHα , f

H
β ))
)

We will need some normalization-operators. Let φ be the operator that operates as (2πi)−q/2

on T q(X), NV the operator acting as multiplication by p on ∧pT ∗(0,1)f ⊗ E. Also, let Nu :=
NV + i

u
ωH , where ωH is a section of f ∗ ∧2 TS,R defined by the formula ωH(U, V ) = ω(UH , V H).

For u > 0, let Bu be the Bismut super-connection on E, defined by:

Bu = ∇E +
√
u(∂

Z
+ ∂

Z∗
)− 1

2
√

2u
c(T ).

Here ∇E is a certain superconnection built out of the connections already in play, and ∂
Z

is

the fiber-wise Dolbeault-operator and ∂
Z∗

its formal adjoint. We say that an operator A is
trace-class if the sum

Tr(A) =
∑
i

< Aei, ei >

is absolutely convergent, for some, hence any, orthonormal basis {ei, i ∈ I} of the space in
question. In this case, the sum is its ”trace”. The super-trace of a super-operator A is by
definition Trs(A) = Tr(εA). It is possible to define a certain element exp(−B2

u), which is
trace-class; it is possible to take its super-trace.

Definition 5.0.1. The higher analytic torsion of E is defined as

T (E, hf ) = − 1

Γ(s)

∫ ∞
0

us−1φ(Trs(Nu · exp(−B2
u))− Trs(NV exp(−(∇f∗E)2)))du.

Remark 5.0.1. The degree zero part of this form is the usual analytic torsion.

Proposition 5.1. Suppose f : X → Y is a flat and generically smooth projective Kähler
fibration of schemes. Then there is a direct image functor

Rf∗ : KM(X)→ KM(Y ).

Proof. If η is a form on X, we define Rf∗η =
∫
X/Y

ηTdTf . If E is a hermitian vector bundle,

resolve it by f∗-acyclic vector bundles E
∗

with total complex E , then there is an equivalence
in KM(X)

E ' E
∗

+ c̃hE .
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We define Rf∗E = f∗E
∗
L2 −T (E) where f∗EL2 denotes the L2-metric given fiberwise by Hodge

theory. We have to verify that if

E : 0→ E ′ → E → E ′′ → 0

is an exact sequence, there is a canonical isomorphism

Rf∗E ' Rf∗E
′ +Rf∗E

′′ + f∗c̃hE .

But this is one of the standard properties of the analytic torsion.
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