
5. FIFTH LECTURE : 10/11

A more careful analysis of Euclid’s argument gives an explicit lower bound forπ(x).

Proposition 5.1. If x ≥ 2 then

π(x) ≥ ⌊log2 log2 x⌋ + 1. (5.1)

Proof. Let pn denote then:th prime. Then it follows from Euclid’s argument (see eq.
(4.19)) that

pn+1 ≤
(

n
∏

i=1

pi

)

+ 1. (5.2)

Let pn = 2an. Then substituting into (5.2) gives

2an+1 ≤ 2
P

n

i=1
ai + 1, (5.3)

which implies at the very least that

an+1 ≤
(

n
∑

i=1

ai

)

+ 1. (5.4)

Note also thatp1 = 2 = 21, soa1 = 1. If we had equality in (5.4) then it’s easy to check
that the solution to the recurrence would bean = 2n−1. Thus we may deduce that, in
fact,an ≤ 2n−1.

Thuspn ≤ 22n−1

. In other words, ifx = 22n−1

thenπ(x) ≥ log2 log2 x + 1. Then
(5.1) follows for generalx, sinceπ(x) is an increasing function ofx. ¤

The estimate (5.1) is very, very far from the truth. For example, 219 < 106 < 220,
so (5.1) says there are at least 20 primes up to a million. In fact, there are 78,498
primes up to a million. The computation of the functionπ(x) was one of the main
preoccupations of eminent mathematicians after the rebirth of number theory in the 17th
and 18th centuries. A combination of numerical and heuristic evidence led people1 to
believe thatπ(x) behaved something likex/ log x. One of the great achievements of
19th century mathematics was the rigorous proof of this fact.

To state the result concisely, it is convenient to use the following notation :

Notation. Let f(x), g(x) be two real-valued functions. We writef(x) ∼ g(x) to
denote thatlimx→∞ f(x)/g(x) = 1.

Now we have

Theorem 5.2. (Hadamard, de la Vallee Poussin 1896)2

π(x) ∼ x

log x
. (5.5)

1Notably Legendre and Gauss, amongst others, made explicit conjectures as to the behaviour of the
functionπ(x).

2These two guys seem to have worked independently of one another.
1
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The proof of this theorem uses much of the basic machinery of real and complex
analysis which was also developed throughout the 19th century, applying it to the so-
calledRiemann zeta function(which we define below). This function was actually first
studied by Euler (mid 18th century), who used it to make the first real progress be-
yond Euclid’s work on the distribution of the primes. We willpresent Euler’s results
below. The reason the zeta function is named after Riemann wasbecause of a seminal
paper he wrote on this function in 18593, which vastly expanded overnight the state of
knowledge regarding its complex-analytical properties. It was this paper which laid the
groundwork for the final assault on the prime number theorem in the latter part of the
19th century. For a comprehensive presentation of the proof, see for example the book

H. Davenport,Multiplicative Number Theory, Springer GTM Series.

There are two interesting historical footnotes :

1. In 1852, Chebyshev got‘close’ to the prime number theorem, using only‘elementary’
methods, which in this context means not using the zeta function. We will present
Chebyshev’s result in the next lecture. It is curious that hisrelatively simple techniques
got so close to the PNT, but then seem to have hit a brick wall.
2. In 1949, Erd̋os and Selberg, in part working together, shocked most of themathemat-
ical community by publishing‘elementary’ proofs of PNT. The issue of who contributed
what to their efforts has in fact been the source of a lot of controversy (they published
their work separately, for example). For an account of theirmethods, the historical
background and the controversy, see for example the article

http://www.math.columbia.edu/∼goldfeld/ErdosSelbergDispute.pdf

Note that the methods employed by Erdős and Selberg do not seem to have had a sig-
nificant influence on the further development of number theory, for example on efforts
to prove theRiemann hypothesis, which we will come back to later. Thus it is still very
much an open question as to how much of‘analytic’ number theory really does require
the machinery of real and complex analysis, and how much knowledge about the distri-
bution of the primes can be gleaned by other, theoretically simpler methods.

The remainder of this lecture is devoted to presenting Euler’s contribution to this topic.

Definition. Let s ∈ C with Re(s) > 1. Define

ζ(s) :=
∞

∑

n=1

1

ns
. (5.6)

3B. Riemann,Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der
Berliner Akademie (1859), 671-680. Note that the paper is only 10 pages long ! It is also the only paper
Riemann ever wrote on number theory !! And, in Fermat-like fashion, it doesn’t contain rigorous proofs
of most of the main results !!! However, what it does contain is all the most important facts about the zeta
function which were needed to prove the PNT. It also containswhat has become known as theRiemann
hypothesis.
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The functionζ(s) is called the(Riemann) zeta function.

We all know from one-variable calculus that the sum in (5.6) is absolutely convergent
when Re(s) > 1, so the zeta function is well-defined in this range. In fact, for any
δ > 0, the sum converges uniformly in the half-plane Re(s) > 1 + δ, hence, by a theo-
rem of Weierstraβ, the zeta function is analytic for Re(s) > 14. Since the machinery of
complex analysis was not properly developed during Euler’slifetime, he was probably
only dimly aware of these facts, and in his work he did not makeany use of the proper-
ties ofζ(s) as an ANALYTIC function. That would come later, first with Dirichlet (see
Lecture 7 below), but primarily with Riemann. Euler did possess the tools to prove the
following two results, however.

Theorem 5.3.Let Re(s) > 1. Then

ζ(s) =
∏

p

(

1 − 1

ps

)−1

. (5.7)

In other words, the infinite product over all the primes converges absolutely in the half-
plane Re(s) > 1 and coincides withζ(s).

Proof. In a rigorous presentation of the proof, one must pay carefulattention to issues
of convergence, but here I just wish to give the central ideas. One way of proving (5.7)
is to show that, for every integerN > 0,

[

∏

p≤N

(

1 − 1

ps

)

]

· ζ(s) =
∑

p † n for anyp ≤ N

1

ns
. (5.8)

This can be done‘one prime at a time’ so to speak, by exploiting the fact, for any
individual primep,

(

1 − 1

ps

)

· ζ(s) =
∑

p†n

1

ns
. (5.9)

As N → ∞ the RHS of (5.8) will converge to 1, implying (5.7).

An alternative method is to start with the infinite product and note that, by the bino-
mial theorem, each factor can be expanded as an infinite series

(

1 − 1

ps

)−1

=
∞

∑

m=0

1

pms
. (5.10)

Thus the infinite product becomes

∏

p

( ∞
∑

m=0

1

pms

)

, (5.11)

and when one multiplies this out, one sees that, for everyn > 0, the term1/ns appears
exactly once, by FTA. ¤

4If you haven’t taken a course in complex analysis, and hence don’t understand the meaning of this
sentence, it doesn’t matter for the sake of this course.
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Remark 5.4. An expression of the form
∏

p

fp(p
s), (5.12)

where eachfp(x) is a rational function, is called anEuler product.

Corollary 5.5. (Euler) There are infinitely many primes and the sum of their recipro-
cals diverges.

Proof. Taking log of both sides of (5.7) we get, for Re(s) > 1,

log ζ(s) = −
∑

p

log

(

1 − 1

ps

)

. (5.13)

Next recall that the Taylor series for the log function, valid when|z| < 1, is given by

− log(1 − z) =
∞

∑

m=1

1

m
zm. (5.14)

Substituting (5.14) into (5.13) we get, also for Re(s) > 1,

log ζ(s) =
∑

p

∞
∑

m=1

1

mpms
. (5.15)

Now group the terms on the RHS into two groups, those withm = 1 and those with
m > 1. Note that we are changing the order of summation here, but that is okay because
the series is absolutely convergent when Re(s) > 15. We obtain

log ζ(s) =
∑

p

p−s +
∑

p

∞
∑

m=2

1

mpms
. (5.16)

The idea now is to look at what happens whens → 1+. The sum overm ≥ 2 does not
blow up - in fact, it’s value ats = 1 can easily be shown to be less than, for example,
2ζ(2) = π2/3. On the other hand, we all know from envariabelanalys (use, say, the
integral test) thatζ(s) → +∞ ass → 1+. This means that the LHS of (5.16) goes to
infinity ass → 1+. It follows that the same is true of the RHS, and hence that

lim
s→1+

∑

p

p−s = ∞. (5.17)

In particular, the sum must contain infinitely many terms (i.e.: there are infinitely many
primes) and

∑

p−1 diverges. This proves the corollary. ¤

5Recall from envariabelanalys that the sum of an absolutely convergent series is independent of the
ordering of the terms. This is not true for conditionally convergent series (Riemann’s theorem).
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6. SIXTH LECTURE : 10/11

The purpose of this lecture is twofold : (1) using Euler’s results, to present some
heuristic arguments for PNT (2) to prove Chebyshev’s 1852 result which, until Erd̋os
and Selberg came along, was as close as anyone got to proving PNT by ‘elementary’
means.

FIRST HEURISTIC FOR PNT. Let pn denote then:th prime. Corollary 5.5 says that
∑

1/pn diverges. This certainly implies thatpn cannot grow too quickly withn. How
quickly can it grow ? Well, triviallypn ≥ n and

∑

1/n diverges. Recall that the latter
is proven by comparing with the integral

∫

1

x
dx = log x, (6.1)

which diverges asx → ∞. Similarly, since for anyǫ > 0, the integral
∫ ∞

1

1

x1+ǫ
dx =

1

ǫ
(6.2)

converges, this suggests thatpn can’t grow liken1+ǫ, for arbitrarily smallǫ > 0. This
still leaves some room for manoeuvre, though. Let’s use the following notation :

log(0)x := x, log(k)x := log(log(k−1) x) ∀ k > 0. (6.3)

Then one easily shows that, for anyk ≥ 0 (the casek = 0 being (6.1)),
∫

1
∏k

i=0 log(i) x
dx = log(k+1) x. (6.4)

Hence all these integrals diverge, which leaves the possibility, for any k ≥ 0, that

pn ∼
k

∏

i=0

log(k) n. (6.5)

Now k = 0 is simply unreasonable : it’s not the case that‘most’ numbers are prime.
For purely aesthetic reasons (the Ockham’s Razor principle), we might now settle on
the simplest remaining alternative, namelyk = 1, i.e.:

pn ∼ n log n. (6.6)

It’s easy to check that (6.6) implies (5.5).
There are several obvious problems in turning this heuristic argument into a proof.

We mention a few glaring ones :

1. There’s nothing in the argument to rule out a constant multiplicative factor, say
pn ∼ 176 n log n.
2. We are choosing one of infinitely many alternatives on purely aesthetic grounds.
3. More subtly, an expression like (6.6) implies some‘regularity’ in the distribution of
the primes. There is nothing in our heuristic which might explain such regularity in the
first place and which would rule out dense clustering of the primes in certain intervals
interspaced with long prime-free gaps, in such a way that (6.6) only held‘on average’.



6

All of these concerns can be addressed by either arguing on aesthetic grounds or by
collecting large volumes of numerical evidence. Note that acouple of hundred years
ago, the latter option wasn’t so readily available. Hence, the reader must decide for
him/herself how convincing the heuristic is, but it should be clear there are serious
problems in turning it into a rigorous proof.

SECOND HEURISTIC FORPNT. Letp be a prime. Choose a positive integer at ran-
dom6 and letAp denote the event that the chosen integer is a multiple ofp. Clearly,

P(Ap) =
1

p
and P(Ap) = 1 − 1

p
. (6.7)

Now letp, q be two distinct primes. We claim that

P(Ap ∩ Aq) =
1

pq
and P(Ap ∩ Aq) =

(

1 − 1

p

)(

1 − 1

q

)

. (6.8)

Note that the second statement in (6.8) follows from the firstby an inclusion-exclusion
argument. The first statement is essentially a reformulation of FTA, which implies that
an integer is divisible by bothp andq if and only if it is divisible bypq7. For future
reference, we note an elegant probabilistic interpretation of (6.8), namely

For distinct primesp andq, the eventsAp andAq are independent. (6.9)

Now back to the heuristic. LetN be a large positive integer, and imagine we choose an
integer at random from among{1, ..., N}. Let E be the event that this integer is prime.
The eventE occurs if and only if our chosen number is not a proper multiple of any
prime up toN . If we ignore the word‘proper’ (thus already introducing a delicate error
in our estimates) then, by (6.8), the probability of the event E is given by

P(E) =
∏

p≤N

(

1 − 1

p

)

. (6.10)

Now compare this with (5.6) and (5.7). In fact, if we truncatethe series forζ(s) at
n = N , sets = 1 and wave our hands a lot we can postulate that

∏

p≤N

(

1 − 1

p

)

≈ 1
∑N

n=1 1/n.
(6.11)

The sum is aboutlog N (see (6.1)). Thus we have an argument which suggests that the
probability of an integer from among{1, ..., N} being prime is about1/ log N . Clearly,
this implies something like (5.5).

6If you’ve taken a course in probability theory, you may appreciate that this statement is, strictly
speaking, meaningless. However, I am going to gloss over such technicalities here.

7More generally, FTA implies that if GCD(a, b) = 1 then an integer is divisible by botha andb if
and only if it is divisible byab. Note that this fact really does rely on unique prime factorisation. For
consider eq. (4.17). It implies that, in the ringZ[

√
−5], the number6 is divisible by each of the primes2

and1 +
√
−5. However, it is not divisible by2(1 +

√
−5).
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This heuristic also suffers many flaws8, though of a somewhat different nature to the
first one. It is important to note that the two arguments are significantly different in
spirit. The latter one can be considered as an example of‘probabilistic’ reasoning, a
strategy which is often very helpful (though sometimes misleading) for seeing beyond
the technical difficulties of a particular problem to get a feeling for ‘what’s actually go-
ing on’. We will encounter more examples of this type of heuristic reasoning later in
the course.

We now turn to the proof of Chebyshev’s theorem. First some further notation. We write
f(x) . g(x) to denote thatlim supx→∞ f(x)/g(x) ≤ 1. We writef(x) = O(g(x)) to
denote thatlim supx→∞ f(x)/g(x) < ∞.

Theorem 6.1. (Chebyshev 1852)There exist constants0 < c1 < c2 such that

c1
x

log x
. π(x) . c2

x

log x
. (6.14)

In the proof presented below, we will determine explicit constantsc1 = log 2 ≈
0.693..., c2 = 2c1 ≈ 1.386.... By refining this basic approach (at the cost of a lot
of extra technical details), Chebyshev was able to give better constants, his best being
c1 ≈ 0.92..., c2 ≈ 1.105... However, his method does not seem to lead to the‘truth’,
i.e.: c1 = c2 = 1. We will make use of the following function :

Definition. The functionΛ : N → R defined by

Λ(n) :=

{

log p, if n > 1 andn is a power of the primep,
0, if n = 1 or n is not a prime power,

(6.15)

is called thevon Mangoldt function9.

8One such flaw is that the approximation (6.11) is wrong by a constant multiplcative factor. In 1874,
Mertens proved that

∏

p≤N

(

1 − 1

p

)

∼ 1

eγ log N
, (6.12)

whereγ is the so-calledEuler-Mascheroni constant

γ := lim
n→∞

(

n
∑

i=1

1

i
− log n

)

. (6.13)

I might return to Mertens work later on (haven’t decided yet !)
9This function was introduced by the German mathematician Hans von Mangoldt some time around

1878. It is an important technical tool in the proof of the PNT. More precisely, von Mangoldt studied the
function

ψ(x) :=
∑

n≤x

Λ(n), (6.16)

which had already appeared in Chebyshev’s work. It can be considered as a weighted version of the prime
counting functionπ(x). Actually, it also assigns non-zero weights to all prime powers, but one can show
that the major contribution comes from the primes themselves. For technical reasons, the functionψ(x)
is easier to study by complex-analytical methods thanπ(x) and the standard approach to proving PNT
first of all leads to an asymptotic estimate forψ(x). From this it is not too hard to deduce an estimate for
π(x). For some further information, consult Homework 2.
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Proof. of Theorem 6.1.The starting point of the proof is the identity
∑

m|n
Λ(m) = log n. (6.17)

To see this, consider a prime factorisation ofn,

n = pα1

1 pα2

2 · · · pαk

k . (6.18)

Then the definition ofΛ is easily seen to imply that the LHS of (6.17) is just
k

∑

i=1

αi log pi = log

(

k
∏

i=1

pαi

i

)

= log n,

which proves (6.17). Next, consider the functionT : R
+ → R

+ given by

T (x) =
∑

n≤x

Λ(n)⌊x

n
⌋. (6.19)

I claim that
T (x) = x log x − x + O(log x). (6.20)

To show this, we first assert that

∑

n≤x

Λ(n)⌊x

n
⌋ =

∑

n≤x





∑

m|n
Λ(m)



 . (6.21)

This identity follows from the observation that, for eachm ≤ x, the quantityΛ(m)
appears once on each side of (6.21) for everyn ≤ x such thatm|n. From (6.17) and
(6.21) we deduce that

T (x) =
∑

n≤x

log n = log(⌊x⌋!) (6.22)

Then (6.20) follows from Stirling’s formula10. In order to complete the proof of Cheby-
shev’s theorem, the function which will actually need to study is

S(x) := T (x) − 2T (x/2) =
∑

n≤x

Λ(n)
(

⌊x

n
⌋ − 2⌊ x

2n
⌋
)

. (6.25)

On the one hand, (6.20) is easily checked to imply that

S(x) = (log 2)x + O(log x). (6.26)

On the other hand, we shall obtain both upper and lower boundsfor S(x) in terms of
π(x). These will yield, respectively, the lower and upper boundsfor π(x) in (6.14). First

10Stirling’s formula is usually presented as the statement that

n! ∼ nne−n
√

2πn. (6.23)

Taking logarithms, this implies that

log n! = n log n − n + O(log n). (6.24)

This logarithmic version of Stirling’s formula is actuallymuch easier to prove than the formula itself.
One can do so by a careful comparison oflog n! with the integral

∫ n

1
log x dx. The details are left as an

exercise to the reader.
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to the upper bound. One readily verifies that the bracketed difference of⌊ ⌋-functions
in (6.25) is less than or equal to1, for anyx andn. Hence

S(x) ≤
∑

n≤x

Λ(n) =
∑

p≤x

(log p) · ⌊ log x

log p
⌋ ≤ (log x) ·

∑

p≤x

1 = (log x)π(x). (6.27)

This and (6.26) immediately imply the left-hand inequalityin (6.14). The lower bound
for S(x) will require a little more work. First observe that ifx/2 < n ≤ x then the
bracketed term in (6.25) is equal to1. Hence

S(x) ≥
∑

x/2<n≤x

Λ(n) ≥
∑

x/2<p≤x

log p ≥ (log x/2) [π(x) − π(x/2)] . (6.28)

From this and (6.26) we deduce that

π(x) ≤ π(x/2) + (log 2)
x

log x − log 2
+ O(1). (6.29)

Iterating, we have for anyk < ⌊log2 x⌋ − 1 that

π
( x

2k

)

≤ π
( x

2k+1

)

+ (log 2)
x

2k(log x − k log 2)
+ O(1). (6.30)

Adding over all suchk then yields

π(x) ≤ (cx log 2)
x

log x
+ O(log x), (6.31)

where

cx =

⌊log2 x⌋−1
∑

k=0

1

2k

log x

log x − k log 2
. (6.32)

I leave it as a (really ugly !) exercise to the reader to verifythatcx → 2 asx → ∞. This
implies the right-hand inequality of (6.14) and completes the proof of the theorem.¤

NOTATION: For two functionsf, g : R+ → R+ we writef(x) = Θ(g(x)) if f(x) =
O(g(x)) andg(x) = O(f(x)) both hold. We writef(x) = o(g(x)) if
limx→∞ f(x)/g(x) = 0.

Chebyshev’s theorem says thatπ(x) = Θ
(

x
log x

)

. In Corollary 5.5 we showed that
∑

1/p diverges. We will now use Chebyshev’s theorem to deduce a moreprecise result
(Theorem 6.4 below).

DEFINITION: The functionΨ : R+ → R+ is defined as

Ψ(x) =
∑

n≤x

Λ(n). (6.33)

The functionΨ(x) is a kind of weighted version of the prime-counting functionπ(x),
which turns out to be useful to work with.

Proposition 6.2.
Ψ(x) = Θ(x). (6.34)
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Proof. By the definition of the von Mangoldt function, we have

Ψ(x) =
∑

p≤x

log p +
∑

pk≤x, k≥2

log p. (6.35)

It is easy to see that the second sum isO(
√

x log x) = o(x), so it suffices to show that
the first sum isΘ(x). On the one hand,

∑

p≤x

log p ≤
∑

p≤x

log x = (log x)
∑

p≤x

1 = (log x)π(x) = Θ(x), (6.36)

by Theorem 6.1. On the other hand,
∑

p≤x

log p ≥
∑

√
x<p≤x

log p >

(

1

2
log x

)

(π(x) − π(
√

x)) = Θ(x), (6.37)

also by Theorem 6.1. This proves the proposition. ¤

Remark 6.3. The full Prime Number Theorem implies by the same argument that
Ψ(x) ∼ x. In fact the usual analytic proof of PNT proceeds the other way round,
by first establishing the estimate forΨ(x) and then deducing that forπ(x).

The classical “good” estimate for the partial sum of the reciprocals of the primes is
the following:

Theorem 6.4.
∑

p≤x

1

p
= log log x + b + O

(

1

log x

)

, (6.38)

whereb is some constant.

Proof. The proof involves studying another functionL : R+ → R+ defined as

L(x) =
∑

p≤x

log p

p
. (6.39)

Note that the relationship betweenL(x) and the sum in (6.38) is somehat akin to that
betweenΨ(x) andπ(x). The precise relationship between the two will be given in
Claim 2 below. First we verify

CLAIM 1:
L(x) = log x + O(1). (6.40)

Proof of Claim 1:We return to the functionT (x) defined in (6.19). Let{t} denote the
fractional part of a real numbert. Obviously,0 ≤ {t} < 1 for everyt. Thus,

T (x) =
∑

n≤x

Λ(n)
(x

n
−

{x

n

})

= x

(

∑

n≤x

Λ(n)

n

)

+ O

(

∑

n≤x

Λ(n)

)

. (6.41)

The second bracketed sum is what we defined asΨ(x) and hence isΘ(x) by Proposition
6.2. Dividing (6.41) across byx and using (6.20), we find that

∑

n≤x

Λ(n)

n
= log x + O(1). (6.42)



11

But, by definition of the functionsΛ andL,
∑

n≤x

Λ(n)

n
= L(x) +

∑

pk≤x, k≥2

log p

pk
. (6.43)

The second sum is certainly bounded by the same eexpression,but summing instead
over all prime powerspk, not just those up tox. But the latter is clearly convergent
since

∑

pk, k≥2

log p

pk
=

∑

p

log p

∞
∑

k=2

1

pk
=

∑

p

log p

p(p − 1)
≤

∞
∑

n=1

log n

n(n − 1)
= O(1). (6.44)

Claim 1 follows from (6.42)-(6.44).

CLAIM 2:
∑

p≤x

1

p
=

L(x)

log x
+

∫ x

2

L(u)

u(log u)2
du. (6.45)

To prove this, we start with the integral and use the definition of L to write
∫ x

2

L(u)

u(log u)2
du =

∫ x

2

(

∑

p≤x

log p

p

)

1

u(log u)2
du. (6.46)

We can interchange the sum and the integral and use the elementary fact that
∫

du
u(log u)2

=

− 1
log u

+ C to obtain

∫ x

2

(

∑

p≤x

log p

p

)

1

u(log u)2
du =

∑

p≤x

log p

p

∫ x

p

du

u(log u)2
= (6.47)

=
∑

p≤x

log p

p

(

1

log p
− 1

log x

)

=
∑

p≤x

1

p
− L(x)

log x
,

which proves Claim 2.
Let E(x) := L(x) − log x. Claim 1 asserts thatE(x) = O(1). Substituting this into

(6.45) we have
∑

p≤x

1

p
= 1 +

E(x)

log x
+

∫ x

2

1

u(log u)
du +

∫ x

2

E(u)

u(log u)2
du. (6.48)

The first integral islog log x − log log 2. Hence if we let

b := 1 − log log 2 +

∫ ∞

2

E(u)

u(log u)2
du, (6.49)

then
∑

p≤x

1

p
= log log x + b + E(x), (6.50)

where

E(x) =
E(x)

log x
+

∫ ∞

x

E(u)

u(log u)2
du. (6.51)
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SinceE(x) = O(1) it is clear thatE(x) = O
(

1
log x

)

, so the proof of Theorem 6.4 is

complete. ¤

Remark 6.5. See the lecture notes for the course in Arithmetic Combinatorics for a
nice application of Theorem 6.4.

From Theorem 6.4 and following the same strategy as in the proof of Corollary 5.5,
it is easy to deduce that

∏

p≤x

(

1 − 1

p

)

=
c

log x

(

1 + O

(

1

log x

))

, (6.52)

for some constantc > 0. It requires more work though to show thatc = e−γ, see
(6.12). We will not do this here, but see for example Chapter 8 of Niven-Zuckerman-
Montgomery.
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7. SEVENTH LECTURE : 12/11

The next few lectures will involve somewhat more algebra again. First, let us remind
ourselves of some standard facts and notations with which weare hopefully all familiar.

Let n ∈ N. We define the relation‘congruence modulon’ on Z by

a ≡ b (modn) ⇔ n|a − b. (7.1)

This is clearly an equivalence relation. There aren equivalence classes, represented
most naturally by the numbers0, 1, ..., n − 1. The set of equivalence classes is denoted
Z/nZ or Zn. I will primarily use the latter notation. It is called the set of congru-
ence/residue classesmodulon. The most important basic fact about the setsZn is that
they inherit the structure of an algebraic ring fromZ :

Proposition 7.1. Addition and multiplication of congruence classes modulon is well-
defined, so thatZn is a commutative ring with unity. In other words, ifa, b, c, d ∈ Z

satisfya ≡ c (modn) andb ≡ d (modn), then also

a + b ≡ c + d (modn) and ab ≡ cd (modn). (7.2)

Now we start a new track for our investigations by noting thata slight modification
of Euclid’s proof of Theorem 1.2 yields a stronger result, namely :

Theorem 7.2. Let n > 2. Then there are infinitely many primes not congruent to
1 (modn).

Proof. Suppose the contrary and letp1, ..., pk be a full list of the primes not congruent
to 1 (modn). Consider the number

T := n

(

k
∏

i=1

pi

)

− 1. (7.3)

ThenT is clearly not divisible by anypi. Also T ≡ −1 (modn), thusT 6≡ 1 (modn),
sincen > 2. It follows from Proposition 7.1 that at least one prime factor of T cannot
be congruent to 1 (modn) either. This contradicts the completeness of our list. ¤

Corollary 7.3. (i) There are infinitely many primes congruent to 2 (mod 3).
(ii) There are infinitely many primes congruent to 3 (mod 4).
(iii) There are infinitely many primes congruent to 5 (mod 6).

For n = 5 or n > 6, Theorem 7.2 does not tell us whether there are infinitely many
primes in any particular congruence class modulon. It also doesn’t tell us anything
at all about primes congruent to 1 (modn). Now some congruence classes obviously
cannot be full of primes, for

Proposition 7.4. If n ∈ N anda ∈ Z satisfy GCD(a, n) > 1, then there is at most one
prime congruent toa (modn), namely GCD(a, n) itself, if this happens to be a prime.

It seems reasonable to expect that nothing else can go wrong,and this is indeed the
case :
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Theorem 7.5. (Dirichlet 1829)Let n ∈ N anda ∈ Z satisfy GCD(a, n) = 1. Then
there are infinitely many primes congruent toa (modn). In fact, the sum of the recip-
rocals of these primes diverges, for anya andn.

Dirichlet’s theorem is regarded as the first major success ofmethods which nowadays
would be referred to as‘analytic number theory’. His proof (which is highly non-trivial
: see Davenport’s book for a full treatment) is loosely basedon the techniques of Euler,
but he needed to introduce a generalisation of the zeta function, nowadays known as
Dirichlet L-functions. I will define these later on, to give you a jumping-off point in
case you want to study Dirichlet’s proof.

Remark 7.6. As a companion to his elementary proof of the PNT, Selberg gave an
elementary proof of Dirichlet’s theorem. Both proofs are in Volume 50 of the Annals
of Mathematics (1949).

Dirichlet’s theorem still leaves a deeper question unanswered, namely : is it the case
that, for a fixed modulusn, the primes areequidistributedamongst the congruence
classesa (modn) for which GCD(a, n) = 1. The answer is yes, and was proven by
applying to L-functions the same methods used to prove the PNT. Before stating the
result, we remind ourselves of another piece of standard notation :

Notation. TheEulerφ-functionis the functionφ : N → N defined by

φ(n) := #{a ∈ {0, 1, ..., n − 1} : GCD(a, n) = 1}. (7.4)

Then we have

Theorem 7.7. (Extended PNT)Letn ∈ N anda ∈ Z satisfy GCD(a, n) = 1. For x >
0 let πa,n(x) denote the number of primes up tox which are congruent toa (modn).
Then

πa,n(x) ∼ 1

φ(n)

x

log x
. (7.5)

The proofs of Theorems 7.5 and 7.7 are beyond the scope of thiscourse. I want to
prove at least one special case of the former, however11, namely that there are infinitely
many primes congruent to 1 (mod4). We need some more algebraic background for
this and much else.

Basically, I am interested in the structure ofZn as a ring and of that ofZ∗
n, the sub-

set of multiplicative units, as a (multiplicative) group. Note that, by Euclid’s Lemma,
|Z∗

n| = φ(n). The ring structure is fairly straightforward :

Proposition 7.8. Let n ∈ N have prime factorisationn =
∏k

i=1 pαi

i . Then there is an
isomorphism of rings

Zn
∼=

k
∏

i=1

Zp
αi

i

, (7.6)

where the RHS denotes a direct product of the ringsZp
αi

i

, i = 1, ..., k.

11There is a book in the library,Elementary Theory of Numbersby Wacław Sierpínski, which contains
‘elementary’ proofs of a number of other special cases.
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Proof. There is a natural mapf from the LHS to the RHS of (7.6), namely

f [x (modn)] = [x (modpα1

1 ), · · · , x (modpαk

k )]. (7.7)

It is trivial thatf respects the operations of addition and multiplication in the respective
rings and is thus a ring homomorphism. To prove it is an isomorphism, it just remains
to show it is a bijection of sets. Since it is a map between finite sets, it even suffices
to show thatf is injective. And since we already know it is a ring homomorphism, it
suffices to show that ker(f) = {0}. So supposex (modn) is in the kernel off . This
means, by definition, thatx ≡ 0 (modpαi

i ), for i = 1, ..., k. Thuspαi

i dividesx for
eachi = 1, ..., k and, by FTA (see Footnote 7 in Lecture 6), this implies that

∏k
i=1 pαi

i ,
namelyn, also dividesx. Thusx ≡ 0 (modn), as required. ¤

Remark 7.9. The fact that the mapf above is a bijection of sets can be formulated
more concretely as follows : Letp1, ..., pk be distinct primes,α1, ..., αk non-negative
integers anda1, ..., ak any integers. Letn =

∏k
i=1 pαi

i . Then there is a unique solution
x ∈ {0, 1, ..., n − 1} to the system of congruences

x ≡ ai (modpαi

i ), i = 1, ..., k. (7.8)

This way of formulating Proposition 7.8 is what is usually referred to as theChinese
Remainder Theorem.

The structure ofZ∗
n as a multiplicative abelian group is more interesting. Note, to

begin with, that a immediate consequence of (7.6) is that

Z
∗
n
∼=

k
∏

i=1

Z
∗
p

αi

i

, (7.9)

where the RHS now denotes a direct product of abelian groups. This reduces the study
of the structure ofZ∗

n to the case wheren is a prime power. The most important case
then is whenn is actually prime, and the following is a fundamental resultin abstract
algebra :

Theorem 7.10.Letp be a prime. ThenZ∗
p is a cyclic group.

Proof. Assuming you have taken some course in abstract algebra, this is a result whose
proof you should have seen already, so I only want to remind you of the outline of it.
The theorem is a special case of the fact that the multiplicative group of non-zero ele-
ments in any finite field is cyclic. This is a consequence of thefollowing two facts :

1. In a finite field, for anyk ∈ N the equationxk = 1 has at mostk solutions. This fact
is easily established, since we can consider the equation asa polynomial equation and,
since we’re working in a field, the number of roots of a polynomial cannot exceed its
degree.
2. Let G be a finite multiplicative group. If, for eachk ∈ N, there are at mostk so-
lutions in G to the equationxk = 1, thenG is cyclic. Note that this statement holds
for all finite groups, though it’s easier to prove for abeliangroups, which is the only
case we need here. The point is, ifG is a non-cyclic, but abelian finite group, then the
Fundamental Theorem for Finite Abelian Groups is easily seen to imply that there must
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be some primep for whichG contains a subgroup isomorphic toCp×Cp. Then already
in this subgroup, we havep2 − 1 > p solutions toxp = 1. ¤

Teminology. Letp be a prime. A generator of the cyclic groupZ
∗
p is called aprimitive

root modulop. For example,3 is a primitive root modulo7, since (mod 7),

31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1. (7.10)

Let Cr denote an abstract cyclic group of orderr. For general prime powers, we have
the following result :

Theorem 7.11.Letp be a prime andα ∈ N. If p is odd thenZ∗
pα is cyclic. Ifp = 2 and

α ≥ 2 thenZ
∗
2α

∼= C2 ×C2α−2, the direct product of cyclic groups of orders2 and2α−2.
Moreover, the two factors are always generated by−1 and5.

Proof. The proof is technical and uninspiring and I did not present it at the lecture.
However, in case you are interested, here it is for completeness. I will leave out some
of the more gory details of the calculations for you to check yourself.

First supposep is odd. Letg be a primitive root modulop (which exists by Theo-
rem 7.10). We shall show that for an appropriate choice of an integerx, the integer
g + px is a primitive root modulopα for everyα > 1. It is required to choosex such
that

(g + px)d ≡ 1 (modpα) ⇒ pα−1(p − 1) | d. (7.11)
Note that the order ofg + px modulopα dividespα−1(p− 1) a priori, since the order of
any element in a group divides the group order (Lagrange’s Theorem).

First, for any choice ofx, the fact thatg is a primitive root modulop already implies
thatp − 1 must divided, sinceg + px ≡ g (modp) and so

(g + px)d ≡ 1 (modpα) ⇒ (g + px)d ≡ 1 (modp) ⇔ gd ≡ 1 (modp) ⇔ p − 1 | d.
(7.12)

Sincegp−1 ≡ 1 (modp), we havegp−1 = 1 + py for some integery. The binomial
theorem states that

(g + px)p−1 =

p−1
∑

i=0

(

p − 1
i

)

gp−1−i(px)i. (7.13)

Modulo p2 only the termsi = 0, 1 contribute, and we have that(g + px)p−1 = 1 + pz
where

z ≡ y + (p − 1)gp−2x (modp). (7.14)
Since the coefficient ofx in (7.14) is not divisible byp, we can choosex such thatz
is not divisible byp. We now claim that this is sufficient forg + px to be the required
primitive root. It needs to be shown that, if GCD(z, p) = 1, then

(1 + pz)pm ≡ 1 (modpα) ⇒ α − 1 ≤ m. (7.15)

Once again, this follows immediately from the binomial theorem, which in this case
states that

(1 + pz)pm

=

pm

∑

i=0

(

pm

i

)

(pz)i. (7.16)
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Since(z, p) = 1, one sees immediately thatpm+1 is the highest power ofp dividing the
i = 1 term. With a little more care one checks that, sincep is odd,pm+2 divides each
term fori > 1. Hence

(1 + pz)pm ≡ 1 + pm+1 (modpm+2), for anym > 0. (7.17)

And (7.15) follows immediately from (7.17). This completesthe proof of the theorem
for oddp.

Now supposep = 2. The argument is similar to the above, in particular the bino-
mial theorem is used. We omit details, but just note that, in order to prove the theorem
for α > 3 (it may be proven forα ≤ 3 by inspection), one writes5 = 1 + 22 and uses
the binomial theorem to prove that

(1 + 22)2α−2 ≡ 1 (mod2α), (7.18)

(1 + 22)2α−3 ≡ 1 + 2α−1 (mod2α). (7.19)
Eq. (7.18) implies that the cyclic subgroup ofZ

∗
2α generated by5 has order2α−2, and

(7.19) implies that−1 is not an element of this subgroup. Then elementary group
theory implies thatZ∗

2α is the internal direct product of the subgroups generated by−1
and5. ¤

Remark 7.12. Note, in particular, thatZ∗
2α is non-cyclic for allα ≥ 3. For example,Z∗

8

is isomorphic to the Klein-4 groupC2 × C2. Observe thatZ∗
8 = {1, 3, 5, 7} and check

directly that12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod8).

We shall start applying the above results next day.
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8. EIGHTH LECTURE : 14/11

Proposition 8.1. Letn ∈ N. Then

φ(n) = n ·
∏

p|n

(

1 − 1

p

)

, (8.1)

where the product is taken over the distinct prime divisors ofn (i.e.: each distinct prime
divisor is counted only once).

Proof. Let n =
∏k

i=1 pαi

i . It follows from (7.9) that

φ(n) =
k

∏

i=1

φ(pαi

i ). (8.2)

Thus, in order to prove (8.1), it suffices to show that, ifn = pα is a prime power then

φ(pα) = pα

(

1 − 1

p

)

= pα − pα−1. (8.3)

But this is clear, since an integer is relatively prime topα if and only if it is not divisible
by p. Since everyp:th integer is a multiple ofp, it follows that1 − 1

p
of thepα integers

among{0, 1, ..., pα − 1} are relatively prime top. ¤

Remark 8.2. A functionf : N → C is said to bemultiplicativeif

f(ab) = f(a)f(b), whwnever GCD(a, b) = 1. (8.4)

Thus Proposition 8.1 implies, in particular, that the Eulerφ-function is multiplicative.
Eq. (8.1) implies that, in order to computeφ(n), it suffices to factorisen. Hence,

determination of theφ-function is certainly no more computationally challenging than
integer factorisation. As far as I am aware, it is still an open problem to prove the con-
verse. One needs to be more precise as to what one actually means here, but one way
of posing the problem is as follows :

Question. Can computation of theφ-function be reduced to integer factorisation in
polynomial time ? In other words, assuming one has an infinitely fast algorithm for
computingφ, is there a polynomial time algorithm which takes an integern as input
and outputs the prime factorisation ofn ?

Note that it is quite easy to show that the answer is‘yes’, if it is known that the input
n is a product of exactly two distinct primes (see Homework 2).This is the situation
which arises in RSA cryptography, for example, where the security of the cryptosystem
is, strictly speaking, dependent on the difficulty of computing φ(n) for suchn. Hence,
the security is indeed dependent on the difficulty of integerfactorisation.

Remark 8.3. It also follows from (8.1) that the quotientφ(n)/n can be become arbi-
trarily small (see Homework 2). Clearly, it can also become arbitrarily close to1, since
φ(p) = p − 1 whenp is a prime. It’s an interesting question to ask what the‘average’
behaviour of the quotientφ(n)/n is. One very nice result in this direction is that

∑

n≤x

φ(n) =
3

π2
x2 + O(x log x). (8.5)
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For a proof of this and similar results, see either the Supplementary Notes to this lecture
or, for example, Chapter 2 of the bookA Concise Introduction to the Theory of Numbers,
by Alan Baker. Eq. (8.5) has the nice interpretation that the probability of a pair of
‘randomly chosen integers’12 being relatively prime is6/π2.

Lemma 8.4. If G is a finite group andx ∈ G, thenx|G| = 1.

Proof. Lagrange’s Theorem states that ifH is a subgroup ofG, then|H| divides|G|.
Applying this to the cyclic subgroup generated byx, we conclude thatxn = 1 for some
n dividing |G|. Hencex|G| = 1 also. ¤

Proposition 8.5. Letn ∈ N anda ∈ Z such that GCD(a, n) = 1. Then

aφ(n) ≡ 1 (modn). (8.6)

In particular, if p is a prime anda is not a multiple ofp, then

ap−1 ≡ 1 (modp). (8.7)

Proof. Apply Lemma 8.4 to the groupZ∗
n. ¤

Remark 8.6. Eq. (8.6) is usually designatedEuler’s Theoremand the special case (8.7)
referred to asFermat’s (Little) Theorem.

For the remainder of this lecture, we shall discuss the subject of primality testing.
The problem is to find an efficient algorithm for deciding whether an inputn ∈ N is
prime or not. Clearly, primality testing is no more difficult than factorisation, but it is
certainly conceivable that it might be easier. If so, that would be a significant finding,
since factorisation seems to be a hard problem. Efficient primality testing was an issue
of great concern already to people like Euler, Lagrange, Gauss etc., who were interested
for example in compiling long lists of primes and thereby investigating numerically the
behaviour of the functionπ(x). Since they didn’t have computers, efficiency was at a
premium.

One of the oldest ideas for testing primality which by-passes the need to factorise a
number is to use (8.7). Given an inputn, the strategy can be summarised as follows :

1. Pick a randomx ∈ {1, ..., n − 1}. Compute GCD(x, n) using Euclid’s algorithm. If
GCD(x, n) > 1, thenn is not prime. Otherwise go to step 2.
2. Computexn−1 (modn). If the answer is not1 (modn), thenn is not prime. Other-
wise, pick another random numbery ∈ {1, ..., n − 1} and go back to step 1.
3. If, after a‘large’ number of trials, we still have not been able to conclude thatn is
prime, then abort the algorithm and output thatn is prime.

There is an obvious problem with this strategy : it can give the wrong answer ! The
problem is we don’t know‘how many’ trials have to fail before we can be sure thatn is
indeed prime. This matter requires a much deeper analysis, but it turns out that nowa-
days there exist very fast,non-deterministicprimality tests, which are essentially based
on Fermat’s Little Theorem (though not so simple as the one described above). What

12Again, one has to be more precise about what one actually means here, but I will leave that as an
exercise for you to figure out yourselves.
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‘non-deterministic’ means is that the tests involve some randomness and give the wrong
answer with a very small, but non-zero probability. For all practical purposes, state-of-
the-art primality tests are foolproof, the probability of an error being so small that one
would not expect one to be made during the lifetime of the universe, for example !

But important theoretical considerations remain. First of all, it is important to note
that the simple test described above can fail spectacularly:

Definition. A composite numbern ∈ N is called aCarmichael numberor Euler pseu-
doprimeif xn−1 ≡ 1 (modn) whenever GCD(x, n) = 1.

Example. 561 is a Carmichael number. We have561 = 3 · 11 · 17. Thus, by eq.
(7.9) and Theorem 7.10,

Z
∗
561

∼= Z
∗
3 × Z

∗
11 × Z

∗
17

∼= C2 × C10 × C16 (8.8)
∼= C2 × (C2 × C5) × C16

∼= (C2 × C2) × (C5 × C16) ∼= C2 × C2 × C80,

where we have used the fact13 thatCr × Cs
∼= Crs whenever GCD(r, s) = 1.

By (8.8), the groupZ∗
561 hasexponent80, i.e.: x80 ≡ 1 (mod561) for all x ∈ Z

∗
561

and 80 is the smallest positive integer for which this is the case. Since 80 divides
561 − 1 = 560, it follows that561 is a Carmichael number.

It turns out that there are infinitely many Carmichael numbers, though this wasn’t
proven until 1994 ! See the Wikipedia article on them for moreinformation14.

Hence, simple-minded primality tests based on Fermat’s Little Theorem, like the one
described above, cannot be fully deterministic, though they are certainly fast. Indeed
we have already shown in an earlier lecture that Euclid’s algorithm runs in polynomial
time, and so does a computation of the form : givena, b, c ∈ N, computeab (modc). A
fast algorithm for performing this latter computation is the so-calledsquare and multi-
ply algorithm15.

So the important remaining theoretical question is : Does there exist a polynomial time
primality test which is fully deterministic ? The answer is‘yes’. More precisely,

1. In 1976, G.L. Miller and M.O. Rabin presented such a test. However, in order to
prove that it ran in polynomial time, they needed to assume the so-calledGeneralised
Riemann Hypothesis. This is a generalisation of the classical Riemann Hypothesis to
Dirichlet L-functions. For a presentation of the Miller-Rabin algorithm, and many other
interesting computational problems, see the book

N. Koblitz, A Course in Number Theory and Cryptography, Springer GTM Series.

13Go back and check your notes from some abstract algebra course if this fact confuses you.
14Including an estimate for the numberC(x) of Carmichael numbers up tox which involves the

functionlog log log x !!
15I did an example at the lecture, and I think it would be too tedious to rehash it again here.
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2. In 2002, two Indian CS students presented as part of their M.Sc. thesis, along
with their advisor, the first deterministic primality test which could be proved uncon-
ditionally to run in polynomial time. In practice, their algorithm is too slow (despite
improvements in the intervening years) to compete with state-of.the-art probabilistic
algorithms, but it is a historical theoretical breakthrough since it implies that primality
testing is in the classP. A description of their method, known as theAKS algorithm,
can be found in

M. Agrawal, N. Kayal and N. Saxena,Primes inP, Ann. Math. (2)160 (2004),
781-793.


