MAN 640 : Taltaori

Tentamen 170105

Lösningar

F. 1 The possible orders of an element x of \mathbf{F}_{31}^{\times}are all the divisors of $30=$ $2 \cdot 3 \cdot 5$, namely $1,2,3,5,6,10,15$ and $30 . x$ is a primitve root if and only if x has order 30. The number of primitive roots is $\phi(30)=(2-1)(3-1)(5-1)=8$, corresponding to the 8 (all prime) numbers in $[1,30]$ which are relatively prime to 30 , namely : $1,7,11,13,17,19,23,29$. Hence, if x is any primitive root, then the complete list of primitive roots is given by

$$
\begin{equation*}
x, x^{7}, x^{11}, x^{13}, x^{17}, x^{19}, x^{23}, x^{29}(\bmod 30) . \tag{1}
\end{equation*}
$$

We find a primitve root by trial-and-error. Note immediately that 2 is not a primitive root, since $2^{5}=32 \equiv 1(\bmod 31)$. On the other hand, let's look at 3 . We have

$$
3^{2} \equiv 9, \quad 3^{3}=27 \equiv-4, \Rightarrow 3^{5}=3^{2} \cdot 3^{3} \equiv 9 \cdot(-4) \equiv-5
$$

From these we further deduce that

$$
\begin{array}{r}
3^{6}=3^{3} \cdot 3^{3} \equiv 16, \\
3^{10}=3^{5} \cdot 3^{5} \equiv 25 \equiv-6, \\
3^{15}=3^{10} \cdot 3^{5} \equiv(-6) \cdot(-5)=30 \equiv-1 .
\end{array}
$$

Hence, 3 has order 30 , and is a primitive root. The full list of primitive roots thus consists of the appropriate powers of 3 , as in (1). We compute

$$
\begin{array}{r}
3^{7}=3^{5} \cdot 3^{2} \equiv(-5) \cdot 9=-45 \equiv-14 \equiv 17, \\
3^{11}=3^{10} \cdot 3 \equiv(-6) \cdot 3=-18 \equiv 13, \\
3^{13}=3^{11} \cdot 3^{2} \equiv 13 \cdot 9=117 \equiv 24, \\
3^{17}=3^{15} \cdot 3^{2} \equiv(-1) \cdot 9 \equiv 22, \\
3^{19} \equiv 3^{17} \cdot 3^{2} \equiv(-9) \cdot 9=-81 \equiv-19 \equiv 12, \\
3^{23}=3^{15} \cdot 3^{5} \cdot 3^{3} \equiv(-1) \cdot(-5) \cdot(-4)=-20 \equiv 11, \\
3^{29} \equiv 3^{-1} \equiv-10 \equiv 21 .
\end{array}
$$

Thus, the complete list of primitive roots modulo 31 is

$$
3,11,12,13,17,21,22,24(\bmod 31)
$$

F. 2 Theorem 4 in my lecture notes.
F. 3 Let \mathcal{Q} and \mathcal{N} denote the sets of quadratic residues and non-residues respectively, modulo p. Since $p \equiv 3(\bmod 4)$ we have that

$$
\begin{equation*}
x \in \mathcal{Q} \Leftrightarrow p-x \in \mathcal{N} . \tag{2}
\end{equation*}
$$

Let $\mathcal{S}:=\left\{1,2, \ldots, \frac{p-1}{2}\right\}$. By definition of m we have (all congruences are modulo p)

$$
\left[\frac{1}{2}(p-1)\right]!=\left(\prod_{x \in \mathcal{S} \cap \mathcal{Q}} x\right) \cdot\left(\prod_{x \in \mathcal{S} \cap \mathcal{N}} x\right) \equiv(-1)^{m} \cdot\left(\prod_{x \in \mathcal{S} \cap \mathcal{Q}} x\right) \cdot\left(\prod_{x \in \mathcal{S} \cap \mathcal{N}} p-x\right)
$$

But by (2),

$$
\left(\prod_{x \in \mathcal{S} \cap \mathcal{Q}} x\right) \cdot\left(\prod_{x \in \mathcal{S} \cap \mathcal{N}} p-x\right)=\prod_{x \in \mathcal{Q}} x
$$

i.e.: each quadratic residue in $[1, p)$ appears exactly once. Finally, when $p \equiv 3(\bmod 4)$, the product of all quadratic residues is $\equiv 1(\bmod p)$, since the quadratic residues occur in pairs $x, x^{-1}(\bmod p)$, and $p-1$, which is its' own inverse, does not appear in the product.
F. 4 Theorem 25 in my lecture notes.
F. 5 It suffices to prove the result for primitive triples. Let (x, y, z) be any such triple and WLOG, assume y is odd. Then, by Theorem 5, there exist positive integers $a<b$ such that $\operatorname{GCD}(a, b)=1$ and

$$
\begin{equation*}
x=2 a b, \quad y=b^{2}-a^{2}, \quad z=b^{2}+a^{2} \tag{3}
\end{equation*}
$$

Note that $60=2^{2} \cdot 3 \cdot 5$, so to prove that a number is divisible by 60 , it suffices to prove that it is divisible by each of 4,3 and 5 .

First, since $\operatorname{GCD}(x, y, z)=1$, it is clear from (3) that a and b must have opposite parity (otherwise each of x, y and z would be even). In other words,
exactly one of a and b is even, and this implies that x is divisible by 4 . Thus $x y z$ is also divisible by 4 .

Second, if either a or b is divisible by 3 , then so is x, hence so also is $x y z$. Otherwise $a^{2} \equiv b^{2} \equiv 1(\bmod 3)$, hence y is divisible by 3 in this case. Thus $x y z$ is divisible by 3 in all cases.

Finally, if either a or b is divisible by 5 , then so is x, hence also $x y z$. Otherwise, $a^{2} \equiv \pm b^{2} \equiv \pm 1(\bmod 5)$, so that exactly one of $b^{2} \pm a^{2}$ is divisible by 5 . Thus $x y z$ is also divisible by 5 in all cases, and the proof is complete.
F. 6 (i) Page 72 in my lecture notes.
(ii) Sats 31 in my lecture notes.
F. 7 (i) Let $\{a, b, c\}$ be a reduced form of discriminant -27 . Since $b^{2}-4 a c=$ -27 is odd, we must have b odd. Since the form is reduced we have

$$
0<a \leq \sqrt{\frac{-d}{3}} \Rightarrow a \in\{1,2,3\} .
$$

If $a=1$ then, since $b \in(-a, a]$, the only possibility is $b=1$. This gives $c=7$, so we have the form $\{1,1,7\}$.

If $a=2$ then $b \in\{ \pm 1\}$, in which case $c=\left(b^{2}+27\right) / 4 a=28 / 8 \notin \mathbf{Z}$, so we get nothing there.

Finally, if $a=3$, then $b \in\{ \pm 1,3\}$. If $b= \pm 1$ then $c=28 / 12 \notin \mathbf{Z}$. But if $b=3$, then $c=3$, so we get the form $\{3,3,3\}$.

We conclude that there are two reduced forms of discriminant -27, namely

$$
x^{2}+x y+7 y^{2} \quad \text { and } \quad 3 x^{2}+3 x y+3 y^{2} .
$$

(ii) Denote the given form as $f(x, y)=\{103,73,13\}$. We apply the following sequence of transformations to reduce the form :

$$
\begin{aligned}
S:\{103,73,13\} & \mapsto\{13,-73,103\}, \\
T^{3}:\{13,-73,103\} & \mapsto\{13,5,1\}, \\
S:\{13,5,1\} & \mapsto\{1,-5,13\}, \\
T^{3}:\{1,-5,13\} & \mapsto\{1,1,7\} .
\end{aligned}
$$

Hence f is equivalent to the reduced form $x^{2}+x y+7 y^{2}$. To work out the variable substitution which accomplishes this transformation, we compute
$S T^{3} S T^{3}=\left(S T^{3}\right)^{2}=\left[\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)\right]^{2}=\left(\begin{array}{cc}0 & -1 \\ 1 & 3\end{array}\right)^{2}=\left(\begin{array}{cc}-1 & -3 \\ 3 & 8\end{array}\right)$.
Hence the desired variable substitution is

$$
f(-x-3 y, 3 x+8 y)=x^{2}+x y+7 y^{2} .
$$

F. 8 (i) For $\operatorname{Re}(s)>1$, the following representation is valid :

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} .
$$

(ii) Theorem 27 in my lecture notes.

