
3. THIRD LECTURE : 3/11

Definition A Diophantine equationis an equation of the form

p(x1, ..., xn) = 0, (3.1)

wherep(x) ∈ Z[x1, ..., xn] is a polynomial with integer coefficients. By asolution to
(3.1) we mean an integer solution, i.e.: one for which all thexi have integer values.

The study of Diophantine equations is one of the major themesin the history of number
theory. It is obviously a broad topic, so it’s important to ask the right questions in order
to get to interesting results. It is my intention in this course only to scratch the surface
of the theory. Let me in passing, however, mention a few theorems which are deserving
of the title‘great’1 It is far beyond our remit in this course to prove any of these.

Theorem 3.1. The question of whether an arbitrary Diophantine equation has a so-
lution or not isundecidable, i.e.: there can’t be found any algorithm which takes an
arbitrary Diophantine equation as input and decides whetherthe equation has a solu-
tion or not after a finite amount of computation.

This is really a result in mathematical logic so, once again,if you haven’t seen results
like this before it will probably strike you as weird. The most famous theorem of this
sort concerns the so-calledHalting Problemstudied by Alan Turing. The question of
decidability for solutions to Diophantine equations is known asHilbert’s Tenth Prob-
lem. It was definitively solved by Matyasevich in 1970, but his work built on that of
several previous authors and has the character of a‘final piece in the jigsaw’. One of
the other major contributors was Julia Robinson, probably the foremost female mathe-
matician of the 20th century.

Theorem 3.2. (Faltings 1983)LetC be a non-singular rational curve of genus at least
2. Then there are only finitely many rational points onC.

This is a technical formulation of Faltings’ Theorem, but a more concrete way to
think about it is that it implies that ifp(x, y, z) is a homogeneous, irreducible polyno-
mial of degree at least 4, then the Diophantine equationp(x, y, z) = 0 has only finitely
many primitive solutions, i.e.: solutions with GCD(x, y, z) = 1. The proof of this
theorem uses heavy machinery from algebraic geometry. Indeed, the modern study of
Diophantine equations is dominated by algebro-geometric methods, and is often highly
sophisticated. The final theorem I wish to quote, probably the most famous theorem in
all of math, exemplifies this state of affairs extremely well:

Theorem 3.3. (Wiles 1994)The Diophantine equationxn + yn = zn has no solutions
for whichxyz 6= 0 whenn > 2.

Now back to the course material proper. When it comes to Diophantine equations,
one first has to figure out a good place to start one’s study. A sensible choice would seem
to be to start (just as one does in ordinary one-variable algebra) with linear equations,
then move on to quadratics, cubics etc. It turns out that things already get extremely

1There are a lot of theorems which could be given the title of‘great’ and no exhaustive list is remotely
possible.
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hard with cubics (again, maybe no surprise, given our experience with one-variable
cubic equationsp(x) = 02). Quadratic equations are at just the right level of difficulty
for ‘serious’ research, and there is a very rich theory for these,which we will once again
scratch the surface of in due course. First of all, though, wemust take care of linear
equations. Here there is a satisfactory theory, though as wewill see, there is a slight
sting in the tail.

Theorem 3.4.Leta0, a1, ..., an be non-zero integers. Then the Diophantine equation

a1x1 + · · · + anxn = a0 (3.2)

has a solution if and only if GCD(a1, ..., an) dividesa0.

Proof. The casen = 1 is obvious : the equationa1x1 = a0 has the unique solution
x1 = a0/a1. For the casen = 2, i.e.: for the equation

a1x1 + a2x2 = a0, (3.3)

we use Euclid’s lemma. Letd := GCD(a1, a2). According to that lemma, there exist
integersu1, u2 such that

a1u1 + a2u2 = d, (3.4)

and if 0 < a0 < d then there are no integer solutions to (3.3). Supposed|a0, say
a0 = qd. Then multiplying (3.4) through byq we have an integer solutionx1 = qu1,
x2 = qu2 to (3.3). On the other hand, supposed†a0. Thena0 = qd+r where0 < r < d.
Suppose there were an integer solution to (3.3), say

a1v1 + a2v2 = a0. (3.5)

Then multiplying (3.4) through byq and subtracting from (3.5) we obtain

a1s1 + a2s2 = r, wheres1 = v1 − qu1, s2 = v2 − qu2, (3.6)

which contradicts the fact that (3.3) has no integer solution when0 < r < d.
This establishes the casen = 2 of the theorem. The general case is now obtained by

induction onn (see exercise 1 on homework 1). �

Significantly, Euclid’s algorithm provides an effective form of this theorem, i.e.: we
can efficiently find an explcit solution to (3.3) when the conditions of Theorem 3.4 are
fulfilled. We have already seen how this works whenn = 2. For generaln, one uses an
inductive procedure (again see exercise 1 on homework 1).

The final part of the jigsaw which yields a highly satisfactory theory of linear equa-
tions is that it is possible to write down a formula for ALL solutions to such an equation
in terms of any particular solution (which Euclid’s algorithm can find). We give the
formula forn = 2 only. Asn increases, it will be more complicated to write down but
can be done in principle by the same inductive reasoning (seehomework 1).

2Note, though, that the problem of determining all RATIONAL solutions to a one-variable equation
p(x) = 0, wherep(x) ∈ Z[x], can be reduced to the integer factorisation problem. For ifp(x) =
anxn + · · · + a1x + a0 andx = p/q is a root, then it is easy to see that we must haveq|an andp|a0. In
particular, ifx = p is an integer root, thenp|a0. So to find all integer roots, it suffices to factora0 and
test its factors one-by-one.
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Theorem 3.5.Leta0, a1, a2 be non-zero integers such that GCD(a1, a2) dividesa0. Let
d := GCD(a1, a2), a0 := qd, and letu1, u2 be any integers satisfyinga1u1 + a2u2 = d.
Then the general solution to (3.3) is given by

x1 = qu1 + k
(a2

d

)

, x2 = qu2 − k
(a1

d

)

, k ∈ Z. (3.7)

Proof. It is simple to check that if(x1, x2) is given by (3.7) then (3.3) is satisfied. Con-
versely, supposea1x1 + a2x2 = a0. We also havea1(qu1) + a2(qu2) = a0. Subtracting
we obtain

a1(x1 − qu1) = a2(qu2 − x2). (3.8)

Divide through byd to get
(a1

d

)

(x1 − qu1) =
(a2

d

)

(qu2 − x2). (3.9)

Now the point is that GCD(a1/d, a2/d) = 1. The two sides of (3.9) must have exactly
the same prime factors (we’re sort of using FTA here). Hence,all the prime factors
of a2/d, say, must appear among those ofx1 − qu1, in other words,a2/d must divide
x1 − qu1. Similarly,a1/d must dividequ2 − x2. Letx1 − qu1 = k

(

a2

d

)

andqu2 − x2 =

l
(

a1

d

)

. Substituting back into (3.9) yieldsk = −l, and thus(x1, x2) satisfy (3.7), as
required. �

We seem to have a completely satisfactory theory for linear Diophantine equations.
We have an explicit criterion for whether or not a solution exists, an explicit formula
for all solutions when they do exist, and an efficient algorithm for testing whether the
criterion is satisfied, and for finding an explicit solution when it is.

Now for the little sting in the tail. Suppose all the coefficients in (3.2) are positive
and we are only interested in positive solutions. This is a fairly natural restriction for
problems involving counting of some sort. It is known as theFrobenius coin problem
: think of a1, ..., an as being coin denominations which one has at one’s disposal,and
one wants to make up a total ofa0 cents. At first, our restriction doesn’t seem to cause
any problems, since

Theorem 3.6.Leta1, ..., an positive integers such that GCD(a1, ..., an) = 1. Then (3.2)
has a solution in non-negative integersxi for all sufficiently largea0.

This is as we would expect, though the proof is not entirely trivial (see exercise 2 on
homework 1). But now some strange things start to happen :

Definition Let a1, ..., an be positive integers satisfying GCD(a1, ..., an) = 1. The
Frobenius numberG(a1, ..., an) is the largest positive integera0 for which (3.2) has
no solution in non-negative integers.

Example If a1 = 3, a2 = 5 thena0 = 7. In fact, there is a general formula when
n = 2, namelyG(a1, a2) = (a1 −1)(a2 −1)−1. For a proof, see the homework. There
are also good general estimates known whenn = 3, but they are more complicated and
no exact formula is known as far as I know. Even worse, we have

Theorem 3.7. The problem of computing the Frobenius numbersG(a1, ..., an) for ar-
bitrary inputs is NP-hard for anyn > 3.
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To my mind, this result is at first glance very surprising, since our theory for linear
Diophantine equations seems so simple and satisfactory. Soyou never know ... I don’t
know who proved this theorem.

We now make a first foray into the territory of non-linear Diophantine equations. These
were already studied by the Greeks (especially Diophantus !), and the subject was en-
thusiastically revived by Fermat and his contemporaries inthe 17th century. The latter
had a number of famous results of the form :‘such and such Diophantine equation has
only the following solutions (maybe no solutions)’. The methods employed were basi-
cally elementary, the key often being some clever application of FTA. In particular, the
following consequence of FTA was used widely :

Fact A. Let a, b be positive integers such that GCD(a, b) = 1. If ab is a k:th power,
then each ofa andb is itself ak:th power.

Sometimes, Fermat and Co. got carried away in their usage of the unique factorisa-
tion idea central to FTA - we will give an example next day. Efforts by later generations
to give rigorous proofs of their results laid the groundworkfor the development in the
19th century of the body of knowledge nowadays known asalgebraic number theory.

We start with a result which was perhaps already known to Pythagoras (and maybe
even earlier civilisations).

Theorem 3.8.Letx, y, z be positive integers such that GCD(x, y, z) = 1 andy is odd.
Then the following two statements are equivalent :

(i) x is even andx2 + y2 = z2,
(ii) there exist positive integersa < b, of opposite parity and satisfying GCD(a, b) = 1,
such that

x = 2ab, y = b2 − a2, z = b2 + a2. (3.10)

Proof. Suppose (ii) holds. Then one checks directly thatx2 + y2 = z2. Let d =
GCD(x, y, z). Thend|b2±a2, henced|2a2 andd|2b2. Thusd also divides GCD(2a2, 2b2) =
2. Henced = 1 or 2. But d cannot be 2, sincey is odd.

Now suppose (i) holds. Write the equation as(z + y)(z − y) = x2. Since bothy
andz are odd and GCD(y, z) = 1, we easily deduce that
GCD(z + y, z − y) = 2. Hence we can write

(

z + y

2

)(

z − y

2

)

=
(x

2

)2

and, by Fact A above, each of1

2
(z±y) is a perfect square, i.e.: there exist integersa < b

such that
z − y

2
= a2,

z + y

2
= b2.

Then (ii) follows easily. �
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A triple of relatively prime integers satisfying the equivalent conditions of Theorem
3.8 is called aprimitive Pythagorean triple.

Next day, we will use this theorem to prove the casen = 4 of Fermat’s Last Theo-
rem.
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4. FOURTH LECTURE : 5/11

The one case of his Last Theorem that Fermat is known to have actually proved is

Theorem 4.1.Letx, y, z be integers such thatx4 + y4 = z4. Thenxyz = 0.

Proof. We consider more generally the equation

x4 + y4 = z2 (4.1)

and show that it has no integer solutions such thatxyz 6= 0. The proof is by contradic-
tion and makes use of Fermat’s technique ofinfinite descent. More precisely, the idea
is as follows : we suppose there exists a solution(x, y, z) of (4.1) for whichxyz 6= 0.
Then there must be a solution for which, in addition, GCD(x, y, z) = 1, for if (x, y, z)
is a solution andd = GCD(x, y, z), then(x/d, y/d, z/d2) is also an integer solution.

Now the idea is that, given any primitive solution(x, y, z), one may construct a new
one(X,Y, Z) such that|Z| < |z|. But since there must be, among all primitive solu-
tions, one in which|z| is minimised, we thereby obtain the desired contradiction.

So let(x, y, z) be a primitive solution to (4.1). Then(x2, y2, z) is a primitive Pythagorean
triple so, by Theorem 3.8, if we assume WLOG thatx is even andy odd, then there exist
relatively prime integersa, b such that

x2 = 2ab, (4.2)

y2 = b2 − a2, (4.3)

z = b2 + a2. (4.4)

We can rewrite (4.3) as

y2 + a2 = b2,

and so(y, a, b) is also a primitive Pythagorean triple. Sincey is odd, so musta be even,
and there exist relatively prime integersp, q such that

a = 2pq, (4.5)

y = q2 − p2, (4.6)

b = q2 + p2. (4.7)

Substituting (4.5) and (4.7) into (4.2) yields

x2 = 4pq(p2 + q2). (4.8)

Now p andq are relatively prime, hence one sees easily that both are relatively prime to
p2 + q2. Thus, the three numbersp, q andp2 + q2 are pairwise relatively prime. Since
their product is, by (4.8), a perfect square, it follows fromFact A that each is a perfect
square. In other words, there exist pairwise relatively prime integersX,Y, Z such that

p = X2, q = Y 2, p2 + q2 = Z2.

Substituting the first two of these relations into the third yields the relation

X4 + Y 4 = Z2,
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so we have constructed the desired new primitive solution to(4.1). It remains to check
that|Z| < |z|. But, using (4.7) and (4.4), we have

Z2 = p2 + q2 = b < b2 + a2 = z ≤ z2,

as required. �

FTA is key to the above proof, via Fact A. Fermat seems to have used this trick in
much of his work on Diophantine equations. However, this usually involved using FTA
in a more‘general’ context. The following example illustrates his modus operandi
well :

Theorem 4.2.The only integersx, y such that

y2 + 2 = x3 (4.9)

arex = 3, y = ±5.

Proof. Write (4.9) as
(y +

√
−2)(y −

√
−2) = x3. (4.10)

We shall first verify that, for any integery, the numbersy +
√
−2 andy −

√
−2 have

no common factor in

Z[
√
−2] = {a + b

√
−2 : a, b ∈ Z}.

For supposez := a + b
√
−2 is a common factor. Thenz divides

(y +
√
−2) − (y −

√
−2) = 2

√
−2,

and, taking squares of absolute values (as complex numbers), we conclude that

a2 + 2b2 | 8,

as ordinary integers. The only possibilities are thus

(i) a = ±1, b = 0.
(ii) a = ±2, b = 0.
(iii) a = 0, b = ±1.
(iv) a = 0, b = ±2.

In case (i),z = ±1, and hence not a proper factor. In all other cases, there must
exist integersc, d such that

y +
√
−2 = (a + b

√
−2)(c + d

√
−2).

From this it follows, by equating the real and imaginary parts, that

y = ac − 2bd, (4.11)

1 = ad + bc. (4.12)

Now (4.12) immediately rules out (ii) and (iv), since in bothcases the rhs of (4.12) is
even. But from (4.9) it follows already thaty must be odd (otherwise the lhs of (4.9)
will be even, but not divisible by4), and then (4.11) also eliminates (iii).

Hence, we have proven thaty ±
√
−2 have no common factor inZ[

√
−2].
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By (4.10), this implies that each of them must be a cube inZ[
√
−2].

Thus, there exist integersa, b such that

y +
√
−2 = (a + b

√
−2)3. (4.13)

Multiplying out the rhs of (4.13) and equating the real and imaginary parts yields the
two equations

y = a3 − 6ab2, (4.14)

1 = 3a2b − 2b3 = b(3a2 − 2b2). (4.15)

Immediately, (4.15) implies that

b = 3a2 − 2b2 = ±1.

Sincea, b are integers, the only possibility isb = 1, a = ±1. Substituting these
possibilities into (4.14) givesy = ±5, v.s.v. �

OBS !! There is a major gap in the proof, namely the part in italics. What I state
there is correct, but it requires a proof3. What one would actually like to prove is a
generalisation of FTA to the ringZ[

√
−2]. We will return to this issue later in the

course. But, for the moment, it is worth remarking that FTA does not hold in, for
example, the ringZ[

√
−5]. For in this ring one has, for example,

6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5), (4.17)

and one may check that each of the four numbers2, 3, 1 ±
√
−5 is ‘prime’ in the ring,

i.e.: has no factor other than itself and±1.

Remark 4.3. Eq. (4.9) is an example of aWeierstraβ equationand defines a so-called
elliptic curveoverQ. The most general form of a Weierstraβ equation overQ (more
generally over a field of characteristic other than 2 or 3) is

y2 = x3 + Ax + B, A,B ∈ Q. (4.18)

This defines a non-singular, so-called elliptic curve overQ, the algebraic closure ofQ,
if and only if thediscriminant

∆ := 4A3 + 27B2

is non-zero. There is a famous theorem of Siegel that every elliptic curve overQ con-
tains only finitely many integer points(x, y) ∈ Z2. For a proof, see Chapter 9 of the
book

3There is no evidence that Fermat himself understood the nature of this gap, i.e.: that one doesn’t
always have unique factorisation in finite extensions ofZ, so-called rings ofalgebraic integers. Indeed,
his claim to have proven his Last Theorem may well be due to a faulty application of FTA in this more
general context. The equationxn + yn = zn can be factored as

(x + y)(x + ζy) · · · (x + ζn−1y) = zn, (4.16)

whereζ = e2πi/n is a primitiven:th root of unity. In 1847, Lamé gave a faulty proof of FLT which had
as its starting point this factorisation and the deduction that each factor on the lhs is ann:th power. It is
speculated that Fermat may have had a similar argument in mind.
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J. Silverman,The Arithmetic of Elliptic Curves, Springer New York (1986), GTM
Series No. 106.

If FTA leads towards what is known asalgebraic number theory4, then Euclid’s other
main theorem (Theorem 1.2 above) leads to what is calledanalytic number theory. This
subject is mainly concerned with the distribution of the prime numbers, and the methods
used chiefly come from real and complex analysis (hence the name). We now begin to
scratch the surface of this topic.

Proof. of Theorem 1.2.Suppose, on the contrary, that there are only finitely many
primes. List them all asp1, ..., pk. Consider the number

N :=

(

k
∏

i=1

pi

)

+ 1. (4.19)

It is clearly not divcisible by anypi. But it must have SOME prime factor (by Lemma
1.3), which contradicts the completeness of our list of primes. �

Definition Let π : N → N be the function given by

π(n) = # primes up to and includingn. (4.20)

Euclid’s theorem says thatπ(n) → ∞ asn → ∞. The central problem of analytic
number theory is to determine the asymptotic behaviour of the functionπ(n). We will
dip into this issue next day.

4Basically, the study of factorisation in arbitrary rings, especially in rings of algebraic integers.


