
Solutions to Exam 18-12-10

Q.1 Three squares is not enough, because a sum of three suqares cannot
be congruent to 7 (mod 8). Now see Theorem 10.2 in the lecture notes, or
Theorem 7.3 in the handout from Stewart and Tall.

Q.2 If a, b ∈ Z andz := a + b
√

2, then define

z∗ := a − b
√

2, N(z) := zz∗ = a2 − 2b2.

Let R := Z[
√

2] = {a + b
√

2 : a, b ∈ Z}. For anyz1, z2 ∈ R, it is easily
checked that

(z1z2)
∗ = z∗

1
z∗
2

and hence that

N(z1z2) = N(z1)N(z2).

From this we can deduce the following algebraic identity : ifa, b, c, d ∈ Z,
then

(a2 − 2b2)(c2 − 2d2) = (ac + 2bd)2 − 2(ad + bc)2. (1)

This is what is meant by being able to‘multiply’ integer solutions to the
equation

x2 − 2y2 = 1. (2)

In particular, takinga = c, b = d in (1) we find that if(a, b) is any solution
to (2) then(a2 + 2b2, 2ab) is another solution. Now ifa, b are positive
integers, then clearly

min{a2 + 2b2, 2ab} > max{a, b}.
Hence, starting from any solution whatsoever to (2) in positive integers,
iteration of the map

(a, b) 7→ (a2 + 2b2, 2ab)

produces an infinity of solutions. Since, for example,(3, 2) is a solution to
(2), this proves that (2) has infinitely many integer solutions.

Q.3 (i) Theorem 12.4 in the lecture notes.
(ii) Theorem 11.7 in the lecture notes.

Q.4 The presumtive solutions would be given by the usual quadratic for-
mula

x ≡ 3 ±
√

32 − 4 · 9 · 11

2(9)
= (18)−1[3 ±

√
−387] (mod1237).
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Hence solutions exist if and only if
(−387

1237

)

= +1.

Since1237 ≡ 1 (mod4), we first have
(−387

1237

)

=

( −1

1237

) (

387

1237

)

=

(

387

1237

)

.

Next, since387 = 32 · 43, we have
(

387

1237

)

=

(

3

1237

)2 (

43

1237

)

=

(

43

1237

)

.

Since1237 ≡ 1 (mod4), quadratic reciprocity implies that
(

43

1237

)

=

(

1237

43

)

.

Since1237 = 28 · 43 + 33, it follows that
(

1237

43

)

=

(

33

43

)

.

Since33 ≡ 1 (mod4), Jacobi reciprocity implies that
(

33

43

)

=

(

43

33

)

=

(

10

33

)

.

Next, since33 ≡ 1 (mod8), one has
(

10

33

)

=

(

2

33

) (

5

33

)

=

(

5

33

)

.

Finally, Jacobi reciprocity yields
(

5

33

)

=

(

33

5

)

=

(

3

5

)

= −1.

Hence, the original congruence has no solution.

Q.5 (i) rA,h(n) is the number of unorderedh-tuples{a1, ..., ah} of elements
of A which satisfya1 + · · ·+ ah = n. We say thatA is anasymptotic basis
if, for some positive integerh, one hasrA,h(n) > 0 for all n ≫ 0. The least
suchh is then called the(exact) order of the asymptotic basis.
(ii) See Theorem 17.6 in the lecture notes.

Q.6 A cannot be an asymptotic basis of order 1 sinced(A) < 1. Now it
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remains to show that every sufficiently largen ∈ N can be written as a sum
of two elements ofA. Sinced(A) > 1/2, one has for alln ≫ 0 that

|A ∩ {1, ...., n}| > cn,

for some fixedc > 1/2. Now fix such ann, and let

A1 := A ∩ {1, ..., n}, A2 := {n − a : a ∈ A1}.
On the one hand,|A1| = |A2| > cn, so |A1| + |A2| > 2cn. On the other
hand,A1 ∪ A2 ⊆ {0, 1, ..., n}, so |A1 ∪ A2| ≤ n + 1. This implies that
A1 ∩ A2 must be non-empty. Leta1 ∈ A1 ∩ A2. Thena1 ∈ A and there
existsa2 ∈ A such thatn − a2 = a1, in other wordsn = a1 + a2. Hence
n ∈ 2A, as required.

Q.7 (i) See the handout from Diestel’s book. The Regularity Lemma is
stated as Lemma 7.2.1.
(ii) Theorem 1.2 in the supplementary lecture notes for week 49.
(iii) The result follows immediately from Theorem 1.3 in the supplementary
lecture notes for week 49.

Q.8 This is a special case ofRado’s regularity theorem which states that
a homogeneous linear equation

L : a1x1 + · · · + anxn = 0, ai ∈ Z,

is irregular if and only if the following condition holds :

(*) For every non-empty subsetS ⊆ {1, ..., n}, one has
∑

i∈S ai 6= 0.

Here I prove the sufficiency of the irregularity condition (*), which is all
we need to solve the problem at hand. So letL be an equation for which (*)
is satisfied. Letp be a prime which does not divide any of the subset-sums
∑

i∈S ai. Then there exists a(p− 1)-coloringχ : Z → {1, ..., p− 1} which
avoids monochromatic solutions toL. Namely, everyx ∈ Z can be written
uniquely asx = pkxx0, wherex0 is not divisible byp. Then there is a unique
x1 ∈ {1, ..., p − 1} such thatx0 ≡ x1 (modp). We defineχ(x) = x1.

It is easy to check that condition (*) guarantees the absenceof monochro-
matic solutions toL.

Note that, for the equationx + y = 5z, the coefficients area1 = a2 = 1,
a3 = −5, and so the set of subset sums of coefficients is{1,−5, 2,−4,−3}.
So the smallest prime which works in the construction aboce is p = 7, so
we can color the integers with at most 6 colors and avoid monochromatic
solutions tox + y = 5z.
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REMARK : The reader who is also interested in a proof of the necessity
of Rado’s condition can check, for example, the following sources :

1. http://www.math.uga.edu/∼lyall/REU/rado.pdf
2. The bookRamsey Theory, by Graham, Rothschild and Spencer.


