3. THIRD LECTURE: 3/11
Definition A Diophantine equatiofis an equation of the form

p(z1, ..., z,) =0, (3.1)

wherep(X) € Z[xy, ..., z,] is @ polynomial with integer coefficients. Bysalutionto
(3.1) we mean an integer solution, i.e.: one for which allithbave integer values.

The study of Diophantine equations is one of the major themtwee history of number
theory. It is obviously a broad topic, so it's important td&ise right questions in order
to get to interesting results. It is my intention in this ceeionly to scratch the surface
of the theory. Let me in passing, however, mention a few t@srwhich are deserving
of the title ‘great® It is far beyond our remit in this course to prove any of these.

Theorem 3.1. The question of whether an arbitrary Diophantine equatios haso-
lution or not isundecidablei.e.: there can't be found any algorithm which takes an
arbitrary Diophantine equation as input and decides whetherequation has a solu-
tion or not after a finite amount of computation.

This is really a result in mathematical logic so, once agaygu haven't seen results
like this before it will probably strike you as weird. The midamous theorem of this
sort concerns the so-callédhlting Problemstudied by Alan Turing. The question of
decidability for solutions to Diophantine equations is WmoasHilbert's Tenth Prob-
lem It was definitively solved by Matyasevich in 1970, but hisrkvbuilt on that of
several previous authors and has the characterfafia piece in the jigsaw’. One of
the other major contributors was Julia Robinson, probatdyforemost female mathe-
matician of the 20th century.

Theorem 3.2. (Faltings 1983) et C be a non-singular rational curve of genus at least
2. Then there are only finitely many rational points@n

This is a technical formulation of Faltings’ Theorem, but arenconcrete way to
think about it is that it implies that if(x, y, z) is @a homogeneous, irreducible polyno-
mial of degree at least 4, then the Diophantine equatieny, z) = 0 has only finitely
many primitive solutions, i.e.: solutions with GC,y,z) = 1. The proof of this
theorem uses heavy machinery from algebraic geometry.ebhdbe modern study of
Diophantine equations is dominated by algebro-geometeithods, and is often highly
sophisticated. The final theorem | wish to quote, probabdyrtiost famous theorem in
all of math, exemplifies this state of affairs extremely well

Theorem 3.3. (Wiles 1994 he Diophantine equation™ + y™ = 2" has no solutions
for whichzyz # 0 whenn > 2.

Now back to the course material proper. When it comes to Dioph@ equations,
one first has to figure out a good place to start one’s studynaiske choice would seem
to be to start (just as one does in ordinary one-variableba#gavith linear equations,
then move on to quadratics, cubics etc. It turns out thagthmiready get extremely

There are a lot of theorems which could be given the titlgogat’ and no exhaustive list is remotely
possible.
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hard with cubics (again, maybe no surprise, given our egepeg with one-variable
cubic equationg(x) = 0. Quadratic equations are at just the right level of diffigul
for ‘serious’ research, and there is a very rich theory for thekeh we will once again
scratch the surface of in due course. First of all, thoughpwist take care of linear
equations. Here there is a satisfactory theory, though awilsee, there is a slight
sting in the tail.

Theorem 3.4.Letay, a4, ..., a,, be non-zero integers. Then the Diophantine equation
amzy + -+ apt, = ag (3.2)
has a solution if and only if GCl@&, ..., a,,) dividesay.

Proof. The caser = 1 is obvious : the equation,;z; = ay has the unique solution
x1 = ap/a;. For the case = 2, i.e.: for the equation

a1 + 29 = Qog, (33)

we use Euclid’s lemma. Let := GCD(a, az). According to that lemma, there exist
integersu, up such that

a1 + AUy = d, (34)

and if 0 < ao < d then there are no integer solutions to (3.3). Suppdsg, say
ap = qd. Then multiplying (3.4) through by we have an integer solution, = qu;,
9 = qug t0 (3.3). On the other hand, suppe&e,,. Thena, = qd+r where0 < r < d.
Suppose there were an integer solution to (3.3), say

a1V1 + a2 = ayg. (35)
Then multiplying (3.4) through by and subtracting from (3.5) we obtain
181 + ass9 =1, Wheres; = vy — quq, S92 = vy — qua, (3.6)

which contradicts the fact that (3.3) has no integer sotuhen0 < r < d.
This establishes the case= 2 of the theorem. The general case is now obtained by
induction onn (see exercise 1 on homework 1). O

Significantly, Euclid’s algorithm provides an effectiverfio of this theorem, i.e.:. we
can efficiently find an explcit solution to (3.3) when the cibioths of Theorem 3.4 are
fulfilled. We have already seen how this works wheg- 2. For generah, one uses an
inductive procedure (again see exercise 1 on homework 1).

The final part of the jigsaw which yields a highly satisfagttneory of linear equa-
tions is that it is possible to write down a formula for ALL stibns to such an equation
in terms of any particular solution (which Euclid’s algdwih can find). We give the
formula forn = 2 only. Asn increases, it will be more complicated to write down but
can be done in principle by the same inductive reasoninghssework 1).

°Note, though, that the problem of determining all RATIONAdlstions to a one-variable equation
p(z) = 0, wherep(z) € Z[z], can be reduced to the integer factorisation problem. Fo(if) =
anx™ + -+ + a1z + ag andx = p/q is aroot, then it is easy to see that we must hgug andp|ag. In
particular, ifx = p is an integer root, thep|ay. So to find all integer roots, it suffices to factay and
test its factors one-by-one.
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Theorem 3.5.Letay, a1, a; be non-zero integers such that GGD, a,) dividesa,. Let
d := GCD(ay, as), ag := qd, and letuy, us be any integers satisfying u; + asus = d.
Then the general solution to (3.3) is given by

xlzqul—l—k(%), xQ:qUQ—k(%), kelZ. (3.7)

Proof. It is simple to check that ifx;, z5) is given by (3.7) then (3.3) is satisfied. Con-
versely, suppose, z; + aszy = ag. We also havey (qu;) + as(quz) = ag. Subtracting
we obtain

al(ifl - qul) = az(quz - SB2)~ (3.8)
Divide through byd to get
a1 _ (% _
<E> (71— qui) = ( d) (qug — ). (3.9)

Now the point is that GCD:, /d, ay/d) = 1. The two sides of (3.9) must have exactly
the same prime factors (we’re sort of using FTA here). Heiadlethe prime factors
of as/d, say, must appear among thosergf— qu,, in other wordsa,/d must divide
x1 — quq. Similarly, a; /d must dividegus — 5. Letx; — quy = k (%2) andquy — x4 =

[ (%). Substituting back into (3.9) yields = —{, and thus(z;, z,) satisfy (3.7), as
required. O

We seem to have a completely satisfactory theory for lindapBantine equations.
We have an explicit criterion for whether or not a solutionséx, an explicit formula
for all solutions when they do exist, and an efficient aldoritfor testing whether the
criterion is satisfied, and for finding an explicit solutiomen it is.

Now for the little sting in the tail. Suppose all the coeffitig in (3.2) are positive
and we are only interested in positive solutions. This isidyfaatural restriction for
problems involving counting of some sort. It is known as Enebenius coin problem
: think of a4, ..., a,, as being coin denominations which one has at one’s dispasdl,
one wants to make up a total @f cents. At first, our restriction doesn’t seem to cause
any problems, since

Theorem 3.6.Letay, ..., a, positive integers such that GG®, ..., a,,) = 1. Then (3.2)
has a solution in non-negative integersfor all sufficiently largea,.

This is as we would expect, though the proof is not entirelyal (see exercise 2 on
homework 1). But now some strange things start to happen :

Definition Let ay,...,a, be positive integers satisfying GC&,...,a,) = 1. The
Frobenius numbet(ay, ..., a,) is the largest positive integer, for which (3.2) has
no solution in non-negative integers.

Example If a; = 3,a, = 5 thenag = 7. In fact, there is a general formula when
n = 2, namelyG(aq, az) = (a; —1)(ag — 1) — 1. For a proof, see the homework. There
are also good general estimates known when 3, but they are more complicated and
no exact formula is known as far as | know. Even worse, we have

Theorem 3.7. The problem of computing the Frobenius numhb@&(s,, ..., a,,) for ar-
bitrary inputs is NP-hard for any. > 3.



To my mind, this result is at first glance very surprising,c&rour theory for linear
Diophantine equations seems so simple and satisfactoryosaever know ... | don’t
know who proved this theorem.

We now make a first foray into the territory of non-linear Digmtine equations. These
were already studied by the Greeks (especially Diophanfust the subject was en-
thusiastically revived by Fermat and his contemporarigfénl7th century. The latter
had a number of famous results of the fornsuch and such Diophantine equation has
only the following solutions (maybe no solutions)’. The meds employed were basi-
cally elementary, the key often being some clever appbeadif FTA. In particular, the
following consequence of FTA was used widely :

Fact A. Let a, b be positive integers such that GGDb) = 1. If ab is a k:th power,
then each of andb is itself ak:th power

Sometimes, Fermat and Co. got carried away in their usageeofitique factorisa-
tion idea central to FTA - we will give an example next day.def$ by later generations
to give rigorous proofs of their results laid the groundwéwk the development in the
19th century of the body of knowledge nowadays knowalgsbraic number theory

We start with a result which was perhaps already known to &ydhas (and maybe
even earlier civilisations).

Theorem 3.8.Letx, y, z be positive integers such that GCDy, z) = 1 andy is odd.
Then the following two statements are equivalent :

(i) z is even and:® + 32 = 22,
(ii) there exist positive integers < b, of opposite parity and satisfying GGR b) = 1,
such that

r=2ab, y=0—d* z2=0"+d° (3.10)
Proof. Suppose (ii) holds. Then one checks directly that- y> = 22. Letd =

GCD(z, y, z). Thend|b*+a?, hencel|2a? andd|2b*. Thusd also divides GCRa?, 2b?) =
2. Henced = 1 or 2. Butd cannot be 2, sincgis odd.

Now suppose (i) holds. Write the equation @s+ y)(z — y) = 2% Since bothy
andz are odd and GCDy, z) = 1, we easily deduce that
GCD(z + vy, z — y) = 2. Hence we can write

() (557) -6

and, by Fact A above, each @qziy) is a perfect square, i.e.: there exist integeks b
such that

Then (ii) follows easily. O
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A triple of relatively prime integers satisfying the eqummat conditions of Theorem
3.8 is called grimitive Pythagorean triple

Next day, we will use this theorem to prove the case- 4 of Fermat's Last Theo-
rem.



4. FOURTHLECTURE: 5/11
The one case of his Last Theorem that Fermat is known to haualbcproved is
Theorem 4.1.Letz, y, z be integers such that! 4 y* = z*. Thenzyz = 0.
Proof. We consider more generally the equation
ot +yt =27 (4.1)

and show that it has no integer solutions such that £ 0. The proof is by contradic-
tion and makes use of Fermat’s techniquendinite descentMore precisely, the idea
is as follows : we suppose there exists a solutieyy, z) of (4.1) for whichzyz # 0.
Then there must be a solution for which, in addition, G&Dy, z) = 1, for if (z,y, 2)
is a solution andl = GCD(x, v, z), then(z/d, y/d, z/d?) is also an integer solution.
Now the idea is that, given any primitive solutién, y, z), one may construct a new
one(X,Y, Z) such thatZ| < |z|. But since there must be, among all primitive solu-
tions, one in whichjz| is minimised, we thereby obtain the desired contradiction.

So let(z, y, z) be a primitive solution to (4.1). Then?, y?, 2) is a primitive Pythagorean
triple so, by Theorem 3.8, if we assume WLOG tha$ even and, odd, then there exist
relatively prime integers, b such that

x? = 2ab, (4.2)
Y= b —a?, (4.3)
2z =00+ d’. (4.4)
We can rewrite (4.3) as
y2 4 CL2 — b2,

and so(y, a, b) is also a primitive Pythagorean triple. Singés odd, so must be even,
and there exist relatively prime integers; such that

a = 2pq, (4.5)
y=q—p, (4.6)
b=q*+p°. (4.7)
Substituting (4.5) and (4.7) into (4.2) yields
2® = dpq(p* + ¢°). (4.8)

Now p andq are relatively prime, hence one sees easily that both aaévely prime to
p? + ¢%. Thus, the three numbegsq andp? + ¢* are pairwise relatively prime. Since
their product is, by (4.8), a perfect square, it follows fréiact A that each is a perfect
square. In other words, there exist pairwise relativelyngrintegersX, Y, Z such that

p=X? q=Y? p’+¢=2%
Substituting the first two of these relations into the thirelgs the relation
X'+ vt =272
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so we have constructed the desired new primitive solutidd tb). It remains to check
that|Z| < |z|. But, using (4.7) and (4.4), we have

Z2=p"+ @ =b< bV +a*=2< 22
as required. O

FTA is key to the above proof, via Fact A. Fermat seems to haeel this trick in
much of his work on Diophantine equations. However, thisallgunvolved using FTA
in a more‘general’ context. The following example illustrates hisdus operandi
well :

Theorem 4.2. The only integers:, y such that
P +2=2a° (4.9)
arer = 3,y = 5.
Proof. Write (4.9) as
(y+V=2)(y — vV=2) = 2°. (4.10)

We shall first verify that, for any integer, the numberg + /—2 andy — v/—2 have
no common factor in

ZIV-2] ={a+b/-2:a,b € Z}.
For suppose := a + by/—2 is a common factor. Thendivides
(y+v=2) - (y—V-2) = 2v-2,
and, taking squares of absolute values (as complex numbersonclude that
a® + 2b% | 8,
as ordinary integers. The only possibilities are thus

()a==1,b=0.
(i) a = +2, b= 0.
(i) a =0, b= +1.
(V) a =0, b= ~+2.

In case (i),z = =1, and hence not a proper factor. In all other cases, there must
exist integers;, d such that

y+vV—2=(a+bv/=2)(c+dvV-2).
From this it follows, by equating the real and imaginary pattat
y = ac — 2bd, (4.11)
1 =ad+ be. (4.12)

Now (4.12) immediately rules out (ii) and (iv), since in batases the rhs of (4.12) is
even. But from (4.9) it follows already thgtmust be odd (otherwise the lhs of (4.9)
will be even, but not divisible by), and then (4.11) also eliminates (jii).

Hence, we have proven thatt \/—2 have no common factor ifi[/—2].
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By (4.10), this implies that each of them must be a culd yi—2].

Thus, there exist integers b such that
y++vV—2=(a+b/-2)> (4.13)

Multiplying out the rhs of (4.13) and equating the real anégmary parts yields the
two equations

y = a® — 6ab?, (4.14)
1 = 3a% — 2b® = b(3a® — 2b%). (4.15)
Immediately, (4.15) implies that
b=3a*— 2" = +1.

Sincea, b are integers, the only possibility is = 1, a« = +1. Substituting these
possibilities into (4.14) giveg = +5, V.S.V. 0

OBS ! There is a major gap in the proof, namely the part indgal What | state
there is correct, but it requires a préofwhat one would actually like to prove is a
generalisation of FTA to the ring[v/—2]. We will return to this issue later in the
course. But, for the moment, it is worth remarking that FTAedmot hold in, for
example, the ring [v/—5]. For in this ring one has, for example,

6=2-3=(1++v-5)(1—vV-5), (4.17)

and one may check that each of the four numiess1 + /-5 is ‘prime’ in the ring,
i.e.: has no factor other than itself afid .

Remark 4.3. Eq. (4.9) is an example of\eierstrad equationand defines a so-called
elliptic curveover Q. The most general form of a Weiersttr&quation overQ) (more
generally over a field of characteristic other than 2 or 3) is

y? =a® + Az + B, A, B eQ. (4.18)

This defines a non-singular, so-called elliptic curve d@ethe algebraic closure @,
if and only if thediscriminant

A = 4A3 + 27B?

is non-zero. There is a famous theorem of Siegel that evéiptielcurve overQ con-
tains only finitely many integer points;, y) € Z*. For a proof, see Chapter 9 of the
book

3There is no evidence that Fermat himself understood theaatithis gap, i.e.: that one doesn't
always have unique factorisation in finite extensionZp$o-called rings oflgebraic integersIndeed,
his claim to have proven his Last Theorem may well be due tailtyfapplication of FTA in this more
general context. The equatioft + y™ = 2™ can be factored as

(+y)(@+Cy) - (@+ " hy) = 2", (4.16)

where¢ = ¢>™/™ is a primitiven:th root of unity. In 1847, Lamé gave a faulty proof of FLT whibad
as its starting point this factorisation and the deductiat each factor on the lhs is anth power. It is
speculated that Fermat may have had a similar argument id.min
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J. Silverman,The Arithmetic of Elliptic CurvesSpringer New York (1986), GTM
Series No. 106.

If FTA leads towards what is known asgebraic number theofythen Euclid’s other
main theorem (Theorem 1.2 above) leads to what is calhedytic number theoryThis
subject is mainly concerned with the distribution of thenmginumbers, and the methods
used chiefly come from real and complex analysis (hence tireehalNe now begin to
scratch the surface of this topic.

Proof. of Theorem 1.2.Suppose, on the contrary, that there are only finitely many
primes. List them all agy, ..., p,. Consider the number

k
N = (sz) + 1. (4.19)

It is clearly not divcisible by any;. But it must have SOME prime factor (by Lemma
1.3), which contradicts the completeness of our list of gsm O

Definition Let 7 : N — N be the function given by
m(n) = # primes up to and including. (4.20)

Euclid’s theorem says that(n) — oo asn — oo. The central problem of analytic
number theory is to determine the asymptotic behaviour efitimctionz(n). We will
dip into this issue next day.

4Basically, the study of factorisation in arbitrary ringspecially in rings of algebraic integers.



