
Solutions to Exam 18-08-11

Q.1 Corollary 5.5 in the lecture notes.

Q.2 (i) The limsup is 1 and the liminf is zero. To see the former, con-
sider a primep. One hasφ(p) = p − 1 and, since there are infinitely many
primes, one has

lim
p→∞

φ(p)

p
= lim

p→∞
1 −

1

p
= 1.

To see that the liminf is zero, recall the general formula that

φ(n)

n
=

∏

p|n

(

1 −
1

p

)

.

Hence, it suffices to know that the infinite product on the right, taken over
all primes, converges to zero. This follows from Theorem 5.3in the lecture
notes, upon lettings → 1+.

(ii) One may check by hand that1237 is a prime, hence the multiplica-
tive groupZ

×
1237 is cyclic of order 1236. A primitive root is just a generator

of this cyclic group, and the number of generators is

φ(1236) = φ(22 · 3 · 103) = (22 − 2)(3 − 1)(103 − 1) = 408.

(iii) For3 to be a primitve root means that3n 6≡ 1 (mod41) for anyn which
properly divides 40, i.e.: for anyn ∈ {1, 2, 4, 5, 8, 10, 20}. However, one
may directly verify that38 = (34)2 = 812 ≡ (−1)2 ≡ 1 (mod41). Hence,
3 is not a primitive root modulo 41.

Q.3 Theorem 7.11 in the lecture notes.

Q.4 (i) SinceRn is the leastx for which there existn primes in the in-
terval (x/2, x], it means that there are less thann primes in the interval
(x−1

2
, x− 1]. But in going from here to(x/2, x], the only number we add in

is x, and hence this must be a new prime.

(ii) The Prime Number Theorem says thatπ(x) ∼ x
log x

. This is equiva-
lent to pn ∼ n log n. Hencep2n ∼ 2n log n. Now let N(x) denote the
number of primes in the interval(x/2, x]. Thus

N(x) = π(x) − π(x/2) ∼
x

log x
−

x/2

log(x/2)
∼

1

2

x

log x
.

1
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In particular,

N(Rn) = n ∼
1

2

Rn

log Rn

,

which is equivalent toRn ∼ 2n log n ∼ p2n, as desired.

Q.5 (i) Theorem 12.4 in the lecture notes.
(ii) Corollary 12.6 in the lecture notes.

Q.6 I will only sketch the idea, the reader can fill in the rigorousdetails.
SupposeA = {a1 < a2 < · · · an < · · · } is an asymptotic basis and the
2-fold representation function is ultimately one. The latter implies, on the
one hand, that from some pointn0 on, the consecutive differences

an0+1 − an0
, an0+2 − an0+1, · · ·

must all be distinct. Now the sum ofk distinct positive integers is at least
k2/2 − O(k). From this we can deduce that

an ≥
n2

2
− O(n). (1)

On the other hand, sinceA is an asymptotic basis, all butO(1) of the num-
bers up toan can be expressed as sumsai + aj, for some1 ≤ i, j ≤ n.
There aren2/2 + O(n) such sums, and hence

an ≤
n2

2
+ O(n). (2)

From (1) and (2) it follows thatan = n2/2+O(n). But this is true for alln,
and from it one can easily see that a positive proportion (asn → ∞) of the
sumsai + aj, for 1 ≤ i, j ≤ n, must in fact be greater thanan. This means
that (2) can be replaced byan ≤ n2/a + O(n), for somea > 2. This will
then contradict (1), for alln ≫ 0.

Q.7 (i) W (k, l) is the least positive integern such that anyk-coloring of
the set{1, 2, ..., n} must yield a monochromaticl-term arithmetic progres-
sion.
(ii) See the proofs of equations (22.2) and (22.3) in the lecture notes.

Q.8 Let B (resp. C) denote the subsets of odd (resp. even) elements of
A. Let |A| = n, |B| = k, |C| = l, so thatk + l = n, and denote

A = {a1 < · · · < an}, B = {b1 < · · · < bk}, C = {c1 < · · · < cl}.

Now

b1 + 2a1 < b1 + 2a2 < · · · < b1 + 2an < b2 + 2an < · · · < bk + 2an
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is a collection ofn + k − 1 distinct odd elements ofA + 2 · A, whereas

c1 + 2a1 < c1 + 2a2 < · · · < c1 + 2an < c2 + 2an < · · · < cl + 2an

is a collection ofn + l − 1 distinct even elements ofA + 2 · A. Hence,
|A + 2 · A| ≥ (n + k − 1) + (n + l − 1) = 2n + (k + l) − 2 = 3n − 2, as
desired.


