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Abstract. A permutation π of an abelian group G is said to destroy arithmetic progressions
(APs) if, whenever (a, b, c) is a non-trivial 3-term AP in G, that is c − b = b − a and a, b, c

are not all equal, then (π(a), π(b), π(c)) is not an AP. In a paper from 2004, the first author
conjectured that such a permutation exists of Zn, for all n 6∈ {2, 3, 5, 7}. Here we prove, as a
special case of a more general result, that such a permutation exists for all n ≥ n0, for some
explcitly constructed number n0 ≈ 1.4× 1014. We also construct such a permutation of Zp for
all primes p > 3 such that p ≡ 3 (mod 8).

1. Introduction

Let G be an abelian group, S a subset of G. A bijection π : S → S is said to destroy1

arithmetic progressions (APs) if there is no triple (a, b, c) of elements of S satisfying
(i) a, b, c are not all equal,
(ii) c− b = b− a,
(iii) π(c)− π(b) = π(b)− π(a).

This notion was introduced by the first author in [H], though earlier Sidorenko [S] had given
an example of such a permutation in the case G = Z, S = N. It should not be confused with
the somewhat different, and probably more famous, notion of a permutation containing no
arithmetic progressions [DEGS].

The most important open question from [H] concerns the existence of AP-destroying permu-
tations of finite cyclic groups Zn. Conjecture C of that paper asserts that such permutations
exist if and only if n 6∈ {2, 3, 5, 7}. In this paper we come close to resolving this conjecture
in full. Before stating our main result, we need to define an extension of the concept of AP-
destroying permutation, in the special case of finite cyclic groups:

Definition 1.1. Let s, t ∈ N0. A permutation π of Zn is said to destroy (s, t)-almost APs if
there is no triple (a, b, c) of elements of Zn satisfying

(i) a, b, c are not all equal,
(ii) a+ c− 2b ≡ η1 (mod n) for some η1 ∈ {0, ±1, . . . , ±s},
(iii) π(a) + π(c)− 2π(b) ≡ η2 (mod n) for some η2 ∈ {0, ±1, . . . , ±t}.

Hence (s, t) = (0, 0) is the case of an AP-destroying permutation. We shall prove

Theorem 1.1. (i) There exists a permutation of Zn destroying arithmetic progressions for all
n ≥ n0 where

(1.1) n0 = (9× 11× 16× 17× 19× 23)2 ≈ 1.4× 1014.

(ii) For every s, t ∈ N0 there is an n0(s, t) such that there exists a permutation of Zn destroying
(s, t)-almost APs for all n ≥ n0(s, t).
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While (i) may seem to be a special case of (ii), we state it separately for two reasons. First
and foremost, we use (i) in the proof of (ii). Secondly, we have in this special case tried to find
the best constant n0 which our method will yield. Of course, we expect that Conjecture C of
[H] is true, but some additional ideas will probably be needed to prove it in full.

The idea for the proof of (i) is to construct a “master permutation” of Z√
n0

which is (1, 2)-

almost AP-avoiding, and then combine this with ideas from Proposition 2.3(ii) and Lemma 3.5
of [H] to construct AP-destroying permutations of Zn for all n ≥ n0. In our proof, we break down
the (1, 2)-destroyal property into a total of 14 simpler ones and find, by simple computer search,
permutations of 6 cyclic groups of pairwise relatively prime orders satisfying different subsets
of these simpler properties. Finally, the master permutation is obtained via an application of
the Chinese Remainder Theorem. The proof of (ii) follows a similar strategy, but this time
the “master permutation” destroys (2, 2)-almost APs, and it requires a more subtle application
of the aforementioned ideas from [H] to get the final result. The full proof of Theorem 1.1 is
presented in Section 2.

The values of n0(s, t) arising from our proof will be extremely large. Though we have tried
to optimise the value which our method gives for n0(0, 0), it remains completely impractical
to attempt to complete the proof of Conjecture C of [H] by a brute-force computer search.
The main point of our result is that we think it removes any substantial doubt whether the
conjecture is true. We will expand on this issue in the final section of the paper. However, it
remains interesting to try to prove the full conjecture and, in particular, to try to do so without
resorting to any large-scale computer searches. It follows from Lemma 3.5 of [H] that, if we let
P denote the set of those n ∈ N for which Zn admits an AP-destroying permutation, then P is
closed under multiplication. Hence, a natural strategy is to first focus on primes. The following
result will be proven in Section 3:

Theorem 1.2. Let p be a prime such that p > 3 and p ≡ 3 (mod 8). Then there exists a
permutation of Zp destroying arithmetic progressions.

As we shall see, there are obvious ways one could try to tinker with this proof so as to make
it work also for other primes. So far, however, we have not found any such tinkering that works.
This and other outstanding issues will be addressed in Section 4.

2. Proof of Theorem 1.1

We introduce some further notation. Let s, t ∈ N0. A permutation π of Zn is said to destroy
the pattern s 7→ t if there is no triple (a, b, c) of elements of Zn satisfying

(i) a, b, c are not all equal,
(ii) a+ c− 2b ≡ s (mod n),
(iii) π(a) + π(c)− 2π(b) ≡ t (mod n).

Hence, π destroys (s, t)-almost APs if and only if it destroys the patterns s′ 7→ t′, for all
s′ ∈ [−s, s] and t′ ∈ [−t, t]. In the following assertions, ξ−1 denotes the inverse of ξ modulo n.
The proofs are almost trivial:

Lemma 2.1. (i) Suppose π : Zn → Zn is a permutation destroying the pattern 0 7→ 1 and that
GCD(t, n) = 1. Then π1 : Zn → Zn given by

(2.1) π1(x) = tπ(x)

is a permutation destroying the pattern 0 7→ t.
(ii) Suppose π : Zn → Zn is a permutation destroying the pattern 1 7→ 1 and that GCD(s, n) =
GCD(t, n) = 1. Then π2 : Zn → Zn given by

(2.2) π2(x) = tπ(s−1x)

is a permutation destroying the pattern s 7→ t.
(iii) If π : Zn → Zn is a permutation destroying the pattern s 7→ t, then π−1 destroys t 7→ s.
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The reader is encouraged to write their own program to check the correctness of the data in
Table 1, which was obtained by computer search. Note that we are here identifying Zn with the
set {0, 1, . . . , n− 1}, and following standard practice in identifying the string (a0, a1, . . . , an−1)
with the permutation π : i 7→ ai.

i ni π : Zni
→ Zni

Patterns destroyed by π,
together with 0 7→ 0

1 9 (0, 1, 8, 3, 2, 6, 4, 7, 5) 0 7→ 2, −1 7→ −2
2 11 (0, 1, 8, 10, 6, 9, 5, 7, 3, 2, 4) 0 7→ −2, −1 7→ 2
3 16 (0, 2, 5, 3, 15, 12, 1, 14, 10, 8, 11, 13, 4, 7, 6, 9) 1 7→ 1, −1 7→ −1
4 17 (0, 1, 3, 9, 11, 7, 4, 8, 15, 12, 16, 10, 14, 5, 2, 13, 6) −1 7→ 1, 1 7→ −1
5 19 (0, 2, 14, 4, 10, 17, 9, 13, 18, 3, 6, 15, 1 7→ 1, −1 7→ 1

8, 12, 5, 1, 7, 11, 16)
6 23 (0, 1, 4, 3, 21, 22, 2, 11, 12, 7, 8, 5, 0 7→ 1, 1 7→ 0,

10, 9, 6, 19, 16, 15, 20, 17, 18, 13, 14) 0 7→ −1, −1 7→ 0
7 25 (0, 2, 5, 1, 3, 9, 13, 20, 10, 15, 23, 4, 21, 1 7→ 1, −1 7→ 1

17, 24, 7, 22, 18, 12, 16, 19, 8, 14, 6, 11)
8 29 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1

9, 24, 16, 14, 20, 18, 25, 23, 27, 26, 28, 17,
15, 21, 11, 19, 22)

9 31 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1
9, 11, 14, 20, 27, 23, 25, 24, 26, 29, 28, 30,

16, 18, 17, 19, 22, 21, 15)
10 37 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 9, 1 7→ 1

11, 14, 18, 15, 17, 21, 24, 22, 32, 31, 35, 30,
33, 19, 34, 36, 23, 20, 27, 25, 29, 26, 28, 16)

11 41 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1
9, 11, 14, 18, 15, 17, 21, 23, 22, 25, 29, 35,
38, 36, 31, 34, 40, 19, 37, 39, 16, 27, 26, 28,

32, 24, 33, 30, 20)
12 43 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1

9, 11, 14, 18, 15, 17, 21, 23, 22, 19, 26, 35,
41, 36, 39, 34, 16, 33, 40, 38, 37, 27, 24, 20,

28, 42, 25, 31, 29, 32, 30)
13 47 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1

9, 11, 14, 18, 15, 17, 21, 23, 22, 19, 26, 20,
31, 16, 29, 39, 41, 44, 37, 43, 24, 45, 38, 28,
46, 25, 33, 27, 34, 30, 40, 42, 36, 32, 35)

14 13 (0, 1, 4, 2, 7, 6, 12, 9, 11, 8, 3, 5, 10) 0 7→ 1
15 49 (0, 1, 4, 2, 3, 6, 7, 12, 5, 8, 9, 15, 11, 0 7→ 1

13, 10, 16, 14, 21, 20, 22, 28, 17, 25, 18, 19,
23, 24, 35, 38, 40, 37, 43, 44, 48, 45, 41, 42,
31, 47, 46, 26, 32, 36, 27, 30, 29, 39, 34, 33)

Table 1.

For each i ∈ {1, 2, 3, 4, 6}, let πi be the permutation of Zni
given in Table 1. Let π5 be the

permutation of Z19 given by π5(x) = 2π−1(x), where π is as in Table 1, and observe that, by
Lemma 2.1, π5 destroys the patterns 0 7→ 0, 1 7→ 2, 1 7→ −2. Thus, for each of the 14 non-zero
pairs (si, ti) ∈ {−1, 0, 1} × {−2, −1, 0, 1, 2}, there is some i ∈ [1, 6] such that πi destroys the

pattern si 7→ ti. Let σ : Z√
n0

→ ∏6
i=1 Zni

be the natural isomorphism of abelian groups given

by the Chinese Remainder Theorem, i.e.: σ(x (mod
√
n0)) =

∏6
i=1(x (mod ni)). We claim that
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the map π0 : Z√
n0

→ Z√
n0

given by

(2.3) π0 = σ−1 ◦ (π1, . . . , π6) ◦ σ
is a permutation destroying (1, 2)-almost APs. This will be our master permutation for the
proof of Theorem 1.1(i).

We now show that π0 has the desired property. Let s ∈ {0,±1} and let (a, b, c) be a non-trivial
(that is, a, b, c are not all equal) triple of elements in Z√

n0
such that a+ c− 2b ≡ s (mod

√
n0).

Let (ai, bi, ci), i = 1, . . . , 6, be the projections on the various factors of this triple, after applying
σ. We note that ai + ci − 2bi ≡ s (mod ni), and

(2.4) π0(a) + π0(c)− 2π0(b) ≡ πi(ai) + πi(ci)− 2πi(bi) (mod ni)

for every i. Since (a, b, c) is non-trivial, there must be at least one factor, i1 say, such that
(ai1 , bi1 , ci1) is non-trivial. We consider two cases:

Case 1: There is some i2 such that ai2 = bi2 = ci2 .

Clearly, this can only occur if s = 0, so (a, b, c) and all its projections are APs. As πi1 is
AP-destroying, we have πi1(ai1) + πi1(ci1)− 2πi1(bi1) 6≡ 0 (mod ni1). Furthermore, we trivially
have πi2(ai2) + πi2(ci2) − 2πi2(bi2) ≡ 0 (mod ni2). Hence, by 2.4, π0(a) + π0(c) − 2π0(b) is a
non-zero multiple of ni2 > 2.

Case 2: (ai, bi, ci) is non-trivial for every i.

For any t ∈ {0,±1,±2} we have that, by choice of π1, . . . π6, there exists an i such that πi
destroys the pattern s 7→ t. Hence, we have π0(a) + π0(c) − 2π0(b) 6≡ t (mod

√
n0) as, by 2.4,

they are not even congruent modulo ni.

This completes the proof that π0 destroys (1, 2)-almost APs.

To prove Theorem 1.1(i), it thus remains to show how to use the master permutation π0 to
construct an AP-destroying permutation of Zn for every n ≥ n0. To begin with, let m, n be any
positive integers and write n = k ·m + l, where 0 ≤ l < m. Place the numbers 0, 1, . . . , n − 1
clockwise around a circle, and divide them up into consecutive blocks B0, . . . , Bm−1, each of
which has size k or k+1. Thus there will be exactly l blocks of size k+1. Let β(x) denote the
number of the block containing x, i.e.: x ∈ Bβ(x). We make two claims:

Claim 1: If k ≥ m then no matter which blocks have size k+1, if (a, b, c) is an AP modulo n,
then β(a) + β(c)− 2β(b) ∈ {0, ±1, ±2} (mod m).

To see this, consider a “worst case”where a = 0 and b is the furthest clockwise (last) element of
block Bi, for some 0 ≤ i < m/2 and such that 2b < n. Then k(i+1)−1 ≤ b ≤ (k+1)(i+1)−1
and so 2k(i+ 1)− 2 ≤ 2b ≤ 2(k + 1)(i+ 1)− 2. For the claim to hold, we need 2b to lie in one
of the blocks B2i−2, . . . , B2i+2. The last element of B2i−3 is at most (k + 1)(2i− 2), while the
first element of B2i+3 is at least k(2i+ 3). Hence the claim holds provided

(2.5) (k + 1)(2i− 2) < 2k(i+ 1)− 2 and 2(k + 1)(i+ 1)− 2 < k(2i+ 3).

Both inequalities are easily checked to hold provided k ≥ m. The symmetric “worst case”where
a is the last and b the first element in their respective blocks is handled similarly.

Claim 2: For any n, if numbers are placed in blocks according to β(x) := ⌊mx/n⌋, then
every block has size k or k + 1 and, for any (a, b, c) an AP modulo n, one has the stronger
conclusion that β(a) + β(c)− 2β(b) ∈ {0, ±1} (mod m).
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This claim is easily verified by plugging in the formula for β(x).

Now suppose n ≥ n0. Write n = k · √n0 + l, where 0 ≤ l <
√
n0. Imagine the numbers

0, 1, . . . , n − 1 placed clockwise around a circle. We shall describe a rearrangement of this
circular string of n numbers such that, if π(x) denotes the location of the number x after the
rearrangement, then π will be an AP-destroying permutation of Zn.

Firstly, divide the n numbers into consecutive clockwise blocks B0, . . . , B√
n0−1, such that

β(x) = ⌊x
√
n0

n ⌋. For each i = 0, 1, . . . ,
√
n0 − 1, let τi be a permutation of the elements of block

Bi which destroys APs, considering the elements of the block as lying in the group Z of ordinary
integers. It follows from Proposition 2.3(ii) of [H] that such permutations exist. Note that the τi
will automatically also destroy APs modulo n. Our AP-destroying permutation π of Zn is gotten
by first rearranging the blocks according to the master permutation π0, and then applying τi
within each block (or vice versa, the two operations commute). In other words, after applying
π to the circular arrangement of numbers, the blocks Bπ−1

0
(0), Bπ−1

0
(1), . . . , Bπ−1

0
(
√
n0−1) appear

in clockwise order and, within block Bi, its integer elements have been permuted according to
τi. Since π0 is (1, 2)-almost AP-destroying, it is easily deduced from Claims 1 and 2 that π
destroys APs modulo n. This completes the proof of Theorem 1.1(i).

We now turn to part (ii) of the theorem and divide the proof into three steps.

Step 1: There exists a (2, 2)-almost AP-destroying permutation of Zr for some r.

Proof. Let π1, . . . , π6 be as above. Using Table 1 and Lemma 2.1, it is easy to check that
we can also find permutations π7, . . . , π15 of Zn7

, . . . ,Zn15
respectively which collectively de-

stroy all of the patterns s 7→ t, s ∈ {±2}, t ∈ {0, ±1, ±2}. Hence, by a similar argument to

above, there exists a (2, 2)-almost AP-destroying permutation χr of Zr, where r =
∏15

i=1 ni.

Step 2: For every s, t ∈ N0 there exists r0(s, t) ∈ N and an (s, t)-almost AP-destroying
permutation of Zr0(s, t).

Proof. Let m be an integer such that there exists an AP-destroying permutation of Zm, and
let χm be such a permutation. Identify ZN with the set {0, 1, . . . , N − 1} for any N . Let
r = r0(2, 2) be as in Step 1. Then (see Lemma 3.5 of [H]) the map χrm : Zrm → Zrm given by

(2.6) χrm(rx+ y) = rχm(x) + χr(y), 0 ≤ x < m, 0 ≤ y < r,

is easily seen to be (2, 2)-almost AP-destroying, provided m > 2. Thus, by the already proven
Theorem 1.1(i), there exists a (2, 2)-almost AP-destroying permutation χrm of Zrm, for all
sufficiently large m. Moreover, after a suitable translation, we can choose χrm so that rm − 1
is a fixed point. In this case, the restriction of χrm to {0, 1, . . . , rm − 2} can be considered as
a permutation of Zrm−1 and, since χrm was (2, 2)-almost AP-destroying, it is easily seen that
this restriction is (1, 1)-almost AP-destroying. To summarise, we have shown that there is an
infinite arithmetic progression A, consisting of numbers congruent to −1 (mod r), such that
there exists a (1, 1)-almost AP-destroying permutation of Zn for all n ∈ A. Furthermore, since
the first term and common difference of A are relatively prime, there is an infinite subsequence
a1, a2, . . . of elements of A consisting of pairwise relatively prime numbers. This follows from
Dirichlet’s theorem, though it is actually trivial to prove, in a similar manner to Euclid’s proof
of the existence of infinitely many primes.

Now fix s, t ∈ N0. For a permutation of some Zn to be (s, t)-almost AP-destroying, it just
needs to destroy a finite number of patterns. Using Lemma 2.1 it follows that there exists an
i = i(s, t) and (1, 1)-almost AP-destroying permutations χj of Zaj , j = 1, . . . , i, which collec-
tively destroy every pattern s′ 7→ t′, |s′| ≤ s, |t′| ≤ t. Then, by a construction similar to (2.3), we

can construct an (s, t)-almost AP-destroying permutation of Zr0(s, t), where r0(s, t) =
∏i(s, t)

j=1 aj .
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Step 3: Theorem 1.1(ii) holds.

Proof. Clearly, it suffices to prove the theorem when s = t and t = 0 has already been dealt
with. So fix t > 0. We claim the theorem holds with

(2.7) n0(s, t) = [r0(4t+ 7, 4t+ 7)]2 .

To simplify notation, set M := r0(4t + 7, 4t + 7) and fix n ≥ M2. Our task is to construct
a (t, t)-almost AP-destroying permutation of Zn. Write n = kM + l, 0 ≤ l < M and place
the numbers 0, 1, . . . , n − 1 clockwise around a circle. As before, we find it most convenient
to describe our permutation in terms of a reearrangement of this circular string of n numbers.
The rearrangement will be broken down into 4 stages, of which stages 2 and 3 correspond to
the procedure in the proof of part (i) of Theorem 1.1, while stages 1 and 4 deal with the fact
that t > 0. Stage 4 is essentially the “reverse” of Stage 1.

Stage 1: First divide the n numbers into M consecutive clockwise blocks B0, . . . , BM−1, each
of size ⌊n/M⌋ or ⌈n/M⌉. Unlike in the proof of part (i), here it doesn’t matter which blocks
have which size, as we will only appeal in the end to Claim 1 from earlier. Let β1(x) denote the
number of the block containing x ∈ [0, n) at this point.

Next, partition the blocks Bi into ⌊ M
t+1⌋ “superblocks”C0, . . . , C⌊M/(t+1)⌋, each consisting of

either t+1 or t+2 ordinary blocks, with the larger superblocks placed furthest clockwise from
zero. Thus

(2.8) C0 = (B0, . . . , Bt), C1 = (Bt+1, . . . , B2t+1), etc.

Note that since M is extremely large compared to t, there is no problem in making this subdivi-
sion of ordinary blocks. Now rearrange the individual numbers in each superblock in such a way
that, if the superblock contains t+ i ordinary blocks, i ∈ {1, 2}, then after this rearrangement,
the numbers inside any ordinary block will form an AP of common difference t+ i. For example,
consider the superblock C0. There is a unique reordering (i0, i1, . . . , it) of (0, 1, . . . , t) such that
|Bi0 | ≥ |Bi1 | ≥ · · · ≥ |Bit | and the indices are increasing as long as the block sizes are constant.
After rearrangement, Bi0 would contain 0, t+1, 2(t+1), . . . , Bi1 would contain 1, t+2, 2t+3, . . .
and so on up to Bit which would contain t, 2t+ 1, . . . .

Let β2(x) denote the (ordinary) block containing x at this point and note that

(2.9) |β2(x)− β1(x)| ≤ t+ 1,

where plus one comes from the fact that some superblocks may contain t+ 2 ordinary blocks.

Stage 2: Choose a (4t + 7, 4t + 7)-almost AP-destroying permutation π0 of ZM and per-
mute the ordinary blocks according to this - in other words, after applying π0 the blocks
Bπ−1

0
(0), . . . , Bπ−1

0
(M−1) appear in clockwise order. Let Bi := Bπ−1

0
(i) and let β3(x) denote

the scripted block containing x at this point. Thus

(2.10) β3(x) = π0(β2(x)).

Stage 3: Let τ0, τ1 be AP-destroying permutations of
{

1, . . . , ⌊ n
M ⌋

}

and
{

1, . . . , ⌈ n
M ⌉

}

respec-
tively, considered as subsets of N. From Proposition 2.3(ii) of [H] we know that such permuta-
tions exist. Given any set S of integers which forms an AP of length ⌊n/M⌋ (resp. ⌈n/M⌉), it
is obvious how to extract from τ0 (resp. τ1) an AP-destroying permutation of S. We perform
such a permutation on each scripted block Bi.

Stage 4: Divide the scripted blocks into superblocks in the same way as in (2.8), thus

(2.11) C0 = (B0, . . . ,Bt), C1 = (Bt+1, . . . ,B2t+1), etc.

We then rearrange the numbers in each superblock in such a way that, for each block Bi,
the positions of its elements after rearrangement form an AP of common difference |C0| ∈
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{t+ 1, t+ 2}. This is accomplished by reversing the procedure in Stage 1 - we hope it is clear
what is meant by this and spare the reader further details. Let β4(x) be the number of the
scripted block containing x at this point and note that, analogous to (2.9), one has

(2.12) |β4(x)− β3(x)| ≤ t+ 1.

Let π : Zn → Zn be the permutation defined by the rearrangement accomplished in Stages
1-4, that is, π(x) denotes the location of the number x in the string after the rearrangement.
We claim that π is (t, t)-almost AP-destroying. To see this, let (a, b, c) be a triple of elements
of Zn satisfying

(I) a, b, c not all equal,
(II) a+ c− 2b ≡ η (mod n) for some η ∈ [−t, t]

and consider two cases:

Case 1: a, b, c all lie in the same ordinary block Bi at the end of Stage 1.

Since a, b, c are not all equal and the numbers in Bi, as it stands after Stage 1, form an
AP with common difference strictly greater than t, property (II) can only hold if a, b, c form
a non-trivial AP modulo n. But since the appropriate τ j destroys APs of integers, and hence
also APs modulo n since n is much larger than M , we see that the locations of a, b, c will not
form an AP modulo n after Stage 3. But they will still lie in the same scripted block hence,
after Stage 4, π(a) + π(c)− 2π(b) must be a non-zero multiple of t+ i, i ∈ {1, 2}. In particular,
π(a) + π(c)− 2π(b) (mod n) 6∈ [−t, t].

Case 2: a, b, c are not all in the same ordinary block upon completion of Stage 1.

By definition, what we’re assuming in this case is that β2(a), β2(b), β2(c) are not all equal.
If a, b, c formed an AP modulo n then it would follow from Claim 1 in the proof of part (i) of
Theorem 1.1 that

(2.13) β1(a) + β1(c)− 2β1(b) (mod M) ∈ [−2, 2].

Given that (II) holds and that each ordinary block has size greater than t, we can at least be
sure that

(2.14) β1(a) + β1(c)− 2β1(b) (mod M) ∈ [−3, 3].

Combined with (2.9) it follows that

(2.15) β2(a) + β2(c)− 2β2(b) (mod M) ∈ [−(4t+ 7), 4t+ 7].

But the permutation π0 is (4t+ 7, 4t+ 7)-almost AP-destroying and thus, by (2.10),

(2.16) β3(a) + β3(c)− 2β3(b) (mod M) 6∈ [−(4t+ 7), 4t+ 7].

By (2.12), this implies in turn that

(2.17) β4(a) + β4(c)− 2β4(b) (mod M) 6∈ [−3, 3].

Since the scripted blocks still have size greater than t, it follows from Claim 1 on page 4 that
π(a) + π(c)− 2π(b) (mod n) 6∈ [−t, t], as desired. �

3. Proof of Theorem 1.2

Let p be a prime. We denote by Rp (resp. Np) the collection of quadratic residues (resp.
non-residues) modulo p. We will be slightly abusive in this context and use the same notations
to denote subsets of Zp and of Z. Hence, as subsets of Zp one has

(3.1) Rp = {x2 : x ∈ Zp}, Np = Zp\Rp,
7



whereas, as subsets of Z,

(3.2) Rp =

{

x ∈ Z :

(

x

p

)

∈ {0, 1}
}

, Np = Z\Rp =

{

x ∈ Z :

(

x

p

)

= −1

}

.

Lemma 3.1. Let p be a prime such that p ≡ 3 (mod 8). Then both −1 and 2 are in Np.

Proof. This is elementary number theory. That−1 is not a square mod p follows from Lagrange’s
theorem for groups. That 2 is not a square follows from Gauss’ Lemma. �

Lemma 3.2. Let p > 3 be a prime. Then there exists an integer ξ such that both ξ and ξ − 1
lie in Np.

Proof. This follows immediately from the fact that |Np| = |Rp| − 1 and {0, 1, 4} ⊆ Rp. �

Lemma 3.3. Let p > 2 be a prime, and let a, b, c be integers not divisible by p. Then (0, 0) is the
only solution in Zp to the congruence ax2 + bxy+ cy2 ≡ 0 (mod p) if and only if b2 − 4ac ∈ Np.

Proof. Elementary. Suppose we have a solution with y 6≡ 0. Then completion of squares gives

(3.3) xy−1 ≡ (2a)−1
(

−b±
√

b2 − 4ac
)

,

which is meaningful if and only if b2 − 4ac ∈ Rp. �

We are now ready to prove Theorem 1.2. Let p > 3 be a prime congruent to 3 (mod 8) and
let ξ be any integer satisfying the conditions of Lemma 3.2. Define the map f : Zp → Zp as
follows:

(3.4) f(x) =

{

x2, if x ∈ {0, 2, 4, . . . , p− 1},
ξx2, if x ∈ {1, 3, 5, . . . , p− 2}.

Note that f is one-to-one. Let (a, b, c) be an arithmetic progression modulo p. Denote a := x,
b := x+ y, c := x+ 2y. We need to show that

(3.5) f(x) + f(x+ 2y) ≡ 2f(x+ y) ⇒ y ≡ 0.

Denote also E := {0, 2, 4, . . . , p−1} and O := {1, 3, 5, . . . , p−2}. We do a case-by-case analysis.

Case 1: a, b, c ∈ E.

The congruence in (3.5) becomes

(3.6) x2 + (x+ 2y)2 ≡ 2(x+ y)2,

which reduces to 2y2 ≡ 0, hence y ≡ 0 since p > 2. Thus (3.5) holds in this case.

The case when a, b, c ∈ O is completely analogous to Case 1.

Case 2: a, b ∈ E, c ∈ O.

The congruence in (3.5) becomes

(3.7) x2 + ξ(x+ 2y)2 ≡ 2(x+ y)2,

which can be expanded as

(3.8) (ξ − 1)x2 + 4(ξ − 1)xy + 2(2ξ − 1)y2 ≡ 0.

By the choice of ξ we know that ξ − 1 ∈ Np, so in particular ξ − 1 6≡ 0. Also, 2ξ − 1 6≡ 0, for
otherwise we would have ξ − 1 ≡ −1/2, contradicting Lemma 3.1 and the fact that ξ − 1 ∈ Np.
Hence all the coefficients in the binary quadratic form in (3.8) are non-zero modulo p, so
we can apply Lemma 3.3 and deduce that there is no solution with y 6≡ 0 if and only if
[4(ξ − 1)]2 − 8(ξ − 1)(2ξ − 1) ∈ Rp. But

(3.9) [4(ξ − 1)]2 − 8(ξ − 1)(2ξ − 1) = [4(ξ − 1)]2 ·
( −1

2(ξ − 1)

)

,
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hence this lies in Rp if and only if −1
2(ξ−1) does so. But the latter contradicts Lemma 3.1 and

the choice of ξ.

The case when a ∈ O, b, c ∈ E is completely analogous to Case 2.

Case 3: a, c ∈ E, b ∈ O.

The congruence in (3.5) becomes

(3.10) x2 + (x+ 2y)2 ≡ 2ξ(x+ y)2,

which can be expanded as

(3.11) (ξ − 1)x2 + 2(ξ − 1)xy + (ξ − 2)y2 ≡ 0.

Once again, all the coefficients are non-zero modulo p, so we can apply Lemma 3.3 and deduce
that there is no solution with y 6≡ 0 if and only if [2(ξ − 1)]2 − 4(ξ − 1)(ξ − 2) ∈ Rp. But

(3.12) [2(ξ − 1)]2 − 4(ξ − 1)(ξ − 2) = [2(ξ − 1)]2 ·
(

1

ξ − 1

)

,

hence this lies in Rp if and only if 1
ξ−1 does so. But the latter contradicts the choice of ξ.

Case 4: a, b ∈ O, c ∈ E.

The congruence in (3.5) becomes

(3.13) ξx2 + (x+ 2y)2 ≡ 2ξ(x+ y)2,

which can be expanded as

(3.14) (ξ − 1)x2 + 4(ξ − 1)xy + 2(ξ − 2)y2 ≡ 0.

The coefficients are all non-zero modulo p so, by Lemma 3.3, there is no solution with y 6≡ 0 if
and only if [4(ξ − 1)]2 − 8(ξ − 1)(ξ − 2) ∈ Rp. But

(3.15) [4(ξ − 1)]2 − 8(ξ − 1)(ξ − 2) = [4(ξ − 1)]2 ·
(

ξ

2(ξ − 1)

)

,

hence this lies in Rp if and only if ξ
2(ξ−1) does so. Once again, this contradicts Lemma 3.1 and

the choice of ξ.

The case when a ∈ E, b, c ∈ O is completely analogous to Case 4.

Case 5: a, c ∈ O, b ∈ E.

The congruence in (3.5) becomes

(3.16) ξx2 + ξ(x+ 2y)2 ≡ 2(x+ y)2,

which can be expanded as

(3.17) (ξ − 1)x2 + 2(ξ − 1)xy + (2ξ − 1)y2 ≡ 0.

The coefficients are still non-zero modulo p so, by Lemma 3.3, there is no solution with y 6≡ 0
if and only if [2(ξ − 1)]2 − 4(ξ − 1)(2ξ − 1) ∈ Rp. But

(3.18) [2(ξ − 1)]2 − 4(ξ − 1)(2ξ − 1) = [2(ξ − 1)]2 ·
( −ξ

ξ − 1

)

,

hence this lies in Rp if and only if −ξ
ξ−1 does so. Once again we have a contradiction to Lemma

3.1 and the choice of ξ. This covers all possible cases and completes the proof of Theorem
1.2. �
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4. Final remarks

We don’t know of any reason to suspect that Conjecture C of [H] may be false. However, a
full proof of it remains a challenging problem, given that the value of n0 in Theorem 1.1(i) still
leaves a brute-force computational attack way out of reach. A less ambitious goal could be to
see how small n0 can be made using the ideas of this paper.

An obvious approach to Conjecture C is to consider a uniformly random permutation π of
Zn and let X be the number of non-trivial APs not destroyed by π. It is easy to check that
E[X] = Θ(n). As a first hypothesis, one might guess that the events that individual APs
are not destroyed by π are almost independent and hence that X is approximately Poisson
distributed. In that case, the proportion of AP-destroying permutations of Zn would decrease
exponentially with n. A priori, this approach could still only yield Conjecture C for n sufficiently
large, but probably with a value of n0 which is sufficiently small to complete the proof by
direct computation. However, it remains an open question whether this intuition can be made
rigorous. A successful moment analysis was carried out in [JS] for permutations destroying APs
of length 4, with the important point being that the expected number of non-trivial 4-term
APs not destroyed by a random permutation of Zn is O(1). This provides some additional
circumstantial evidence for Conjecture C.

An AP of length 4 is a common solution to the pair of linear equations x1 − 2x2 + x3 = 0,
x2 − 2x3 + x4 = 0. It is natural to ask the following more general question:

Question 4.1. Let k,m ∈ N and let Li(x1, . . . , xk) = 0, i = 1, . . . ,m, be linear equations with
integer coefficients. When is it the case that there is an n0 = n0(L1, . . . ,Lm) such that there
exists a permutation of Zn destroying all non-trivial solutions (as defined in [R]) to L1 = · · · =
Lm = 0 for all n ≥ n0 ?

Indeed, it seems reasonable even to ask this kind of question for general polynomial equations,
not just linear ones. Here we confine further speculation to the case of a single linear equation

a0+
∑k

i=1 aixi = 0, ai 6= 0 ∀ i > 0. Recall that the equation is said to be (translation) invariant

if a0 =
∑k

i=1 ai = 0. One can make the following straightforward observations:

(i) Suppose a0 6= 0. If n > 2|a0|, then there exists a unit u ∈ Z
×
n such that ua0 6≡ a0 (mod n).

Then the permutation x 7→ ux (mod n) will destroy all solutions to the equation.

(ii) Suppose
∑k

i=1 ai 6= 0. If n >
∣

∣

∣

∑k
i=1 ai

∣

∣

∣
then the translation x 7→ x + 1 (mod n) will

destroy all solutions to the equation.
(iii) Suppose the equation is invariant and k = 2, so the equation reads a1(x1 − x2) = 0,

for some a1 6= 0. A permutation π of Zn will destroy all non-trivial solutions if and only if,
whenever x1 and x2 are distinct but lie in the same congruence class modulo n

GCD(a1, n)
, then

π(x1) and π(x2) lie in different congruence classes. Clearly, such a permutation exists for all

n ≥ [GCD(a1, n)]
2.

Hence, for a single linear equation, Question 4.1 is only interesting if the equation is invariant
and k ≥ 3. If we then consider a uniformly random permutation of Zn, it is easy to see that
the expected number of non-trivial solutions not destroyed is Θ(nk−2). This suggests that
permutations destroying all non-trivial solutions should exist when k = 3, but perhaps do not
do so at all when k > 3. We therefore ask the following:

Question 4.2. Let L(x1, . . . , xk) = a0 +
∑k

i=1 aixi = 0, ai,∈ Z, ai 6= 0 ∀ i > 0, be a linear
equation. Is it true that the following statements are equivalent:

(i) There is an n0 = n0(L) such that, for every n ≥ n0, there exists a permutation π of Zn

destroying all non-trivial solutions of L = 0.
(ii) Either the equation L = 0 is variant, or it is invariant and k ∈ {2, 3} ?

As a final remark, note that in Propostion 2.3(i) of [H] we proved that no permutation of any
finite abelian group can destroy all non-trivial solutions to the Sidon equation x1+x2−x3−x4 =
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0. However, we do not see at this point how to modify that argument for equations in four or
more variables in general.
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