Lecture 1

Various notations are used when comparing the rates of growth of different
functions, and it is a good idea for us to get these out of the way before we
start.

NOTATION : Let f,g: N — R be any functions. We write

(i) f = O(g) if the quotient |f(n)/g(n)| is bounded as n — co.
(ii) f =Q(g) if g = O(f).

(iii) f —0( ) if f(n)/g(n) — 0 as n — oo.

(iv) f~gif f(n)/g(n) = 1asn— .

(v) f 2 g if limsup|f(n)/g(n)| < 1.

(vi) f=gifg<f.

First, some general words of wisdom (or waffle) :

The basic application of probabilisitc techniques to combinatorics is to prove
existence of a structure from amongst a certain class X of structures, which
possesses some desired property P.

One does so by introducing some appropriate probability measure y on the
collection X and showing (somehow) that, if one chooses at random, accord-
ing to the distribution u, an element of X', then with positive probability
one’s choice possesses the property P.

An important remark :

Usually, though not always, u is just a simple uniform distribution. Also,
since we're interested in combinatorial applications, X is usually (though
not always) a finite collection® This means that

(i) there is usually no great mystery about how the probability theory is
introduced to the problem under consideration. It is intuitively clear what
is meant by ‘choosing at random’ and one doesn’t need to be an expert in
probability theory to understand what’s going on.

1We will see some applications, for example in number theory, where X is infinite. But
even here, the underlying set of interest, namely the natural numbers, is discrete.



(ii) also, since the sets under consideration are usually finite, one can in
principle present most of the same arguments without ever mentioning prob-
ability theory at all, i.e.: by ‘purely combinatorial’ reasoning. Though this is
the case, for more sophisticated applications, the advantages of using notions
of probability in terms of the clarity of exposition outweigh the disadvan-
tages of having to learn these notions.

Note that the probabilistic method is usually employed to show that some
desired structure exists. It doesn’t usually tell you how to actually find such
a structure. This is an algorithmic problem, but obviously for real-world
applications, one can conceive that it might be essential to actually be able
to find what one is looking for. Sometimes the probabilistic method gives
a good randomized algorithm, basically an algotirhm that is fast but has a
certain probability of failure?.

Intuitively, it is clear how this would work. One shows that a structure
with property P exists by showing that if one chooses at random, then one
finds something with property P with probability € > 0. Often it turns out
that the proof yields a value of € which is close to 1. This means that a
random choice is very likely to be a good one.

The course is roughly divided into three parts :

I. Introduction to the basics of the probabilistic method by means of a
variety of examples.

I1. Some more sophisticated proabilistic techniques, in particular so-called
concentration inequalities.

II1. To be decided (depends on time considerations etc.).

We will discuss applications of the method to a variety of mathematical
problems, for example in graph theory, Ramsey theory, number theory, dis-
crepancy theory ...

Example 1 : Ramsey Numbers

DEFINITION 1 : The complete graph on n vertices, denoted K, is the graph
in which each pair of vertices is joined by a single edge. Thus K, contains

2There is also a whole theory of derandomization, which deals with how to turn fast
randomizsed algorithms into decent deterministic ones. We will not discuss this topic in
our course. There is, however, a chapter devoted to it in the book of Alon and Spencer



n
( 9 ) edges.

I will now state and prove an abridged form of what has become known
as Ramsey’s theorem. It is abridged in the sense that, in its’ full generality,
the number of colors in the statement below can be any finite number, not
just two.

Theorem 1 Let k,l > 2 be fized positive integers. Then for all sufficiently
large positive integers n. (how large depends on k,l), the following holds :

If each edge of K, is colored either red or blue, then there must exist ei-
ther a red K or a blue K.

Before proving this, we introduce some notation :

NOTATION : We denote by R(k,l) the smallest integer n for which the
above statement holds. It is called the (k,l)-th Ramsey number. Theorem
1 states that these numbers exist, for every k,[ > 2.

PROOF OF THEOREM : We present the standard argument, which is ba-
sically an induction on k + {.

Step 0 : Note that R(k,l) = R(l,k) by symmetry.

Step 1 : Observe that R(2,l) = [ since a Ky is just a graph with a sin-
gle edge, so if we're to avoid a red K5 then we must color every edge of our
graph blue. And then we’ll have a blue K; as soon as we have [ or more
vertices.

Step 2 : The general induction step involves verifying the following inequal-
ity :

R(k,l) < R(k,l — 1) + R(k — 1,1). (1)
So we assume the two Ramsey numbers on the right hand side of (1) exist
and consider a 2-coloring of the graph K,,, where n = R(k—1,1)+R(k,l—1).
We must prove the existence of either a red Kj or a blue K;. Pick any one
of the n vertices and give it a name, say v. Now v is joined by an edge to



n — 1 other vertices. Since
n—1>[R(k—1,1) - 1]+ [R(k,l — 1) — 1],

one of the following must occur :

(i) v is joined to at least R(k — 1,1) vertices by a red edge, or
(ii) v is joined to at least R(k,l — 1) vertices by a blue edge.

Suppose (i) occurs. By definition of the Ramsey numbers, amongst the
vertices joined to v by a red edge, there must exist either a red K;_; or a
blue K;. In the latter case we're done already. In the former case, adding
on the vertex v gives a red K}, and again we’re done.

If instead (ii) holds, then the argument is similar. It is left to the reader
to write out the details.

Corollary 2 For every k,l > 2 we have that

R(k,l)g(k;:izz). (2)

ProorF : This follows from (1) and the well-known Pascal identity for
binomial coefficients

r r r—1
The details are left as an exercise.

It is natural to consider the special case k = [. Then (2) becomes
2k —2
R(k,k)s( e ) (3)

Using simply the fact that

(both sides count the number of subsets of an n-element set), it follows that

R(k, k) < 481, (4)



Using Stirling’s formula? (details left as an exercise), we can obtain a slightly
better estimate, namely

4k—1
Vrlk=1)

But the important point is that (4) and (5) both say that the Ramsey num-
bers R(k, k) grow at worst exponentially.

R(k, k) = (5)

Now, finally, we intorduce probabilstic ideas to the discussion, in order to
show that the numbers R(k, k) do, in fact, exhibit exponential growth. We
do this by proving

Theorem 3 Let k > 3. If the integer n satisfies
. (3
( k > 2 <1, (6)
then R(k,k) > n.

For the moment, let us assume the theorem and prove what we’re really
after, namely

Corollary 4
R(k, k) > 2k/2, (7)
PROOF OF COROLLARY : We must show that if £ > 3 and n = 28/2,

then (6) is satisfied. Since <Z ) = M"—_l%"_—kﬂl and, in particular,

( I; ) = k(kgl), the left-hand side of (6) is thus at most

k
f 21+§
n -

B2

n! ~n"e "V2mn.



Taking n = 2¥/2 this becomes simply 2'1+/2 /E!. It is then a simple exericse
to verify that 2't5/2/k! < 1 for all k > 3.

We remark that a more careful analysis, again based on Stirling’s formula
and left as an exercise for the reader, shows that

Rk, k) » %mk/?. (8)

But again the main point is that both (7) and (8) say that the numbers
R(k, k) exhibit exponential growth. Combining all our results, the essence
of what we have found is expressed in the following :

V2 < likminfR(k,k)l/k < limsup R(k, k)*/* < 4. (9)
—00

k—o00

BIG Open Problem Does
lim R(k,k)

k—00

ezxist and, if so, what is it ¢

This problem has been open for 70 years without any progress whatsoever
having been made beyond (9). An even more daunting task, however, is to
compute Ramsey numbers R(k,[) exactly. In fact, for £,/ > 2 only a small
(finite) collection of Ramsey numbers have been computed exactly.

We conclude this lecture by proving Theorem 3 :

PROOF OF THEOREM 3 : The proof will use the following simple facts
about probabilities :

(I) For any two events A and B,
P(AUB) < P(A) + P(B), (10)

with equality if the events are mutually exclusive, i.e.: if P(AN B) = 0.
(IT) If A and B are independent events, then

P(ANB) = P(A)- P(B). (11)
Consider now a fixed n and k, and a random 2-coloring of the graph K.

This means that each of the ( ;" ) edges is colored independently red or
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blue, each with probability 1/2. We want to estimate the probability of
obtaining a monochromatic K. We divide this procedure up into three
steps :

k >
(i) the probability of a given Kj being entirely red is [%]< 2 . This

follows from (11) and the fact that the probability of any particular edge
being red is 1/2. Obviously, we have the same expression for the probability
of a given K, being entirely blue.

-(3)
(ii) hence, the probability of a given K} being monochromatic is 2 2 .
This follows from (i) and (10), since there are two mutually exclusive ways
to have monochromaticity, namely redness or blueness, and these have equal
probability.

(iii) hence, the probability of there being some monochromatic Kj, is at most

k
17
( Z ) -2 ( 2 . This follows from the previous steps and (10), since there

are ( Z ) complete k-subgraphs in K,,.

From these estimates it follows that, if (6) holds, then there is a pos-
itive probability that a randomly chosen coloring of K, will include no
monocrhomatic Ki. In other words, at least one such good coloring ex-
ists, and thus R(k, k) > n. This completes the proof of the theorem.



Lecture 2

Today we will discuss two more examples, this time taken from number
theory. One will notice an obvious similarity between the two examples,
and between the first one especially and that discussed in the first lecture.
In fact, the similarities between all three examples run quite deep, though
it will not be our purpose to explore this issue in any great detail. One is
referred to the book [1] for a more comprehensive treatment.

Example 1 : Van der Waerden numbers

DEFINITION 1 : Let £ > 1. An increasing sequence a1 < ag < --- < a of
k integers is said to be an arithmetic progression of length k and common
difference d if a;11 —a; =d fori =1, ...,k — 1. We will use the abbreviation
‘k-AP’ to denote an arithmetic progression of length k.

The following theorem was proven by the Dutch mathematician Bartel van
der Waerden in the 1920s and has been given his name :

Theorem 5 (van der Waerden’s Theorem) Let k,m > 1 be given inte-
gers. Then for all sufficiently large positive integers n (depending on k and
m), the following holds :

If the integers 1,2,...,n are colored with at most m colors, then there
must exist a monochromatic k-AP.

NOTATION : The van der Waerden number W(k,m) is the least integer
n for which any m-coloring of {1,...,n} must yield a monochromatic k-AP.
The theorem states that these numbers exist.

It is beyond the scope of this course to give a fully rigorous proof of Theo-
rem 5. A full proof, taken from [1], was handed out in class. Basically, the
proof involves two nice ideas and a lot of horrible notation. The two ideas are

(i) observe that W (2,m) = m+1 (why 7). This allows us to get an induction
started. The induction proceeds by proving that the numbers W (k + 1,m)
exist for all m and a fixed k, assuming that the numbers W (k, m) all exist.
(ii) for a fixed m and k, the proof of the existence of W (k,m) in this induc-
tive manner involves an idea which has become called color focusing. It is
basically the same idea for all m but because the numbers involved grow so



drastically with m, it becomes something of a technical nightmare to write
down the details. The idea itself is quite beautiful, though.

We will be content to illustrate the method by proving that
W(3,2) < 325. (12)

Note that, according to the program outlined above, our proof of this should
at some point use the knowledge that W (2, m) = m + 1. T’ll leave it as an
amusing exercise for you to spot where this is used, since it would be easy
to miss it !

So let us suppose the numbers from 1 through 325 have been colored red
or blue in some manner. We must prove the existence of a monochromatic
3-AP. The first step is to divide the 325 numbers into 65 blocks B, ..., Bgs
of 5 consecutive numbers. So B; = {1,2,3,4,5}, By = {6,7,8,9,10} etc.

There are 2° = 32 possible ways to color any block with 2 colors. Thus,
amongst the first 33 blocks, there must be two which are colored in ex-
actly the same pattern. Pick any two such blocks, say B; and B;;. Since
i+ j < 33, it follows that 7 + 25 < 65. Hence the block B;i9; exists. We
now focus our attention on the three blocks B;, B;y; and B;o;.

The rest of the proof is most easily understood with the help of pictures. 1
am not going to draw any pictures here, so I recommend that you look at
the handout from [1] at the same time as you read this proof.

Note that

B; = {5i — 4,5i — 3,5i — 2,5i — 1,5i},
Biyj = {5(i +5) —4,5(i +5) — 3,5(i + ) — 2,5( +) — 1,5(; + )},
Biyaj = {5(i +25) — 4,5(i +27) — 3,5(i + 2j) — 2,5(i +2) — 1,5(; + 2j)}.

Amongst the first three elements of the block B;, at least two must get the
same color. Let’s suppose that 5i — 4 and 57 — 2 are both colored red and
complete the proof in this case. The argument is similar in the other five
cases and I leave it to yourselves to become convinced of that.

If now 5 was also colored red, then we’d have a red 3-AP, namely
{bi — 4,5i — 2,5i}. So we may assume 5i is colored blue. Next, we turn



to the block B;y;. Since it has exactly the same color pattern as B;, we
conclude that 5(z + j) — 4 and 5(i + j) — 2 are both colored red, whereas
5(i + j) is colored blue.

Finally, now, we focus on B;,o; and, in particular, zone in on the num-
ber 5(: + 25). I claim that, no matter what color we give it, we can’t
avoid having a monochromatic 3-AP. For if this number is colored red, then
{51 —4,5(i + j) — 2,5(i + 25)} is a red 3-AP. But if is colored blue, then
{5%,5(i + 7),5(i + 27)} is a blue 3-AP. This completes the proof of (12).

The bounds on Van der Waerden numbers obtained by this kind of color
focusing method are eeeeeeeenooooorrrrrmoooouuusssss®. We can see that
the method is not optimal even for the example of W(3,2). Our method
gives that W (3,2) < 325. But, in fact, W(3,2) = 9. To see this, first check
by hand that for every partition of {1,2,...,9} into two subsets, at least one
contains a 3-AP. On the other hand, we can 2-color the integers 1,...,8 so
that there are no monochromatic 3-APs. For example, let 1,3,6,8 be red and
2,4,5,7 be blue.

Even the best-known upper bounds on van der Waerden numbers (obtained
by quite different and, I think it is safe to say, more sophisticated methods)
are really, really big. We know that®

k+9
2kt

W(k,m) < e™ . (13)

We finish our discussion by instead obtaining lowwr bounds for the numbers
W (k, m) via a probabilistic argument.

W (k,m) > /2(k — 1) m*—1/2, (14)

PROOF : Left as an exercise. The special case k = 3 was discussed in class.

Theorem 6

“more precisely, they are not primitive recursive, for those of you who know what that
means

Sthis bound was obtained by Timothy Gowers only a few years ago as a consequence
of his proof of what is known as Szemeredi’s theorem, which is in itself a strengthening
of van der Waerden’s result. See [1] and the notes in German I told you about. Gowers
obtained the Fields Medal for this and other work.
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The gap between (13) and (14) is an important open problem in combi-
natorial number theory/Ramsey theory. The gap is obviously enormous. I
think it is fair to say that most people believe that the lower bound (14),
which gives exponential growth in &k for a fixed m, is closer to the truth.
But noone knows ...

Example 2 : Sum-free sets

DEFINITION 2 : A subset A of an abelian group G is said to be sum-free if
there are no solutions in A to the equation z = y + 2.

The abelian groups which are of most interest to number theorists are Z
and Z,, where p is a prime.

Theorem 7 (Alon, Kleitman ?) If A is any finite subset of Z, then
there ezists a sum-free subset B of A such that |B| > |A|/3.

PROOF : Deferred to the next lecture.

REFERENCE

[1] R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, Wiley 1980.
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Lecture 3

We now prove Theorem 7. First I will present the argument without men-
tioning probability. Then I will introduce some very basic general notions
from probability, which we will need for later on in the course, and then
present the same argument again, but ‘dressed up’ in this more fancy ter-
minology.

(COMBINATORIAL) PROOF OF THEOREM 7 : Let A be given. First choose
a prime number p with the following two properties® :

(I) p > 2 - maxge4 |a,
(IT) p = 2 (mod 3).

Write p = 3k + 2 and let C := {k + 1,k + 2,...,2k + 1}. Observe that
the set C' is not only sum-free, but is in fact sum-free modulo p, i.e.: there
are no solutions in C to the equation z = y+2z (mod p). The other important
thing is that
-1
c| > I’T. (15)

The crucial idea in the proof is now to count, in two different ways, the
number of ordered pairs’(z,a) of integers such that

(i) ze{1,...p—1},

(ii) a € A,

(iii) za (mod p) € C.

Call the collection of such pairs § for convenience. On the one hand, for
each fixed a, the number of z such that (z,a) € S is just |C|. This is be-
cause, as x ranges over the integers from 1 to p — 1, za (mod p) also does
so, though perhaps in a different order. To see this, just observe that the
choice of p means that p does not divide a (by (I)) and hence, for any two

5The existence of such a prime is guaranteed by the fact that there are infinitely many
primes p = 2 (mod 3). This can be proven by an elementary argument exactly analogous
to Euclid’s basic proof that there are infinitely many primes period. Note, though, that
there is a very general result, due to Dirichlet (1829), which states that if a,b are any
two relatively prime integers, i.e.. GCD(a,b) = 1, then there exist infinitely many primes
p =b (mod a).

"the trick of counting ordered pairs in two different ways is basically the idea of inter-
changing the order of summation in a double sum (discrete setting), or changing the order
of integration (continuous setting), i.e.: Fubini’s theorem.

12



distinct z1,z2 € {1,...,p — 1}, z1a and z2a are also distinct and non-zero
modulo p.
We thus conclude, using (15), that

4]

SI=1C1- 141> (p—1) - =5 (16)

On the other hand
p—1
IS =" B, (17)
=1

where By := {a € A : za (mod p) € C}. From (16) and (17) it follows that
there is at least one z for which |B;| > |A|/3. But the set {za:a € B} is
sum-free, since C' is. But then B, is itself a sum-free subset of A and we’re
done.

Remark Alon and Kleitman showed in their paper that the constant 1/3
in the statement of Theorem 7 cannot be replaced by anything bigger than
12/29. It remains an open problem, however, as to what the largest possi-
ble constant is for which the theorem holds. Here I wish to note that the
argument given above cannot be directly modified to go beyond 1/3. What
one would need in order to be able to do this is to construct a subset of
{1,...,p — 1} which is larger than the set C but is still sum-free modulo p.
But this is not possible. Given any prime ;zl), there is no sum-free subset of
pt

the abelian group Z, of size larger than »5=. This follows (exercise !) from

the so-called Cauchy-Davenport Theorem, which states the following :
Let p be a prime and A, B be any two subsets of Z,. Then
A+ B| > min{p, |4] + |B| - 1}.
Here A+ B:={a+b:a€ Abec B}.
We now introduce some basic terminology from probability theory and then

rewrite the proof of Theorem 7 in this fancy language. So for the moment
it will be a bunch of definitions !

DEFINITION 3 : Let Q be a finite® set. A probability measure p on € is
a function p : 2% — [0, 1] such that

8as this is not meant to be a course in general probability theory, we choose to avoid
the technicalities encountered when extending our concepts to sets of arbitrary cardinality.
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() u(©) =1,
(ii) for any two disjoint subsets A, B of Q we have that pu(4A U B) =

#(4) + u(B).

The property (ii) is called additivity. Note that it implies that the mea-
sure p is completely determined by its value on singelton subsets of . If
the set Q consists of n elements, then a standard notation is  := {1,...,n}
and p({i}) := p;. We think of Q as the set of possible outcomes of some
random process, and p; is the probability of the outcome being 1.

The simplest probability measure on a space is the one that assigns equal
probability to each outcome, i.e.: p; = 1/n for all i in the above notation.
This is called uniform measure and corresponds most intuitively to the no-
tion of the outcome being ‘random’.

DEFINITION 4 : A set () endowed with a probability measure p is called
a probability space and denoted (€2, ). A subset of 2 is then called an event.

DEFINITION 5 : Let (2, ) be a probability space. A function X :  — R
is called a (real-valued) random variable on Q°.
If Q ={1,...,n}, then the standard notation is X (i) := z;.

DEFINITION 6 : With the standard notations above, if X is a random vari-
able on the space (€2, 1) then the expected value/expectation of X, denoted
E[X], is the quantity

n
i=1
The following trivial fact is often used :

Proposition 8 Let X be a random variable on a space (2, u). Then
P(X > E[X]) > 0. (18)

PROOF : The proof is trivial once one understands the notation. First, it
is common to write P(---) instead of u(---) when there can be no confu-
sion as to what probability measure is being used. Second, the expression

9the term random variable is an unfortunate historical accident. A more accurate term
would be random function. But the former term has become so conventional that no-one
dares change it. It also explains why the letter X, rather than say f, is used to denote a
random variable.

14



‘X > E[X] is shorthand for the event {w € Q : X (w) > E[X]}. This kind of
sloppy notation has become standard, so we will use it from now on without
further comment.

A second property, informally referred to as linearity of expectation, is also
simple but very useful :

Proposition 9 (Linearity of expectation) Let X1, ..., X be random vari-
ables on the same probability space (Q, p). Then
k
E[Xl—f----—f—Xk]:ZE[Xi]. (19)
i=1

PROOF : Exercise. Note that the sum of RV:s on the left of (19) means
just what one would expect, namely the pointwise sum of functions.

One particular class of RV:s which is especially useful in applications is
the class of so-called indicator variables.

DEFINITION 7 : Let (Q,u) be a probability space and A C Q. The in-
dicator random variable of the event A, denoted X4, is the random variable
given by

1, ifweA,
XA(“’)_{O, if w¢ A

Note that it is an immediate consequence of the definition that
BXa] = p(A). (20)

More generally, let f : Q@ — Q be any function. The indicator random
variable of the event ‘f € A’, denoted Xy 4, is the random variable given by

1, i fw) €4,
Xra) _{ 0, if f(w) & A.

The analogue of (20) is then

B[Xya] = ulf 1 (A)], (21)
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where f71(A) = {w : f(w) € A}. Note that (20) is the special case where
f is the identity map on , i.e.: f(w) = wV w. Also note that if f is a 1-1
mapping and g is uniform measure, then

A
Bl a) = () = g1 (22)
This fact wil be used in the redoing of the proof of Theorem 7, which we are

now ready to present :

(PROBABILISTIC) PROOF OF THEOREM 7 : Let A be given and choose
a prime p and the set C' as in the first proof. We shall work in the proba-
bility space (€2, ) where Q = {1,2,...,p — 1} and p is uniform measure. For
each a € A let f, : Q@ — Q be the map given by

fo : w— wa (mod p).

As explained in the previous proof, the maps f, are each one-to-one. Let
Xq := Xy, c. Then, by (22), for every a we have

Icl 1
E[X,]=—-> .
[Xa] 5173

Let X =} ,c4 Xq4. By linearity of expectation,

A
E[X] > u
3
Thus, by Proposition 8, there exists some w € 2 such that X (w) > |A|/3.

But, unwinding the definitions, we see that
X(w) =#{a € A: wa (mod p) € C}.

This is a sum-free subset of A, by the same argument as before, so we're
done !

To complete the first part of the course I have chosen three further ex-
amples from graph theory to illustrate the use of the basic probabilistic
method. The arguments in our three examples will become successively
more intricate, though in all cases, the amount of probability used is, in
principle, no more than what is contained in Propositions 8 and 9 above.
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Example 1 : Tournaments

DEFINITION 8 : A Hamilton'® path in a graph is a path that visits every
vertex exactly once.

DEFINITION 9 : A tournament on n players is the complete graph K, in
which every edge is given a direction.

Given a tournament 7T, a simple-minded way to try to rank the players
is to look for a Hamilton path that respects the directions of the edges. We
call such a path a Hamilton path IN the tournament.

As we all know, this doesn’t usually lead to an unambiguous ranking.
The simplest example which illustrates this is when n = 3 and the edges
are directed 1 —+ 2 — 3 — 1. There are three different Hamilton paths in
this tournament, hence no unambiguous ranking. The proof of the following
result (which is also of historical interest as it is generally recognised as the
first published use of a probabilistic argument in combinatorics) shows that
this is in fact the usual situation :

Theorem 10 (Szele 1943) For every n > 1 there ezists a tournament
on n players in which there are at least n! /2"~ different Hamilton paths.

PROOF : We consider a random tournament on n players, i.e.: the proba-
bility space (€2, #) under consideration is

n
2 = {all possible n-player tournaments}, hence |Q| = 2< 2 ) )

1 = uniform measure.

More intuitively, what this means is that the direction of each edge in K, is
chosen independently at random by tossing a fair coin. For each Hamilton
path H in K,,, we let Xz be the indicator random variable of the event that
H is a Hamilton path in our randomly chosen tournament. Since this event
depends on the outcome of n —1 independent coin tosses (the path contains
n — 1 edges), we have that

1
2n71'

E[XH] =

0This is the most important name you will encounter in this course. Why ? Because
he was Irish !!!!

17



Let X = 3 Xp, the sum being taken over all possible Hamilton paths in
K,,. Since there are n! such paths (one for each ordering of the n vertices),
linearity of expectation implies that

n!
The theorem now follows from (18) as, unwinding the definitions, we see
that the r.v. X just counts the total number of Hamilton paths in our ran-
domly chosen tournament.

Remark What is more interesting than the theorem itself is the equation
(23), since this says that ‘on average’ a tournament has an awful lot of
Hamilton paths. This is what I meant by it being the usual situation that
one cannot get an unambiguous ranking in this manner.

Exercise Show that in every tournament there is at least one Hamilton
path.
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Lecture 4
We continue with our examples from graph theory :
Example 2 : Turan’s Theorem

Let’s first go back to van der Waerden’s theorem. It is natural to conjecture,
but apparently much harder to prove, the following stronger result :

Theorem 11 (Szemerédi’s Theorem) Let k > 3 and € > 0. Then for
all sufficiently large n, depending on k and €, if A is any subset of {1,...,n}
such that |A| > en, then A contains a k-AP.

This theorem was first proven by the Hungarian mathematician Endre Sze-
merédi in 1975, in a 50-page paper which is generally considered ‘a mas-
terpiece of combinatorial reasoning’. The theorem had been conjectured by
Erdés and Turdn in the 1930s already when they worked (more or less un-
successfully) on strengthening van der Waerden’s result. The special case
k = 3 was proven by Roth in 1952 using Fourier analysis, and this work was
cited when Roth received the Fields Medal in 1956.

For our present purposes, what is of interest to us is the comparison with the
situation for graphs. Ramsey’s theorem (for an arbitrary number of colors -
we just stated it for 2 colors earlier) may be considered the analogue of van
der Waerden’s theorem for graphs. The analogue of Szemerédi’s theorem
would then be the following :

Let k > 3 and € > 0. For all sufficiently large n, depending on k and e,
if G is a graph on n wvertices and with more than ¢ - ;L > edges, then G

must contain a K.

It is pretty easy to see, however, that this statement is false. In fact it
is already false for ¥ = 3 and € = 1/2. For let n be any even integer.
Consider a graph on n vertices in which the vertices are partitioned into
two subsets of size n/2 and in which two vertices are joined by an edge if
and only if they lie in opposite halves of the partition. Such a graph is

called bipartite. Now G has 5 -3 = ”TZ edges, which is more than half of

( Z ) = @ But G contains no K3, indeed no cycle of any odd length,
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since any path of odd length takes one from one side of the partition to the
other.

We can generalise this example to any k& > 3. For simplicity suppose that
n is a multiple of £ — 1. A (k — 1)-partite graph on n vertices is obtained
by partitioning the vertices into k — 1 subsets of equal size, and joining two
vertices by an edge if and only if they do not lie in the same part. The total
number of edges in this graph is

k ( n )2 k-2 n?

2 k-1) k-1 2’
which, as k gets bigger, heads towards 100 procent of all possible edges !
But the graph has no K, since, at the very least, a Kj contains k vertices,
hence (by the pigeonhole principle) at least two would have to come from

the same part of the graph. But then they are not joined to one another -
contradiction !

Turan’s theorem, proven in 1941, is the statement that the above exam-
ples can’t be improved upon.

Theorem 12 (Turdn’s Theorem) Let k > 3 and n be a multiple!’ of
k —1. Then any graph with n vertices and strictly more than £=2. %2 edges

k—1
contains a Ky,.

We will find it more convenient to prove an equivalent formulation of the
theorem, where one replaces a graph by its complement, i.e.: the graph con-
sisting of the same vertices and those edges missing from the original. We
require a definition :

DEFINITION 10 : A collection of vertices in a graph are said to be inde-
pendent, if no two amongst them are joined by an edge. The independence
number of a graph G, denoted a(G), is the maximum size of an independent
set of vertices in G.

The following is then equivalent to Theorem 12 :

Y1f n is not a mutiple of k then one can prove a correspoding result anyway, but I wish
to avoid the associated technicalities in this presentation. If n = (k — 1)q + r say, where
0 < r < k — 1, then the optimal way to avoid a K} is to take a (k — 1)-partite graph,
where r of the parts have g + 1 vertices each and the remaining kK — 1 — r parts have ¢
vertices each.
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Theorem 12’ Let k > 3 and n be a multiple of kK — 1. Then any graph
G with n vertices and strictly fewer than ( ;L ) — k—j . "72 = 2(,’;—;) -5
edges satisfies a(G) > k.

Our proof of this will require three lemmas. The probabilistic component'?
is the first (and most interesting) one, for which we need some more termi-

nology :

DEFINITION 11 : For a vertex v in a graph G, the vertices to which it
is joined by an edge are called its neighbours. The number of its neighbours
is called the degree of the vertex v, and is denoted d,. Two neighbours in a
graph are also said to be adjacent.

Lemma 13 For any graph G we have that

a(G) > >

veV(Q)

1
d, +1°

(24)

PROOF : Suppose G has n vertices. We consider the probability space
(Q, 1), where € is the collection of all possible orderings of the n vertices,
hence || = n!, and p is uniform measure. For each vertex v, we let X,
be the indicator random variable of the event that v appears before all its
neighbours in a randomly chosen ordering. Now since v and its neighbours
form a collection of d,, + 1 vertices in all, and each of them is equally likely to
appear first, it is clear that E[X,] = TIH' Let X =3, X,. By linearity of
expectation, E[X] =", TIH' By (18), there is thus at least one ordering of
the vertices, call it O, such that X(O) > >, ﬁ. But now one just needs
to observe that, in any ordering whatsoever, those vertices which appear
before all their neighbours must form an independent set. This proves (24).

We will need one more simple general fact about graphs.

Lemma 14 For any graph G we have that

) 1
#edges in G = ) Z dy. (25)
veV(Q)

2there are other ways to prove this theorem, the standard proof being a kind of double
induction on k£ and n.
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PROOF : When we sum up the degress of the vertices, we are summing up
the edges emanating from each vertex, and then each edge will be counted
twice.

Finally, we need a third fact which is pure algebra/calculus :

Lemma 15 Let x1, 3, ..., Zpn,t be positive real numbers. If

Ty 4t T, >,

then
1 1 _ n?
R _|_ e + JE— Z —,
T Ty t
with equality in the latter if and only if 1 = --- =z, = t/n.

PRroOOF : Exercise.

PROOF OF THEOREM 12’ : By Lemma 14, the assumption in the state-
ment of the theorem about the number of edges in G can be written as

1 n? n
Z d -  _Z
2;”<2(k—1) 2’

which can be rewritten as

Hence, by Lemma, 15,

1 2
> >Z'2 =k—1.
R -

So, by Lemma 13, a(G) > k — 1. But a(G) is an integer, thus «(G) > k,
V.S.V.
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Example 3 : Girth and chromatic number

DEFINITION 12 : The girth of a graph G is the minimum length of a cycle
in it (where the length of a cycle means the number of vertices/edges in it),
and is denoted girth(G). If G contains no cycles at all (a so-called forest),
then we set girth(G) := oc.

DEFINITION 13 : The chromatic number of a graph G, denoted x(G), is
the minimum number of colors needed to color the vertices of G, if no two
neighbours can get the same color.

One of the best known problems in graph theory is that of finding an effi-
cient algorithm for computing the chromatic numbers of graphs. In its full
generality, this is known to be an NP-complete problem.

On the other hand, consider the following examples : A graph has chro-
matic number 1 if and only if it consists of a bunch of isolated vertices. The
chromatic number is 2 if and only if the graph is bipartite. Every forest
has chromatic number 2 (and hence is bipartite !). A cycle has chromatic
number 2 or 3 depending on whether its length is even or odd respectively.

These examples suggest that large graphs with low chromatic number
should in general be ‘fat’, i.e.: have large girth. In fact, for many years
around the middle of the last century, the following was an open problem :

Do there exist graphs which simoultaneously have large girth and large chro-
matic number ?

If you try to construct such graphs by hand, you probably won’t get very
far. However, such graphs do exist in abundance, though they are very large
(i.e.: have a lot of vertices). This was first proven by Paul Erdds in 1959,
and was a wake-up call to the world about the usefulness of the probabilistic
method in combinatorics !

Theorem 16 (Erdd8s) Given any positive integers k,l, there exists a graph
G with x(G) > k and girth(G) > 1.

In proving this theorem, we might as well introduce, for the first time in
the course, the standard random graph model. First, an informal definition :
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DEFINITION 14 : Let n be a positive integer and p € [0,1]. The random
graph G(n,p) has n vertices and is obtained by choosing each of the ( ;L )
possible edges randomly and independently with probability p.

The informal terminology ‘random graph’ is a bit misleading, because strictly
speaking a random graph is not a graph at all, it is a probability space. To

be able to say what space, we first need to introduce the notion of a product
measure :

DEFINITON 15 : Let (€2, 1) be a probability space and suppose the un-
derlying set € is a Cartesian product 2 = Q1 X --- X Q of k sets. Then the
measure y is called a product measure if there exist probability measures p;
on ;, for i = 1,..., k, such that, for any point (w1, ...,wg) € Q,

k
pl{(wr, - wi) ] = [ wil{wi}]-
=1

In this case, we write that

k
w= 1w
i=1

DEFINITION 16 : The random graph G(n,p) is the probability space (€, u),
( n

where Q = {0,1} 2 , i.e.: Q is the Cartesian product of ( ;L ) copies

of the two-element set {0,1}, and p = [] p4p, i.e.: the product of the same

number of copies of the measure y, on {0,1} given by

w({0}) =1-p, ({1} =p.

One simple lemma and some useful notation now before we begin the proof.
The lemma connects independence number with chromatic number :

Lemma 17 For any graph G we have
x(G) - a(G) = |[V(G)]. (26)

PrOOF OF LEMMA : Consider an optimal coloring of G, i.e.: one using
X(G) colors. Each color class must be an independent set of vertices, hence
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has size at most a(G). Since there are x(G) color classes, (26) follows.

NOTATION : Let n,i be positive integers with n > 7. We denote (n); :=
nn—1)---(n—i+1).

PROOF OF THEOREM 16 : Since this is definitely the most intircate ar-
gument we have encountered to date, we divide it up into steps.

Step 1: Let k,l be fixed from now on. We are going to work with a random
graph G(n,p). The thing we have to get right is the choice of the parameter
p. It turns out that, for things to work, p will have to depend on n. To be
precise, let 6 be any real number such that 0 < # < 1/I. Then we can take
p = n%"1. Note that # — 1 < 0 so p € [0,1] at the very least, and in fact
p — 0 as n — oo. So far, so good.

Step 2 : The purpose of this step is to show that, for the above choice
of p, the expected number of cycles of length at most [ in G(n,p) is o(n).
Now let’s be precise :

For any cycle C in the complete graph K,, let X denote the indicator
random variable of C in G(n, p). Clearly,

E[XC] — plength(C)’

since the presence or absence of C depends on as many independent (biased)
coin tosses as there are edges in it. We now set

X = Z Xc, (27)
3<length(C)<i

so that the random variable X counts the total number of cycles in G(n,p)
of length at most . We can compute E[X] using linearity of expectation,
but we first need a formula for the number of cycles in K,, of any given
length. T claim that

#cycles in K, of length i = % (28)

To see this, note that there are (n); choices for the i vertices in the cycle

in order, but we must divide by 2i because, for any given cycle, there are i
possible starting points as well as 2 possible orientations.
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OK, so we’ve explained (28). Then (27), (28) and linearity of expectation

yield that
!

Ex]=Y" %pi. (29)
1=3

It remains to show that the right-hand side of (29) is o(n). But this is easy.
Recalling the choice of p, we have the following sequence of estimates :

l o
Z( )sz

i—3 <

l

l
<Yt = Y <2
=3

=3

Since [ is fixed and [0 < 1 by definition, it is clear that the last term above

is o(n).

Step 3 : In this step we show that

P la(Gln,p)) > [22]] = o) (30)

First let ¢ be any fixed positive integer. Then, for any graph G, a(G) >t

if and only if there exists at least one independent set of size ¢t in G. Now

consider G(n,p). The probabiity of a given collection of ¢ vertices being
t

independent is (1—p) 2 ) _ (1—p)"t=1/2_ Since there are ( Z ) possible

choices of the ¢ vertices, it follows that

P[a(G(n,p)) > 1] < ( TZ ) (1= p)t=biz,

We bound the right-hand side conveniently using the simple estimates

(?)Snt, l-p<e®.

Pla(@(mn ) 21 < (ne )

These yield that

If we now insert the value ¢t = [?’1%], then we’ll obtain
—3/2\!
Pla(G(n.p)) 2 1] < (1L+o(1) (n-n ),
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which evidently goes to zero as n — oo. This proves (30).

Step 4 : Now we just need to gather our thoughts - all the hard work is
done. According to the first step, the expected number of cycles of length
at most [ in G(n,p) is o(n). I'll leave it as an exercise for you to prove the
following :

‘If X is any positive-valued random wvariable, depending on some parame-
ter n, and E[X] = o(n), then for any e >0, P(X > en) — 0 as n — 00.

Let’s just take € = 1/2 for simplicity. Then with very high probability
(going to 1 as n — o0), G(n,p) contains at most n/2 cycles of length at
most /. Let G* be the (random) graph obtained by removing one vertex,
and all its adjoining edges, from each cycle of length at most [ in G(n,p).
Then girth(G*) > [ and

PIV(G")| 2 n/2] =1 - o(1). (31)

Furthermore, removing vertices and their adjoining edges from a graph can-
not increase the independence number, so a(G*) < a(G(n,p)). Hence, by
(30),

3lnn

P la(G) > [=21| = o(). (32)

Now (32), (31), Lemma 17 and a bit of computation give that

0

P lx(G*) > o ] =1-o0(1). (33)

But no matter how small  is, % — oo as n does, so for sufficiently large

n it will be greater than k.

The proof is thus complete. What we have actually shown is that with
the choice p = n?, then with probability tending to 1 as n — oo the fol-
lowing holds : the random graph G(n,p) contains a subgraph G* which has
at least n/2 vertices, has girth greater than ! and has chromatic number
greater than k.
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Lecture 5

Today will mostly involve developing some general, though quite ele-
mentary, tools from probability theory. At the end of the lecture, we will
define the notion of a threshold function for (a property of) random graphs.
Specific applications will follow in the next lecture. In subsequent lectures
we will develop and apply further, and in some cases more sophisticated,
general tools.

The general setting is the following : from the point of view of general proba-
bility theory, we have so far in this course been engaged in the computation
of expectation values of random variables. And not just any old random
variables. The finite, combinatorial nature of the applications meant that
our random variables X were ‘counting something’. More precisely, they
usually had the following properties :

(i) they were non-negative integer valued

(ii) they could be expressed as sums of identically distributed indicator
variables.

From such computations we have been able to deduce interesting existence
results, using essentially nothing more complicated than things like

(I) P(X > E[X]) >0,
(IT) If X is non-negative integer valued and E[X] < 1, then
P(X =0) > 0.

From now on, the nature of our applications will be characterised by the
following types of requirements :

(A) we will be interested in proving that certain events occur with high
probability, not just non-zero probability

(B) it will not be enough to be able to compute E[X], we will also require
information on how much X is ‘spread out’ around its mean.

The following example illustrates features of both (A) and (B) :
As indicated above in (II), if you have a non-negative integer valued RV,
then if you want to prove that X = 0 with high probability, it suffices to

show that F[X] is ‘much smaller than 1’. Actually, what one is using here
is a very simple, but very useful general result, whose trivial proof we leave
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as an exercise :

Proposition 18 (Markov’s Inequality) Let X be a non-negative real
valued RV, and o > 1. Then

P(X > aE[X]) < (34)

1
e
This is the simplest example of a so-called concentration inequality. For
applications to come it is by itself far too weak, though it is used all over
the place in the proofs of much stronger results. The other problem is that
it is ‘one-sided’, i.e.: it only bounds the probability of X being too large.
For the application to showing that X = 0 with high probability, when
E[X] << 1, that’s fine. But suppose now instead you’re interested in show-
ing that X > 0 with high probability. The natural thing to do is to first
show that E[X] is large. But this is, by itself, not enough.

EXAMPLE : Suppose X = 0 with probability 0,99 and X = 10,000,000
with probability 0,01. Then E[X] = 100,000 is still very large, but the
event X > 0 is highly unlikely. In the book of Alon and Spencer (which was
written when the Cold War still hadn’t quite ended), X is the number of
deaths from nuclear war in the next 12 months.

The problem with the X in the above example is obviously that it is too
spread out. QOur first task in the coming lectures will be to develop tools
which allow us to determine that certain random variables of interest are
not too spread out, and therefore attain values in certain ranges with high
probability. Sometimes we’ll have an application where it’s enough to know
that X > 0 with high probability given that FE[X] is large. Other times,
we’ll want X to be located in a narrow range around its mean value with
high probability.

In our analyses we will make very full use of the simplifying properties (i)
and (ii) of the kinds of RV:s we encounter in combinatorial applications. The
main obstacle to obtaining stronger results will be that, in most cases, the
indicator variables in question are not independent of one another. This is a
crucial point. On the one hand, independence simplifies lots of probabilis-
tic analysis immensely. On the other hand, even with the current state of
knowledge (we're talking 2006 !), effective tools for dealing with dependent
events are few and far between. The techniques that have been developed
all basically rely on knowing that either the amount of interdependence is
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‘small’ in some precisely quantifiable manner, or that the dependencies are
‘correlated’ (we avoid defining this term precisely for the moment). Other-
wise, you're probably screwed in terms of getting proofs : you might as well
get out your computer and run simulations.

The first method we discuss is the simplest but most important one :
Second Moment Method

Basically this involves studying the wvariance of a RV as a measure of
how far it is spread out. To simplify matters, unless otherwise stated, all
RV:s are henceforth assumed to be non-negative integer valued, even if some
of the things we prove hold more generally, and even with the same proofs
(left to the reader to investigate these matters). At a later point we will
specialise to the case of sums of indicator variables.

DEFINITION 17 : Let X be a RV. The variance of X, written as Var[X], is
defined as

Var[X] := E[(X — E[X])?].
The square root of the variance is called the standard deviation.
Using linearity of expectation, it’s easy to show that (exercise, if you have
never done it before !)
Var[X] = E[X?] — E[X]. (35)
NOTATION : E[X]| := ux, v/Var[X] := ox. We drop the subscripts when

there can be no confusion about what RV is being considered.

Remark At this point it is worth clarifying the terminology second mo-
ment method. Let X be a RV. The exponential generating function of X is
the RV eX. Thus

X — -
K=
k=0
Under suitable convergence conditions, linearity of expectation yields that
X, E[XF]
X1 —
Ele?] = ];) T
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The quantity E[X*]/k! in this expression is called the k:th moment of the
r.v. X. From (35) we see that the variance of X involves its second moment,
hence the name.

A rough analogy to studying the 2nd moment of a r.v. is to study the
second derivative of a smooth function in calculus. And just as it is pretty
hard to find a real-life situation where one is interested in the third derivative
of a smooth function, so in probability theory it is pretty rare to study the
third moment of a r.v. Basically, if you can’t get a handle on the second
moment, then you’re probably in a whole lot of trouble !

Finally, it should now not come as a great shock that the term first mo-
ment method is applied when one just studies the expectation of a r.v. itself.
So this is the method we’ve been using in the whole of the first week. See
Alon and Spencer.

The basic concentration estimate involving variance is

Proposition 19 (Chebyshev’s Inequality) Let X be a r.v. with mean u
and standard deviation o. Let A > 1. Then

1
PX 4l > 20) < 5. (30
PROOF : Define a new r.v. Y by Y := |X — p|?. Then the left-hand side of
(36) is just, by definition of variance, P(Y > A2E[Y]). Markov’s inequality
(34) now gives the result immediately.

Corollary 20 Let X be a r.v., € > 0. Then

0.2

P(IX —p| > ep) < 5. (37)
p
In particular,

2

P(X =0) < (38)

“;w| Q

PROOF : For the first part, take A = ex/o in (36). For the second part, set
e=1.

According to this corollary, we get good concentration of X around its mean
provided that Var[X] is small compared to E[X]2. We now specialise to the
case where

X=X+ +Xn
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is a sum of indicator RV:s. We do not assume the X; to be identically
distributed though. Indeed let us denote by A; the event indicated by X;
and p; := P(A;). Thus

X 1, with probability p;,
71 0, with probability 1 — p;.

Also denote u; := E[X;], 02 := Var[X;]. Clearly, u; = p;. Also, by (35) and
the fact that Xz-2 = X; since X; only takes on the values 0 and 1, we have
0? = p; — p? = p;i(1 — p;). We thus have the inequality

01'2 S Mi- (39)

Since in applications the individual probabilities p; are usually very small
(even if the number of events A; is usually very large), we are not losing
much information in using (39).

We want an expression for the variance of X. Using (35) and several
applications of linearity of expectation (LOE from now on), we obtain that

n
o? :ZU?—}-ZCOV(XZ’,XJ'), (40)
i=1 i#j
where the covariance of X; and X is defined by
COV(XZ',X]') = E[XZXJ] — E[Xz]E[X]]

By (39) and LOE, the first sum on the right of (40) is at most x. This is
good, since we are interested in having o2 much smaller than 2 in situations
where p is large. So we can focus in on the sum of covariances. Since the
X; are indicator variables, we have

E[XZX]] — E[XZ]E[XJ] = P(4;N AJ) — P(AZ)P(AJ)

Hence Cov(X;, X;) = 0 if and only if the events A4; and A, are independent!?
So independent pairs don’t contribute anything to the sum. Let ¢ ~ j denote

3More generally, for any two random variables X and Y, if X and Y are independent
then E[XY] = E[X]E[Y], though the converse need not hold (find an example !). What
does it mean for two random variables to be independent in general ? It means simply
what one would expect, namely that knowledge of the value of one variable does not give
any information on the value of the other. There are several equivalent ways to express
this formally. In the finite setting the following definition suffices : we say that real-valued
RV:s X and Y are independent if, for all real numbers r,s, P(X =r|Y =s) = P(X =r)

32



that events A; and A; are not independent. We have at the very least the
bound

i#] i~j

Since P(A; N A;) = P(4;) - P(Aj|A;), we can rewrite the last sum as a
double-sum, namely

Y P(A; 0 45) = 3 P(4) 3 P41 4).

i~ jrvi

Let us now make one further simplifying assumption, namely that the inner
sum above is independent of 4. This is a kind of ‘symmetry’ requirement
which holds for most applications. Following standard practice, we now
denote the inner sum A*. Thus we have

ZCOV(XZ',XJ') SA* ZP(A'L) :A*'Z/Ji ZA*-M.
i#] i )

So let’s summarise where we stand : assuming that our r.v. X is a sum of
indicator variables, and that a certain symmetry condition is fulfilled, we
have that

Var[X] < (14 A*)E[X].

Hence, to show that Var[X] is much smaller than E[X]?, it suffices to show
that A* is much smaller than E[X]. This is the crux of the second moment
method.

We will start to see some applications in the next lecture. We close this
lecture, which has been about setting things up properly, in the same spirit,
with a definition of the important concept of a threshold function for ran-
dom graphs.

and P(Y =r|X = s) = P(Y =r). In words, the probability that X (resp. Y') attains the
value r given that Y (resp. X) is known to have the value s, is the same as it was before
the value of Y (resp. X) was known.

Note that we’ve defined what it means for two variables to be independent OF ONE
ANOTHER. It could happen that X is independent of Y but not vice versa. This is
intuitively clear as the following toy example illustrates : let X be the mood of a teacher
on the day (s)he is preparing an exam, and Y be the mood of one of his/her students. I
leave it as an exercise to give a more formal example.
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NOTATION : Let A be a graph property and G a graph. We write G = A to
denote the fact that G has the property A. For example, if A is the property
‘is connected’, then G = A means that G is connected.

DEFINITION 18 : Let A be a graph property and ¢ : N — [0,1] a func-
tion. Then t is said to be a threshold function for the property A if two

conditions hold :

(I) If p(n) = o[t(n)] then P[G(n,p(n)) E A] = 0 as n — oo,
(IT) If t(n) = o[p(n)] then P[G(n,p(n)) E A] = 1 as n — oo.

Remark If ¢ is a threshold for some property A, then so is ¢ - ¢ for any
constant ¢ such that ||c - || < 1.

We postpone further waffle to the next lecture’s notes.
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Lecture 6
Today we present some applications of the second moment method.
First application : Subgraph threshold

Given a graph property A, there are basically three stages in the analysis of
the threshold phenomenon for that property :

(I) Prove that a threshold exists.
(IT) Compute the threshold!*
(III) Investigate more closely what happens as the threshold is crossed.

We will concentrate in this course on stage (II). There are some very gen-
eral theorems about existence of thresholds, but to do justice to these would
require too long a detour toward mathematical logic. Stage (IIT) obviously
is likely to be more technical, and it cannot be undertaken before stage (II)
anyway. Note however that, in speaking of ‘crossing the threshold’ we are
adopting a dynamic model of random graphs G(n, p), where we think of the
parameter p as growing, and the edges of the graph ‘growing’ accordingly.

The graph property we have chosen to exhibit how the second moment
method can be used to compute thresholds is that of subgraph containment.
So let H be any fixed graph. The graph property A = Ay under consid-
eration is ‘contains a copy of H’, so that G = Ag means that the graph
G contains a copy of the graph H. For example, K, = Ak, if and only if

n > m, in which case K, in fact contains ( m | O (n)m, different copies of

K,,, depending on how one counts.
We need some definitions before stating our main result :

DEerFINITION 19 : Let H be a graph, with e edges and v vertices. The
density of H, denoted p(H), is the quantity

p(H) := S

“Here we are once again deliberately sloppy with our language. Since a threshold
function can never be unique (one can always multiply by a constant, for example), one
shouldn’t speak of ‘the’ threshold. But this is common practice.
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The graph H is said to be balanced if p(H) > p(H') for every subgraph H'
of H.

Theorem 21 Let H be a balanced graph. Then the function
t(n) := n~1/PUH)
s a threshold function for the property Apg.

PROOF : We need to prove two things, namely :

(I) If p(n) = o[t(n)] then P[G(n,p(n)) E Ax] =

= 1).
(IT) If ¢(n) = o[p(n)] then P[G(n,p(n)) E Ag] =

—o(1).

PRrROOF OF (I) : This part does not require the knowledge that H is bal-
anced. Let e,v denote the number of edges and vertices of H respectively.
These quantities are thus constants and do not affect any estimates of orders
of magnitude of quantities as n — oo. Fix an n and p € [0,1]. For every
subset S of the vertices of K, of size v, let Xg be the indicator variable of
the event that, in G(n, p), at least one copy of H appears on the vertices in
S. Note that, a priori, many different copies of a single graph may appear
on the same set of vertices. But since H is fixed, the number of copies
of it which may appear on any set of v vertices is bounded by a function
depending only on v. All of this implies that

(
1

E[Xs] = O(p°).

Let X := ) Xg, the sum being over all v-element sets of vertices in K,,.
Then

BIX] = 3 BlXs] = ( " ) - 0() = O, (41)

But X just counts the total number of copies of H in G(n,p). So from (41)
it is already clear that if p = p(n) = o[t(n)], then E[X] = o(1), implying
that P(X = 0) =1 — o(1). This proves part (I).

PRrROOF OF (II) : Similarly, (41) implies that if {(n) = o[p(n)] then E[X] —

0o. All we need to show is that P(X > 0) =1 — o(1). We apply the second
moment method. To simplify notation, let Ag denote the event indicated
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by Xgs. Clearly, the various conditions introduced in our discussion of the
second moment method apply to the present situation, so that it suffices for
us to show that A* = o(E[X]), where

A* = Z P(Ar|Ag).
T~S
Here S is a fixed set of vertices of size v, and the sum runs over all sets T of
vertices of size v so that the event A is not independent of the event Ag.
Now in the random graph setting, two events are independent if they are
defined on disjoint sets of edges. So Ar is dependent on Ag if and only if
the edge-sets defined by T and S are not disjoint, which is the case if and
only if T and S share at least two vertices. Hence we can write

ko1
AT = > P(Ar|As) =) > P(Ar|As). (42)

T:2<|TNS|<k—1 i=2 T:|TNS|=i

In the inner sum, the quantity P(Ar|As) must be the same for every choice
Z:ZJ ), since 17" must have ¢

of T'. The number of such choices is ( 12) ) (
vertices in common with S and v — i other vertices. This number is ©(n?~%).

Now fix an ¢ and a 7. We need an estimate for P(Ar|Ag). Here it is
assumed that at least one copy of H appears on S and want to estimate the
probability of at least one copy of H also appearing on T'. Up to a constant
factor, as before, we may consider a fixed copy of H on S. Let H' be the
part of it on T'N S. Once again, up to a constant factor, we may consider a
fixed extension of H' to a copy of H on the vertices of T

At this point we use the fact that H is balanced. It implies that
p(H') < p(H), thus H' contains at most ie/v edges. This means that
the appearance or otherwise of a fixed extension of H' on T depends on the
presence or otherwise in G(n,p) of at least e — ie/v edges.

Putting all this together, what we have shown is that, for a fixed 7+ and
T,
P(Ar|As) = ©(p° /).

Substituting this and the estimate for the number of different 7":s into (42)
we find that

k—1 k—1
A* — Z @(nv—i) . @(pe—ie/v) _ Z e [(nvpe)l—i/v] .
=2 1=2
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Since 1 —i/v <1—2/v < 1 for every value of 4, it is thus clear that the sum
is o(n"p®) = o( E[X]), which completes the proof of the theorem.

The proof of the following completely general result is more technical.

Theorem 22 Let H be any graph, not necessarily balanced. Let H' be a
subgraph of H of mazmimal density. Then the function t(n) = nL/pH') g
a threshold for the property Ap.

A full proof is not contained in Alon and Spencer (henceforth referred to
as [AS]), but there are some technical extensions of Theorem 21 above from
which Theorem 22 can be deduced without too much pain and is left as an
exercise. Copies of these were handed out in class.

Second application : Concentration of random graph invariants

A graph invariant just means any numerical quantity which may be as-
sociated to an arbitrary graph. Examples of graph invariants are chromatic
number, girth, number of connected components, number of Hamilton cy-
cles etc. Invariants of random graphs G(n,p) are thus (non-negative integer
valued) functions of two variables, n and p.

The computation of random graph invariants is a natural counterpart to the
problem of computing thresholds. In the former type of problem, one consid-
ers a fixed p (the most natural and interesting choice often being p = 1/2, as
it corresponds to the edges of the graph being chosen by independent tosses
of a fair coin) and wants to estimate the value of the invariant as n — oo.
This basically involves estimating the expectation of some random variable
X. Of more interest, though, is the degree of predictability of the invariant’s
value, in other words, how well concentrated the variable X is around its
mean. The second moment method sometimes gets us quite strong results,
a particularly nice example being the following ‘2-values theorem’ :

Theorem 23 There is an integer-valued function k(n) such that
Pw(G(n,1/2)) = k(n) ork(n) +1] = 1 as n — oo.

. In addition, k(n) ~ 2logyn.
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Here w(G) denotes the cligue number of a graph G, which is the maxmi-
mal number of vertices in a complete subgraph of G. Note that the theorem
does not tell us exactly what two values w(G(n,1/2)) is concentrated on,
for any given large n, just that there are two such values, and they are of
the order of magnitude of 2log, n. However, it will be clear from the proof
of the theorem that the function k(n), and the amount of concentration, is
easily'® computable for any particular n.

SKETCH PROOF OF THEOREM 23 : I did not go through all the details
of the proof, but gave the main ideas and handed out pages from Chapter 4
of [AS] for the full computations. What is interesting is that, in [AS], they
defer a final proof of this theorem to Chapter 10, and there use some more
advanced probabilistic machinery, namely the so-called Janson inequalities.
I think this is unnecessary, however, and that the second moment method
suffices to get a full proof. I leave it for yourselves to check this !
Anyway, here is the sketch :

Fix an n and a k and let X be a r.v. which counts the number of cliques of
size k in G(n,1/2). We can write (should by now be getting used to

this 1) X = Y Xg, the sum being taken over all vertex sets S of size k,
edges between the vertices of S are, so

where Xg indicates that all ];

to speak, ‘turned on’. Thus

(4)
E[X]:(n)-Q 2. (43)

k

Denote the quantity on the right hand side of (43) as f(n,k). We have
already seen in the very first lecture that f(n, k) becomes less than 1 when
k is in the vicinity of 2logy(n). Since the event X = 0 is the same as
the event w[G(n,1/2)] < k, this is the crucial transition as long as we can
show that A* = o(f(n,k)) when the latter is large. The exceptionally high
concentration of the clique number comes from the fact that the function
f(n,k), which is a decreasing function of k for fixed n, is decreasing very
rapidly when k is close to 2logy n. In fact, direct insertion into the formula

15ie.: in polynomial time, at least.
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for f(n,k) gives that

fn,k+1)  _ ,n—k
f(n,k) k+1’
so that when k ~ 2log, n, ﬂfn(f—,:)ll = p~1to(1),

Some remarks on the estimation of A* : It can be broken up exactly as
in (42) above. The analysis is even simpler than in Theorem 21, however,
as one doesn’t need to worry about those annoying ‘up to a constant factor’
estimates here. One finds (see the handout from [AS]) that

A* k-1
m = Z g(i),

where

One needs to show that each term in the sum is o(1), when E[X] is large
and k ~ 2logyn. In [AS] they show by direct computation that

]{,‘4
9(2) ~ 5 =t
2]{1’)’7,27]6 n71+0(1)
E[X] ~ E[X]

bl

gk —1) ~

and leave the remaining cases to the reader. In fact, one can see (again just
by direct insertion into the formula for g(z)) that, up to a 1 + o(1) factor,
the function g(i) starts off by decreasing as 7 increases, and then starts
increasing again as ¢ approaches the order of magnitude of logon. What
this implies is that, for every i,

g(é) < (1 +o(1)) max{g(2),g(k — 1)}.

It is this estimate which I think allows one to finish off the proof of
Theorem 23 without needing to resort to any more advanced techniques.
But don’t take my word for it : check it yourselves !

40



Third application : Distinct subset sums

Here we make a detour back to number theory.

DEFINITION 20 : Let A = {ay,...,ar} be a finite set of positive integers.
A is said to have distinct subset sums if, for every two distinct subsets X,Y
of {1,...,k}, the sums ),y a; and > ,cy a; have different values'S.

Let f(n) be the maximum possible size of a subset of {1,...,n} which has
distinct subset sums.

LOWER BOUNDS :

Take n = 2¥ and A = {2! : 0 < i < k}. This example shows that
f(n) > 14 [logyn|. Erdds offered 300 dollars for a proof that there ex-
ists a universal constant C' such that f(n) < logen + C. Note that he’s
not asking here for a computation of the optimal C' or even a decent esti-
mate of it, just a proof that some such constant exists, in other words that
f(n) =logyn + O(1). The base-2 example shows that C' > 1. If we confine
ourselves to integer C, then an example constructed by John Conway and
Richard Guy in 1969 shows that C' > 2. There have since been a few papers
presenting modest improvements on that construction, which lead to the
conclusion that C' > 3 (I think !). Note that, in order to get a better lower
bound on C, it suffices to do so for a single n, because of the following trick
: if A = {a1,...,ar} is a subset of {1,...,n} with distinct subset sums, and
u is any odd number s.t. 1 < u < 2n, then A" = {2ay, ..., 2a,u} is a subset
of {1,...,2n} with distinct subset sums and one additional element. This
means that if f(n) > logyn+ C then f(N) > logy, N + C for every N of the
form N = 2!n.
One can then use a computer to help find individual examples ...

UPPER BOUNDS :

If A has size k and is contained in {1,...,n} then there are 2* distinct subset
sums and each is among {0, ..., nk — ﬂ@} Thus

k(k — 1)

2/ <1 4 nk — R

181f X is the empty set, the sum is assigned the value zero.
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which leads to a bound of the form

f(n) <logyn + logy logy n + O(1).
Erdés improved this to
1
f(n) <logyn + 3 log, logan + O(1) (44)
using a probabilistic argument involving Chebyshev’s inequality. Since the
proof of (44) is more intersting than the result itself, and since we have

too many other things to cover, I decided not to go through the proof, but
instead handed out the relevant text from [AS].

42



Lecture 7

A central class of results in probability theory are so-called Central Limit
Theorems. A weaker set of results, called Laws of Large Numbers, capture
the layman’s notion that things tend to average out over time. The Central
Limit Theorems are more precise : they tell you that random variables which
are long-term averages tend to have normal distributions. Recall that the
normal distribution with mean p and standard deviation o is the real-valued
random variable X = N(u, o) such that, for every z € R,

o 1 2
P(X —pu| > :2-/ e V20 gy, 45
(] pl > 2) . o (45)

The normal distribution is thus well concentrated about its mean. For ex-
ample, (45) implies that, for any A > 0,

P(IX — p| > Xo) < e V72
This should be compared with the totally general Chebyshev inequality.

Classically, ‘the’ Central Limit Theorem is about sums of independent, iden-
tically distributed (i.i.d.) random variables. It is an old result which says,
basically, that if Xy, Xs,... is a sequence of i.i.d. random variables, each
with mean g and variance o, and Y, = (X1 +--- + X,)/n is the average of
the first n of them, then Y,, approaches N(u,c). What do we mean here by
‘approaches’ 7 Well, there are different possibilities, but the simplest notion,
which is also the weakest and thus the easiest to get results about, is that,
for every positive real number z,

: _ * 1 —t2/20
nhﬁngo P(Y, —ul>2) =2 /Z Ee dt. (46)

While the CLT is a fundamental theoretical result, there are several prob-
lems associated with its application :

(I) it assumes identical distributions
(IT) it assumes independence
(ITI) it is qualitiative, not a quantitative result. In other words, it doesn’t

say anything about the rate of convergence to the limit in (46).

Problem (I) is not serious : the CLT can be extended to sums of variables
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with different distributions. (II) and (III) are much more serious, though.
There are CL Theorems that concern dependent variables, but results are
limited. In a seminal paper, Chernoff (1952) dealt significantly with problem
(III). His results concern sums of independent indicator variables. Chernoff
was interested in statistics, and his results are of great importance in that
field. We’ve already seen in this course that sums of indicator variables
are also ubiquitous in combinatorial applications, so Chernoff’s results de-
serve attention. On the other hand, the fact that they don’t address the
issue of independence limits their applicability. Nevertheless, the methods
employed by Chernoff lay the foundation for much subsequent work on ad-
dressing the independence issue and knowledge of his method (and of the
various qualitative CL Theorems) is a prerequisite for appreciating these
later developments. We thus present a detailed proof of the following result

Theorem 24 (Chernoff’s bound) Let X be a random wvariable which
is a sum of independent indicator variables. Let E[X] := u. Then for any
€ > 0 there exists a positive constant ce, depending only on €, such that

P(|X — pu| > epn) < 2e™%H. (47)

In fact one can take
62
ce = min 5,(1+e)ln(1—i—e)—e . (48)

The crucial point here is that ¢, does not depend on X, i.e.: it doesn’t
depend on how many indicator variables X is the sum of, nor on the distri-
butions of these.

We will deduce Theorem 24 from a normalised version of it. Let X; be
an indicator variable, say

X — 1, with probability p;,
1 0, with probability 1 — p;.

The normalisation of X;, which we denote X, is the variable X; — p;, i.e.:

- { 1— p;, with probability p;, (49)

—Di, with probability 1 — p;.

44



Thus X; has mean zero. It has the same variance as X, namely p;(1 — p;).
Now let X be a r.v. which is a sum of n normalised indicator variables,
for some fixed n. Write X = X; + --- + X,,, with the X; as above, and

define the number p by np = p1+- - -+ p,. Finally, let ¢ be any positive real
number. We will prove the following two inequalities :

a—pn1n<1+1%)—a1n(1+1%>], (50)
—2‘;72”]. (51)

A

P(X >a) < exp

P(X < —a) < exp

Note that the theorem follows from (50) and (51) upon setting a = epn. We
will prove (50) in detail. The proof of (51) is very similar and thus omitted,
but the proof from [AS] will be handed out in class. First, though, a couple
of remarks are in order :

(i) there is an obvious asymmetry in the estimates (50) and (51), depending
on whether X is positive or negative. Unfortunately, this is a feature of
Chernoft’s method.

(ii) the connection to the normal distribution is clear in (51), as the vari-
ance of X is about np if the individual p; are small, as is usually the case in
applications. With (50), the connection is not so obvious. However, if a is
small compared to pn and we use the fact that In(1 + u) > u — u?/2 when
0 < u < 1, then we can deduce from (50) that

a/2 a3
P(X'>a) < exp l—%+wl . (52)

Note that (52) gives no information when a is large compared to np as then
the cubic term dominates. Again, this is a feature of Chernoff’s method, but
is not important, since we’re only interested in having concentration close
to the mean anyway.

PrROOF OF (50) : The proof uses the ezponential generating function of
X, namely : Let A > 0. Then we will consider the r.v.



Now X > a if and only if X > A The simple Markov inequality gives a
bound

E[e)‘X]

AX A
Pe™ > eM) < —

. (53)

We will estimate the expectation and then the clever part of the proof is
that A, which at this point is still some arbitrary positive real number, will
be chosen so as to minimise the right-hand side of (53). The estimate of
the expectation will use the concavity of the logarithm. Let us begin by
formally defining what this means :

DEFINITION 21 : A function f on the positive reals is said to be concave
if, for any n, any positive reals ;1 < zo < --- < z, and any positive reals
ai, ..., an satisfying > a; = 1, it holds that

f <i aﬂi) > iaif(xi)'
i=1 i—1

Concavity has a simple geometric interpretation, namely that the graph of
f lies on or above the straight line drawn between any two points on it.

Lemma 25 Let C > 0. Then the function f(x) = In(Cz + 1) is con-
cave.

PROOF OF LEMMA : Exercise.

Now let us return to the proof of (49). Since X = 3 X;, one easily sees
that

Now we use the independence of the X;. Recall that if A, B are independent
random variables, then E[AB] = E[A]E[B]. Thus, by induction,

E[eM] = ﬁ E[eM], (54)
=1

But from (49), the definition of e.g.f. and linearity of expectation (conver-
gence is not a problem), one easily computes that

B[] = pier (0P 4 (1 - py)e Wi = ¢ s [pi(e)‘ -+ 1] -
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Substituting into (54) and recalling the definition of p, we thus have
N n
E[eM] = e [[Ipi(e* — 1) + 1]. (55)
i=1

But
[Tlpi(e* = 1) +1] < [p(e} = 1) + 11" (56)

Indeed this follows from taking logarithms and using Lemma 25. So substi-
tuting (56) back into (55) and in turn back into (53), we have the estimate

P(X > a) < e M [pe* + (1 — p)"e . (57)

It is now a horrid calculus exercise to compute the precise value of A which
minimises the right hand side of (57)!7. However, a good approximation
when a << np is to take A = In(1 + a/pn). Substituting this into (57) we
get the desired relation (50) upon noticing that, with this choice of A,

[pe* + (1 —p)]" = (1 +a/n)" < .

This completes the proof of Theorem 24. Applications will follow in the
next lecture(s).

'"The right value turns out to be

aom | (22) ()|
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Lecture 8 : Thin bases

This whole lecture was concerned with presenting a single, particularly
beautiful application of the Chernoff bounds to number theory. We start
with the requisite definitions :

DEFINITION 22 : Let h be a positive integer and A a subset of N. The
representation function of A of order h, denoted 1, 4, is the non-negative

integer valued function on N such that 75 _4(n) is the number of solutions in
A to

ai + -+ +ap =n.

Here we are considering unordered solutions and repititions are allowed. So,
for example, if A = {1,2,3,4,6,9} then ry 4(6) = 2 since we have the two
solutions 2 +4 =3+ 3 = 6.

DEFINITION 23 : Let h be a positive integer and A C N. A is said to
be a basis of order h if rj_4(n) > 0 for all sufficiently large n.

The case h = 1 is totally uninteresting, since then a subset of N is a basis
if and only if its complement is finite. But as soon as A > 1 things get
interesting.

In that part of classical analytic number theory which deals with bases,
the type of question posed is whether some particularly interesting subset
A of N is a basis of a certain order. There are 2 examples which everyone
likes to quote :

(i) A = {set of primes},

(i) A = {n* : n € N}, for any fixed k > 1.

Regarding (i), the state of the art is

Theorem 26 (Vinogradov 1937) Every sufficiently large odd number is
a sum of at most three primes. Hence, the primes are a basis of order 4.

If you want to become rich and famous then you solve

Goldbach Conjecture Fvery even number greater than two is the sum
of two primes. Hence, the primes are a basis of order 3.
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Regarding (ii),

Theorem 27 (Hilbert 1909, Hardy-Littlewood 192x) For every k > 1
the set of k:th powers is a basis of some order.

The problem to which Theorem 27 is the solution is commonly known as
Waring’s Problem. One denotes by G(k) the smallest integer such that the
k:th powers are a basis of order G(k). The case k = 2 dates back to La-
grange, who showed that every positive integer (not just every sufficiently
large one) is a sum of at most four squares. On the other hand, it’s easy
to see (exercise !) that there are infinitely many integers which are not
sums of three or fewer squares, so G(2) = 4. It is known that G(3) < 7
and that G(4) = 16. The exact value of G(k) is not known for any k > 4,
and finding improved upper bounds continues to be an active research topic.

Problems like (i) and (ii) are tackled using Fourier analysis, or what number
theorists refer to as the Hardy-Littlewood circle method. A standard refer-
ence if you're interested is [1].

An ovverriding feature of combinatorial number theory is that one is in-
terested in properties of general sets of integers rather than of individual
ones with a special arithmetical structure. This is pretty wafflish, and there
is no real dividing line between the ranges of applicability of analytic and
combinatorial methods. However, regarding bases, the following curious re-
sult from the 1940s was the starting point of another line of investigation :

Proposition 28 There is no infinite subset A of N for which the repre-
sentation function ro a(n) is constant for all sufficiently large n.

PROOF : Suppose the contrary and let A be a basis of order 2 such that
ro.n(A) = k for all sufficiently large n and some constant & > 0. We consider
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the generating function of the set A, which is the power series'®

F(z):= Z z* (2 € Q).

a€A

The power series certainly converges when |z| < 1, so we will work in this
region so that all our algebraic manipulations will be valid. The connection
between the generating function and the representation function is that

[F(z)]2 +F(z%)=2- i ro,4(n)2". (58)
n=1

Suppose now that rp 4(n) = k for all n > ng. Then (58) can be written as

no—1

[F(2)]? + F(2*) = Z ro,a(n)2" + 2k - i 2" (59)

n=no

The first sum on the right of (59) is some polynomial in z. We denote it as
P(z). The second sum is a geometric series, so has a simple formula. We
thus obtain that

2™o

[F(2)]2 + F(2?) = P(2) + 2k - (60)

—z
The desired contradiction is obtained by seeing what happens as z — —1
from the right along the real axis. Because of all the squares present, the
left hand side heads inexorably toward positive infinity. But the right hand
side heads toward some finite value, namely P(1) + k. This contradiction
completes the proof.

The following problem, originally posed by Erdés in [2], remains after 50-
plus years the biggest unresolved issue in the combinatorial theory of

bases :

Open Problem Does there ezxist a constant C > 0 and a basis A of order

18We’ve encountered generating functions once already in this course, namely we used
the exponential generating function of a random variable in the proof of the Chernoff
bounds. Still, if you’re not familiar with the use of generating functions, proofs like the
present one may strike you as coming out of the blue. However, it is standard practice to
invoke generating functions of sequences when one wants to apply analytical methods to
combinatorial or arithmetical problems. There are many, many illustrations of this. See
[1] for applications in number theory.
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2 such that o, 4(n) < C for allmn ?

Erdés actually conjectured that the answer is ‘No’, and this is still gen-
erally believed to be the case, even though progress on the problem has
been exactly zero. Notice that, if this is the case, it says something kind of
weird, namely : if the set A ‘covers’ N at least once, then it has to do so an
unbounded number of times.

Informally, a basis of a certain order is called thin if its representation
function is a slowly growing function of n. The thinnest bases known to
exist have been identified by probabilistic arguments. It would be a major
achievement to give an explicit construction which comes anywhere close to
matching the following :

Theorem 29 (Erdds 1956) There exist bases A of order 2 for which
ro,A(n) = O(lnn). (61)

This theorem, and its subsequent extension to higher orders which we will
remark on later, are very much state of the art. The gap between it and the
Open Problem above is a gaping black hole in our current understanding of
bases. The proof of Theorem 29 is a beautiful application of the Chernoff
bounds.

PROOF : Let K be a fixed positive constant whose value will be deter-
mined later. We consider a random subset A of N such that each positive
integer z is chosen independently of all others with probability p, given by

1
Py = min K ﬂ,l
T

We will show that, for an appropriate choice of K, the representation func-

tion of A satisfies (61) with probability one'®. For each n > 0, let X,, denote
the random variable 3 4(n). Note that

ln/2]

Xn = Xn,za
1

~

8
Il

which is not the same thing as saying ‘with certainty’, since we are no longer in a
finite setting. Indeed, A is a subset of N, hence there are uncountably many possibilities
for it.



where X, ; is the indicator variable of the event that both z and n — z lie
in A. Let py, := E[X,]. Thus,

In/2] —
> min{m/m—m,l}-min{K M,l}.
=1 X n—x

The main technical challenge in the proof is to prove an estimate for u,.
But, conceptually, the crucial point is that, for each fixed n, the variables
Xp,z are mutually independent, hence we will eventually be able to apply
the Chernoff bounds to get good concentration of the X,,. For higher order
bases, this is where the present line of reasoning breaks down and more so-
phisticated concentration results are needed to get around the problem. We
defer further discussion of this issue until we’re done with the current proof.

OK, so we need to estimate the p,. The claim is that

KZ
o, ™~ TW Inn. (62)

The verification of (62) is a challenging Calculus 101 exercise. So as not to
obscure the probabilistic ideas being employed here, we relegate the proof
to Appendix 1 and continue with the main thrust of the argument. So we
assume (62). Fix any choice of real number € € (0,1), and let A, denote the
event that 9 4(n) does not lie between (1 — e)KT27r Inn and (1 + e)KTZ7r Inn.
Chernoff’s Inequality now tells us that

K? 25
P(A,) < 2exp <_CCT7T lnn> —2.p e

If K is now chosen so that

then

The theorem will then follow directly from
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Lemma 30 (Borel-Cantelli Lemma) Let (4,)22, be a sequence of events
in a probability space, and suppose that (63) holds. Then with probability
one, only finitely many of the A, occur.

PROOF OF LEMMA : Let € > 0. We will show that the probability of
infinitely many A,, occurring is less than e. Eq. (63) implies that there
exists an ng such that

> P(4y) <e (64)

But the left hand side of (64) is an upper bound for the probability of at
least one A,, occurring for n > ng, hence in turn an upper bound for the
probability of infinitely many A, occurring. So we’re done !

Remark 1 To prove the theorem, it would have sufficed to show that our
random choice of A satisfied (61) with non-zero probability. We actually
succeeded in showing that this was achieved with probability one, so that
in some sense bases of this thinness are abundant. However, as previously
noted, no-one has a clue how to construct one explicitly.

Remark 2 We remarked above where the argument breaks down for higher
order bases. It took 34 years to overcome this obstacle and prove

Theorem 31 (Erd8s, Tetali 1990 [3]) Let h > 2. Then there ezists
a basis A of order h for which rp a(n) = ©(Inn).

Though this was not the original approach of Erdés and Tetali, the quickest
known way to get around the obstacles presented by non-independence is to
use what are called the Janson inequalities, proven by Svante Janson in the
late 1980s. These are discussed in Chapter 8 of [AS], and in [3] itself, but we
probably won’t have time to get that far in this course. Hopefully, though,
I have provided sufficient motivation for you to study them on your own !
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Lecture 9

We begin with two further applications of the Chernoff bounds.
EXAMPLE 1 : DISCREPANCY THEORY

DEFINITION 24 : Let S be a finite set. A map x : S — {£1} is called a
2-coloring of S. The elements s € S s.t. x(s) = —1 will be said to be colored
blue, and the other points colored red.

DEFINITION 25 : Let S be a finite set, x a 2-coloring of S and A a subset of
S. The discrepancy of A with respect to x, denoted disc(A4, x), is defined as

> x(s)

SEA

disc(4, x) =

In words, it’s the difference between the number of red and blue points in A.

DEFINITION 26 : Let F be a family of subsets of the finite set S. The
discrepancy of F w.r.t. a 2-coloring x of S, denoted disc(F, x), is defined as

disc(F, x) := max disc(A4, x).
The 2-color discrepancy of F, denoted simply disco(F), is defined as
discy(F) := Irgcin disc(F, x),
the minimum being taken over all possible 2-colorings of the set S.
The Chernoff estimates give upper bounds on 2-color discrepancies.

Theorem 32 Let S be a finite set of m elements and F a collection of
n subsets of S. Then

disca(F) = O (lenn) .

PROOF : A random 2-coloring of an m-set can obviously be thought of as a
sequence of m independent coin tosses. Thus we have a very simple instance
where the Chernoff bounds apply. Now let’s be more precise :
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Denote S = {1,...,m} for simplicity. For each i = 1,...,m, let X; be the
random variable for which

P(X;=+1)=P(X; = 1) =

Thus the X; are i.i.d. and by a random 2-coloring of S we mean any such
i.i.d. sequence of m random variables. For any subset A of S, we set
X4 =) ;ca X;. Thus the absolute value of X4 records the discrepancy of
A w.r.t. a random 2-coloring of S. We shall show that, for an appropriately
chosen constant C' > 0, and for any fixed n and A,

P(IX4| > CVminn) < % (65)

This implies that, given a family F of n subsets, the total probabilility that
|Xa| > CvVmInn for at least one A € F is strictly less than one. In other
words, there is a positive probability that a random 2-coloring x of S satis-
fies disc(F, x) < Cv'mlnn, as desired. So it suffices to verify (65).

We use (51) in the special case where, in the notation of (49), each p; = 1/2.
Notice that each X; above is twice such a normalised indicator variable, so
(51) implies that

(a/2)? a? a?
P(Xa< —a)<exp|-———F| =exp| — | <exp|—].
(Xa<=a) p[ 2- 1|4 PA\T4ar) =P Tam
But here everything is symmetric about zero, so the same inequality must

hold for P(X 4 > +a), even if this is not generally the case in the Chernoff
estimates. We conclude that, for any positive real number a,

2
P(|X4|>a) <2-exp (-Z—m> .

Setting a := Cv/mInn, this becomes

2 1 A2
Pl > CVirTan) <esp (- ) %
Thus (65) will be satisfied if C' > 2 and the theorem is proved.

A particular case of interest in Theorem 32 is when m = n, in which case it
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bounds the discrepancy by O(vn Inn). In Chapter 12 of [AS], Spencer repro-
duces his argument which improves this to O(y/n). It is a highly non-trivial
argument running over several pages, so we don’t go through it here. Note,
however, that there are examples known, involving so-called Hadamard ma-
trices, which show that this order of magnitude cannot in general be beaten.
The best-possible constant is, I think, still unknown. Active research areas
within discrepancy theory include, for example :

(I) studying the discrepancy of specific families of sets, not just general ones.
This is somewhat analogous to studying specific subsets of the natural num-
bers in the theory of bases. There is an old, famous result of this type due
to Roth, which states that if F is the family of all arithmetic progressions
(of all lengths) in {1,...,n}, then disc(F) = Q(n'/*). More recently, Spencer
and Matousek proved the reverse estimate, namely disc(F) = O(nl/4). See
their paper [1] for details and references.

(IT) extending the notion of discrepancy to when there are more than 2
colors involved, so-called multi-colored discrepancies. Of course here it’s not
even obvious what the right definitions should be. Search for ‘multi-colored
discrepancies’ on Google if you're interested.

EXAMPLE 2 : DEGREES IN RANDOM GRAPHS

For any n and p, the degree of any vertex in G(n, p) is the sum of n — 1 i.i.d.
indicator variables X; such that P(X; = 1) = p, P(X; = 0) = 1 — p. Indeed
each such indicator corresponds to an edge from the given vertex to one of
the other n—1 vertices. Thus the expected value of the degree of any vertex
is (n —1)p and we expect that the Chernoff bounds would supply some kind
of concentration estimate for the degrees about this average. Given n and p,
and € > 0, let A, denote the event that the degree of every vertex in G(n,p)
lies between (1 — €)(n — 1)p and (1 + €)(n — 1)p. Then we can prove the
following :

Theorem 33 : For any € > 0, if lnT” = o[p = p(n)] then
PG, p(n) E A =1 of1).

Remark This is kind of a ‘threshold result’. It says that if p(n) is above

the threshold lnT” then we get good concentration of the degrees. It says
nothing, however, about what’s going on below the threshold.
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PROOF OF THEOREM 33 : Let € be given and for any vertex v of K,
let X, be the random variable which records the degree of v in G(n,p). As
explained above, X, is a sum of n — 1 indicator variables and has mean
g = (n — 1)p. Thus, by Theorem 24,

P(| Xy — p| > ep) <2-e H, (66)

where ¢, s a fixed positive constant. Now A, is the event that | X, — u| < ep
for every vertex v. Thus in order for the probability of this event to be
1 — o(1), it suffices for the right hand side of (66) to be o(1/n). But this is
the case if I = o(p), as one verifies by direct insertion.

How to deal with non-independence ?

We now come to the last part of the course, where we introduce some tech-
niques for dealing with non-independent events. We will only have time for
two topics, namely :

(I) The Lovasz Local Lemma.
(IT) Martingales.

The two topics are quite diefferent in spirit, though, so give a good flavour
of the range of techniques at one’s disposal.

The Local Lemma is basically an attempt to generalise the following simple
observation :

Proposition 34 Let Aq,..., A, be a finite sequence of events in an arbi-
trary probability space. If each event has non-zero probability and they are
independent of one another, then with positive probability, all occur simoul-

taneously.

PROOF : By independence,

In the probabilistic approach to many combinatorial problems, as we have
seen, we are interested in having none of a sequence of events occurring. If
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we call the events A; and P(A;) = x;, then if the events were independent,
the above proof would yield that

P (/\Zi> =1 — ). (67)

2

So as long as each z; < 1, the probability of none of these ‘bad’ events
occurring is non-zero. Moreover, in applications, the xz; are usually very
small, so sometimes this would even give a fairly large probability of none
of the bad events occurring. But lack of independence is a major problem
which has to be dealt with.

The idea behind the local lemma, is that we can recover something close
to (67) if the dependencies between events are localised, which usually means
that each event is independent of ‘most’ of the others. For the precise state-
ment, we require a definition :

DEFINITION 27 : Let Aq,..., A, be events in a probability space. The de-
pendency digraph of these events is the directed graph G on n vertices, such
that the directed edge (i,7) is present if and only if event A; depends on
event A;, that is if and only if P(4;|A;) # P(4;).

Theorem 35 (Lovasz Local Lemma 1975) Let Aq,...,A, be a finite

sequence of events in an arbitrary probability space with dependency digraph
G. Suppose we can find real numbers x1, ..., T, such that

(i)
0<z; <1, i=1,..,m,

(ii)

Then

P(/H\ZZ) Zﬁ(l—xi) > 0. (68)
=1 =1

The idea of localised dependencies becomes very clear in the following spe-
ical case of the theorem :



Corollary 36 (Symmetric Local Lemma) Let Ay,..., A, be events in
an arbitrary probability space. If P(A;) < p for every i, each event depends
on at most d others and

e-p-(d+1)<1, (69)
then P(/\Z‘Zi) > 0.
PRrROOF OF COROLLARY : Take each z; = ﬁ in the statement of Theorem

35 and verify that (69) implies that conditions (i) and (ii) of the theorem
are satisfied.

We will prove Theorem 35 and discuss applications next day. One final
remark : perhaps the best way to think of it is that the product over edges
of G in condition (ii) is a ‘correction term’ which one inserts in order to
recover (67) when one has localised dependencies.
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Lecture 10

PROOF OF THEOREM 35 : The proof is quite elementary, but a bit of a
notational nightmare. We need a lemma which is basically a reformulation
of the inclusion-exclusion principle.

Lemma 37 Let A4, ..., A, be events in a probability space. Then
no_ n i—1 .
P(/\AZ) =[I[1-P (4l N\A4
i=1 j=1

i=1
PrOOF OF LEMMA : Induction on n, starting with n = 2. For two events,
(70) becomes

. (70)

P(A; N Ay) = [1 — P(A))][1 — P(As[4))]. (71)

Now the induction step basically just consists of applying (71) over and over,
so we just prove that relation and leave the rest as an exercise.

irst note that the left hand side is 1 — P(A4; V A3) which in turn, by the
inclusion-exclusion principle, is 1 — P(A;) — P(A2) +P(A1 A Az). Expanding
the right hand side of (71) and cancelling like terms, we see that what’s left
to be shown is that

P(Ay) — P(A; A Ag) = [1 — P(Ay)] - P(Ag|Ay).
But this is true since
P(Ag) — P(A1 A Ag) = P(A1 A Ag) = P(A1) - P(Ag|Ay) = [1 — P(Ay)] - P(A2[A1), vs.v.

Now back to the theorem. We suppose that we have located real numbers
Z1,..., Ty s.t. conditions (i) and (ii) are satisfied, and must prove (68). The
strategy will be to prove the following statement, which I'll call (*) :

‘For every subset S of {1,...,n} other than the whole set, and each 7 ¢ S, it
holds that

jES
First suppose we have (*). Then (69) follows directly from this and (70).
The left hand side of (70) is what we’re interested in and, by (*), for each
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term on the right hand side of (70) we have, upon taking S = {1,...,4 — 1},
the inequality

i—1
1-P (Ai| /\Zj> >1—g;.
Jj=1

So we’re left having to verify (*). This will be done by induction on |S|. If S
is the empty set, then it is follows from condition (ii). Suppose now |S| > 0
and that (*) holds for all smaller S. Fix also an ¢ ¢ S. We form a partition
S =51 U8y where S; :={j € S:(i,5) € E(G)}. The left hand side of (72)
is thus

P(Ai| AN Z,-).

JES1 JES2
Now for any three events X, Y and Z we have the relation?

P(X NY|Z) _ P(X|2)

PRV AL ==p512) < pv12)

Taking

X=4, Y=NA4, zZ= M4,
JES1 JES2

we thus obtain the inequaliity

P(Aj|Nica, A;
P(Au/\ﬂj)g ( Nes, J)_ : (73)
jes P(/\jesl Ajl Njes, AJ‘)

We consider separately the numerator and denominator on the right of
(73). Regarding the numerator, since A; is, by definition, independent of all
events A; for j € Sy, the probability of A; occurring is unaffected by the
non-occurrence of these other events. Thus the numerator is simply P(A4;)
and hence, by assumption (ii),

Numerator < z; - H (1 —=z;). (74)
J:(6:4) € E(G)

20it follows from the relation P(X AY) = P(Y)- P(X|Y), after conditioning everything
on Z.
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Now for the denominator. If the set S; is empty then the denominator is
just one (strictly speaking, the event Y can be ignored completely) and we’re
done. So we may suppose S; is non-empty. This will allow us to employ
the induction hypothesis on |S|. Let Sy := {j1, ..., jr} say. Then Lemma 37
implies that the denominator can be written as

T

[

k=1

k—1
1-P (A]k| /\ Zjl A /\ Zj)
=1

JES2

But this is a product of the form

1-P (Ajk| A Z])

jESk

r

1

k=1

b

where each S* is a set of smaller cardinality than S and j; ¢ S*. Thus
the induction hypothesis implies that the product is greater than or equal
to [Tx=1(1 — ;). But this is a subset of the product [[;.;; jjem(e)(1 — j),
hence bigger than or equal to that in turn. We conclude that

Denominator > H (1 —zj). (75)
J:(4,5)EE(G)

From (74) and (75) we see that the induction step is complete, and hence
the proof of Theorem 35.

We now give two applications of Theorem 35. The first applies the sym-
metric version (Corollary 36), which is indeed the version often used, but
the second illustrates the use of the full theorem. Not surprisingly, the latter
example is far more intricate.

FIRST APPLICATION : VAN DER WAERDEN NUMBERS

Earlier (Theorem 6) we applied a basic probabilistic argument to get a
lower bound on Van der Waerden numbers. Thus bound can be substantially
improved using the Local Lemma. In fact, the following result is essentially
the best general lower bound for Van der Waerden numbers that is currently
known.
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Theorem 38 Let k,m > 1. Then there exists a function f(k), depend-
ing on k only, such that

k-1
ek?

PROOF : Fix an n > 0 and consider a random m-coloring of {1,...,n}. Let
Sy, ..., S¢ denote all the k-term AP:s in {1,...,n}. Note that t = ©(n?). For
i = 1,...,t let A; be the event that S; is monochromatic. Then P(A4;) =
m~ %=1 for every i. So set p := m 1. Now consider any event 4;. We
need an upper bound on the number of other events A; on which it depends.
Clearly, A; depends on A; if and only if, as sets, S; and S; are not disjoint.
Thus we need an upper bound on the number of k-term AP:s in {1,...,n}
which intersect a given one. I claim that there is such an upper bound of
the form kk—jln + f(k), where f(k) is a function of k only, and not of n. To
see this, fix a k-term AP - call it S - and consider separately

W (k,m) > m*=t — f(k). (76)

(i) the number of k-term AP:s which intersect S in exactly one point
(ii) the number of k-term AP:s which intersect S in at least two points.

First, what about (i) ? Well, there are k choices for the point of intersection.
Given that point, there are k choices for its position in the intersecting AP,
which we call T. There are also at most | ;"] choices for the common dif-
ference between the terms of 7. These three choices determine 7" uniquely,
hence the number of possible T' is no more than k- k - | 5] < kk—fln

Next, what about (ii) ? Again denote an intersecting AP by T'. There
are certainly no more than 2¥ choices for the points of intersection of S with
T. But an AP is completely determined by specifying two or more of its
points and their positions within it. For each choice of points in SNT there
are again certainly no more than 2¥ possible choices for the positions of these
points within 7. Thus the total number of possibilities for T is certainly no
more than 2%.2% = 4% The important point is that this bound is a function
of k only, so our claim is proved.

The theorem now follows immediately from Corollary 36. We've already
chosen p and the above discussion means we can take d := kk—fln + f(k).
Then (69) will be satisfied if n < %mk_l + f1(k), where f; is some (other)
function of k£ only. Thus for any such n, there is a non-zero probability that
a random m-coloring satisfies P(AA;) > 0, i.e.: that there are no monochro-
matic AP:s. Hence this must be a lower bound for W (k,m), v.s.v.

64



SECOND APPLICATION : OFF-DIAGONAL RAMSEY NUMBERS

We’ve also applied a basic probabilistic argument to obtain a lower bound
(8) for the diagonal Ramsey numbers R(k, k). It turns out that the Local
Lemma can only improve on this by a constant factor (specifically, a factor
of two), because each bad event (a red or blue Kj) depends on too many
others. Where the Local Lemma does give a big improvement on the basic
approach is for computing lower bounds for so-called off-diagonal Ramsey
numbers. Here we are interested in the numbers R(k,!), where k is consid-
ered fixed and [ is allowed to grow. We thus consider R(k,[) as a function
of I. Now (2) gives an upper bound R(k,l) = O (I*¥~!). Tt is conjectured
that this is not far from the truth, namely :

Conjecture 39 Fiz k > 3. Then for each ¢ > 0, as | — oo, R(k,l) =
Q(lk—l—e)_

Note that this is weaker than the assertion that R(k,l) = ©x(*~!). In
fact, the latter assertion is false since, for example, Erd6s showed that

R@D:O(%ﬁ. (77)

Regarding lower bounds, Spencer [1] proved the following result using the
Local Lemma, :

Theorem 40 (Spencer 1977) For each fized k > 3, as | — oo we have
that

a(k)
Mhb:Q(%ﬂ , (78)
where
()
2 2 _ L _
alk) = 35— = k2(k f 2)2' (79)

Essentially a(k) =~ k/2, which is about half of what Conjecture 39 says
should be the right power. Note that for £ = 3 we have a(3) = 2 so
Conjecture 39 has been proven in that case. But even here we still have the
tantalising gap

2 2

l l
Clm < R(3,l) < CQm.
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Indeed it is pretty weird that the Local Lemma, leaves such a small gap when
one considers that a basic probabilistic argument bascially gets you nowhere
in terms of lower bounds. Let me explain what I mean.

OK, fix an n and consider a random 2-coloring of K,,. We want to
avoid both blue triangles and red K;. To get a lower bound for R(3,1) we
have to determine for which n such configurations are avoided with non-zero
probability. Because of the asymmetry here between blue and red, it seems
intuitively reasonable that our random coloring should in this case be biased
in favour of red, i.e.: we color each edge of K,, blue with some probability
p which is small and perhaps dependant on n. For any choice of p, the
usual basic probabilistic argument tells us that the expected number of bad
configurations (blue triangles or red Kj) is

< "; ) pd 4 ( TZL ) .(l_p)l(lfl)/Q_

So what one now wants to do is to choose p so that the above quantity is
less than one for as large n as possible, as a function of [, ideally for n of the
order of [2. Hoever, I leave it as an exercise for you to prove the following
assertion (I went through it roughly in class) :

Proposition 41 Fiz ¢ > 0. Then for any choice of p = p(n) it will be
the case that, if | is sufficiently large, then

(Ig')_p3+<7>_(1_p)l(l—1)/2>1

Since the trivial lower bound is R(3,1) > [ we thus see the severe limitations
of applying only simple-minded probabilistic techniques to this problem.
Theorem 40 is therefore a very powerful illustration of the Local Lemma.
The proof follows in the next lecture.

when n = (1€,

REFERENCE
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Lecture 11

PrOOF OF THEOREM 40 : We give the proof for £ = 3 only. The proof
for general k is similar. Fix [ and n, though think of these as parameters
which are going to infinity. We consider a random 2-coloring of K,, where
each edge is colored blue with probability p = p(n), to be determined later,
and red otherwise (if you prefer, we are working with the random graph
G(n,p(n))). For each 3-element subset S of the vertices, let Ag denote the
event that S is a blue triangle. For each [-element subset T" of the vertices,

let Br denote the event that T is a red K. There are ( g ) A-events and

( 7’ ) B-events. Each of the former has probability p®, and each of the

latter has probability (1 — p)!¢=1)/2. Denote by

N4 = number of A-events on which a given A-event depends,
Nap = number of B-events on which a given A-event depends,
Np4 = number of A-events on which a given B-event depends,
Npp = number of B-events on which a given B-event depends.

We use the estimates

where in the second and fourth estimates we have used Stirling’s formula.

We seek positive real numbers z; € (0,1), one for each A- and B-event, so
that the hypotheses of Theorem 35 are satisfied when n = © (%) Since
the A-events are identically distributed, it makes sense to confine the search
to when all corresponding z; are equal, to = say. Similarly, we assume that
the z; corresponding to all B-events are equal, to y say. Then the conditions

that need to be satisfied can be summarised as follows :

0<p<l, O<zx<l, O0<y<l, (80)
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P <o (1= )" (L), (51)
(1-p) D2 <y (1= a)*Pa (1 - y) o, (52)

From our estimates for the various N’s, it suffices to replace (81) and (82)
respectively by

P <o (a1 -y)(F), (83)
Q-2 <y (1-a)F (1) (P (84)

Now the claim is that, for an appropriate choice of absolute constants ¢,
¢9, €2, 3, Cq, then (80), (83) and (84) will be satisfied for all sufficiently large
n and the following choice of parameters :

p=cin /2 (85)

= cyn'?1nn, (86)

x = cyn /2 (87)

y = exp(—csn/?In’ n). (88)

It is left as a (tedious, but worthwhile) exercise to verify this. The important
point is that (86) implies the theorem.

Martingales

A martingale is, from a certain point of view, a generalisation of a sequence of
i.i.d. variables, but the concept is far more general. In 1968 Azuma observed
that for martingales that satisfy a certain so-called Lipschitz condition, the
final term in the martingale satisfies the same type of Chernoff concentration
estimate as a sum of i.i.d. variables. The result has applications to random
graphs, as there is a natural way to associate a martingale to any random
graph invariant, and for some invariants, the best-known being the chromatic
number, the Lipschitz condition is satisfied.

In order to be able to present this material, we need to introduce the
notion of conditional expectation for random variables. In keeping with our
general philosophy in this course, we keep the abstract probability theory
to a minimum sufficient for our requirements.

DEFINITION 28 : Let (£, ) be a finite probability space, X a real-valued

random variable on . For each r € R, the level set of X at level r, denoted
B,., is defined as

By ={weQ: X(w)=r}

68



DEFINITION 29 : Now let Y be another random variable on the same space.
We can define a third r.v. Z, called the conditional expectation of Y w.r.t.
X, and usually denoted E(Y|X), as follows : for each w € €2, we have

1

Z(w) . IJ'(BX(w))

Y. w(n)Y(n).

TEBx(w)

In words, the value of the r.v. E(Y|X) at any point w in the probability
space is the u-weighted average of the values of Y at the points of the level
set of X (w). Thus E(Y|X) is constant on each level set of X. If each level
set of X is a single point, then E(Y|X) = Y. Otherwise, E(Y|X) is a
‘partial revelation’ of the r.v. Y.

Exercises (i) Describe E(Y|X) more explicitly when X and Y are in-
dicator variables of events, say A and B respectively.

(ii) Show that E[E(Y|X)] = E(Y).

(iii) Show that (we’ll use this later on)

E[X -E(Y|X)] = E[X -Y]. (89)

DEeFINITION 30 : A sequence Xy, ..., X,, of random variables, all defined on
the same probability space, is called a martingale if

E(Xz_|_1|Xz) = Xz for ¢ = O, ey — 1.

EXAMPLE 1 : Let Yp,...,Y, be i.i.d. variables on a space (2, ). For each
1=20,...,n set X; := Ej‘:o Y;. The X; may all be considered as defined on
the same space, namely Q"' with the product measure. Then the X; form
a martingale (exercise !).

EXAMPLE 2 : The mathematical use of the term ‘martingale’ historically
comes from the following example : consider a game which consists of an
unlimited (i.e.: continue until you get fed up) sequence of coin tosses, where
the amount bet on the outcome of each toss is decided independently just
before it takes place. Consider the following strategy for winning : ‘double
the bet until I win’. So, for example, you could start by betting 1 euro. If
you win, stop. Otherwise, bet 2 euro on the next toss. If you win then, stop.
Otherwise, bet 4 euro on the next toss etc. One might reason that since one
must surely win a bet at some point, this is a guaranteed money-making
strategy.
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Exercise : Show how to model this game with a martingale. What’s the
flaw in the reasoning above ?

One type of martingale which arises in many contexts is where the last
term X,, is a r.v. whose distribution is being ‘gradually revealed’ by the
terms in the martingale. An example, which is the central example of in-
terest for applications to random graphs, will hopefully make this idea clear :

DEFINITION 31 : We work in the probability space G(n,p) for any fixed
n and p. Let f be any graph invariant. Let e1, ..., e,(,1)/2 be any ordering
of the edges of K. We define a corresponding martingale Xo, ..., Xp(n—1)/21
called the edge exposure martingale of f in G(n,p), as follows :

For each i = 0,...,n(n—1)/2, X, is the random variable on G(n, p) whose
value at any graph H on n vertices is the average value of the function f
taken over all graphs G on n vertices which coincide with H amongst the
edges eq, ..., ;.

The vertex exposure martingale is defined similarly. Here we order the ver-
tices of K, in any order, say vy, ..., . Then our martingale is X, ..., Xp_1,
where X;(H) is the average of f(G) taken over all G which coincide with H
on the subgraph induced by vy, ..., v;41.

Note that the vertex esposure martingale may be considered as a subse-
quence of the edge exposure martingale.

N.B.: In either the edge- or vertex exposure martingale, the first term X
is a constant, namely E[f(G(n,p))], whereas the last term (either X, _1)/o
or X,_1 as appropriate) is f(G(n, p)) itself, i.e.: the random graph invariant
in its full glory !!

EXAMPLE : f(G) = x(G), the chromatic number. We computed the corre-
sponding martingales for G(3,1/2). Left as an exercise for you to do so again.

In the next lecture we will formulate the key property of a random graph in-

variant which means that we can get a Chernoff-type concentration estimate
for it from the corresponding edge- or vertex exposure martingale.
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Lecture 12

Our purpose in this last lecture is to show how the symmetric case of Cher-
noff’s inequality (see the proof of Theorem 32) can be extended to a certain
class of martingales, with basically the same proof. The important concept
is the following :

DEFINITION 32 : A martingale Xy, ..., X, is said to satisfy a Lipschitz con-
dition if there exists a constant ¢ > 0 such that | X; — X; 1| < ¢ for all
1=1,...,n.

DEFINITION 33 : Let f be a graph invariant. Then f is said to satisfy
an edge (resp. vertex) Lipschitz condition if there exists a constant ¢ > 0
such that, whenever G; and G4 are two graphs that differ only at one edge
(resp. vertex), then |f(G1) — f(G2)| < ec.

Note that, in this definition, when we say that two graphs differ only at
one edge, then we mean that the two graphs have the same number of ver-
tices, and that they share exactly the same edges but one, which is present
in one graph but not the other. Thus one of the graphs is a subgraph of the
other in this case. When we say that two graphs differ at one vertex, we
mean that, when that vertex and all its adjacent edges are removed, then
the remaining graphs are identical. Thus, if two graphs only differ at one
edge then they also only differ at one vertex, though not always vice versa.

Exercise Show that if f is a graph invariant satisfying an edge (resp. ver-
tex) Lipschitz condition, then the corresponding edge (resp. vertex) expo-
sure martingale satisfies a Lipschitz condition with the same constant.

The point of these definitions is the following :
Theorem 42 (Azuma’s inequality 1968) Let u = Xy, ..., X, be a mar-

tingale satisfying a Lipschitz condition with constant ¢ > 0. Then, for any
a>0,

0,2
P( Xy — | > a) <2 exp (—W) . (90)

PROOF : We prove the result in the case where ¢ = 1 and gy = 0. The

general result just follows by simple change of variables. We will need the
following lemma :
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Lemma 43 Let Y be a r.v. satisfying
(1) E[Y] =0,
(i) Y] < 1.
Then for any A > 0,
/\2
EleN] <e™.

PROOF OF LEMMA : The function f(z) = ¢ is convex, hence its graph in
the interval [—1, 1] lies on or below the line joining the points (—1, f(—1)) =
(—1,e7*) and (1, f(1)) = (1,¢"). In other words, for z € [-1,1],

e < cosh \ + sinh \ - 7.
Hence, by assumptions (i) and (ii) and linearity of expectation,

E[eNY] < E[cosh X + sinh X - Y] = cosh \.

2
But it’s simple to check that cosh A < e for all A > 0, which completes
the proof of the lemma.

So back to the theorem. For each 1 = 1,...,n let Y; := X; — X;_1. Then
the martingale condition implies that E(Y;|X;_1) = 0 and the Lipschitz
condition that |Y;| < 1. Thus, by Lemma 42, if A > 0 then

A2

2

E[eMi|X;1] <ez, fori=1,..,n. (91)

We are, of course, interested in X, so, in the spirit of Chernoff’s method,

we consider E[e**»] for some ) to be chosen appropriately later. Observe
that

X;=Y1+---4Y;, fori=1,..n. (92)
Thus

E[e*"]=FE

n
11 e)‘YJ'] .
j=1

Now applying (89), (92) and Lemma 42 we have that

n n—1 n—1 n-t
E H MNi|l = H MM = F H N Bl X, ]| <E
j=1 J=1 =t =
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Now just apply the same argument a further n — 1 times to get

2

E[e)‘X“] < enT_
Then, by Markov’s inequality, if a > 0 we have
a2
P(|X,| > a) =2 P(X, > a) =2 P(eM" > M) <2. ¢

The exponent is minimised when A = a/n, which yields (90) whenc =1, 4 =
0. This completes the proof.

The chromatic number is a classic example of a graph invariant which sat-
isfies a Lipschitz condition : clearly, it satisfies a vertex Lipschitz condition
with ¢ = 1. Various applications of Azuma’s inequality to the computa-
tion of the chromatic numbers of random graphs are given in Chapter 7 of
[AS]. Unfortunately, time ran out before we could do justice to these in the
lecture, so you’ll have to read the stuff yourselves !
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