5. HFTH LECTURE: 10/11

A more careful analysis of Euclid’s argument gives an exgdlever bound forr (z).
Proposition 5.1. If x > 2 then
7(x) > |logylog, x| + 1. (5.1)

Proof. Let p,, denote the::th prime. Then it follows from Euclid’s argument (see eq.
(4.19)) that

Pnt1 < <sz> + 1 (5.2)

i=1
Letp, = 2%. Then substituting into (5.2) gives

20n+l < Q2ima ® y ], (5.3)

which implies at the very least that

An+1 S <i CLZ'> + 1. (54)

=1

Note also thap, = 2 = 2!, soa; = 1. If we had equality in (5.4) then it's easy to check
that the solution to the recurrence woulddge= 2"~!. Thus we may deduce that, in
fact,a,, < 2" 1.

Thusp, < 2*"'". In other words, ifz = 22" thenr(z) > log, log, = + 1. Then
(5.1) follows for generat:, sincer(x) is an increasing function af. O

The estimate (5.1) is very, very far from the truth. For exlEmp®® < 10° < 2%,
so (5.1) says there are at least 20 primes up to a million. dh fhere are 78,498
primes up to a million. The computation of the functiefiz) was one of the main
preoccupations of eminent mathematicians after the tebimumber theory in the 17th
and 18th centuries. A combination of numerical and hewristidence led peopldo
believe thatr(x) behaved something like/logz. One of the great achievements of
19th century mathematics was the rigorous proof of this fact

To state the result concisely, it is convenient to use tHewahg notation :

Notation. Let f(z),g(x) be two real-valued functions. We writ&z) ~ g(z) to
denote thatim, ... f(z)/g(z) = 1.

Now we have

Theorem 5.2. (Hadamard, de la Vallee Poussin 1895)

m(z) ~

~ : (5.5)
log x

1Notably Legendre and Gauss, amongst others, made exmigiéatures as to the behaviour of the
functionz(z).
°These two guys seem to have worked independently of one@moth
1



The proof of this theorem uses much of the basic machinergaif and complex
analysis which was also developed throughout the 19th pgrapplying it to the so-
calledRiemann zeta functiofwhich we define below). This function was actually first
studied by Euler (mid 18th century), who used it to make th& fieal progress be-
yond Euclid’s work on the distribution of the primes. We willesent Euler’s results
below. The reason the zeta function is named after Riemanmeesuse of a seminal
paper he wrote on this function in 185%hich vastly expanded overnight the state of
knowledge regarding its complex-analytical propertiesvds this paper which laid the
groundwork for the final assault on the prime number theorethe latter part of the
19th century. For a comprehensive presentation of the pseeffor example the book

H. DavenportMultiplicative Number TheorySpringer GTM Series.
There are two interesting historical footnotes :

1. In 1852, Chebyshev gatlose’ to the prime number theorem, using oementary’
methods, which in this context means not using the zeta ifumctWe will present
Chebyshev’s result in the next lecture. It is curious thatdlistively simple techniques
got so close to the PNT, but then seem to have hit a brick wall.

2. In 1949, Erds and Selberg, in part working together, shocked most afidtbemat-
ical community by publishin¢gelementary’ proofs of PNT. The issue of who contributed
what to their efforts has in fact been the source of a lot otrowersy (they published
their work separately, for example). For an account of the#thods, the historical
background and the controversy, see for example the article

http://www.math.columbia.edufgoldfeld/ErdosSelbergDispute.pdf

Note that the methods employed by Bsdand Selberg do not seem to have had a sig-
nificant influence on the further development of number theor example on efforts

to prove theRiemann hypothesigrhich we will come back to later. Thus it is still very
much an open question as to how muchaosfalytic’ number theory really does require
the machinery of real and complex analysis, and how much leugye about the distri-
bution of the primes can be gleaned by other, theoreticatipker methods.

The remainder of this lecture is devoted to presenting EButentribution to this topic.

Definition. Let s € C with Re(s) > 1. Define

[e.9]

1
C(s) =D — (5.6)
n=1

3B. Riemann,Uber die Anzahl der Primzahlen unter einer gegebenen Grddsmatsberichte der
Berliner Akademie (1859), 671-680. Note that the paper g 8 pages long ! It is also the only paper
Riemann ever wrote on number theory !! And, in Fermat-lik&hfan, it doesn’t contain rigorous proofs
of most of the main results !!! However, what it does contaiall the most important facts about the zeta
function which were needed to prove the PNT. It also containat has become known as tRéemann
hypothesis.



The function((s) is called thgRiemann) zeta function

We all know from one-variable calculus that the sum in (5s6absolutely convergent
when Rés) > 1, so the zeta function is well-defined in this range. In faot, dny
d > 0, the sum converges uniformly in the half-plangRe> 1 + d, hence, by a theo-
rem of Weierstra, the zeta function is analytic for Re > 1% Since the machinery of
complex analysis was not properly developed during Euléegme, he was probably
only dimly aware of these facts, and in his work he did not mekeuse of the proper-
ties of ((s) as an ANALYTIC function. That would come later, first with Rihlet (see
Lecture 7 below), but primarily with Riemann. Euler did passthe tools to prove the
following two results, however.

Theorem 5.3.Let Rés) > 1. Then

) =1] (1 - i)_l . (5.7)

In other words, the infinite product over all the primes cogesrabsolutely in the half-
plane Rés) > 1 and coincides witlg (s).

Proof. In a rigorous presentation of the proof, one must pay caedfahtion to issues
of convergence, but here | just wish to give the central id€ase way of proving (5.7)
is to show that, for every integey > 0,

1 1
[H (1 — p—)] ((s) = > = (5.8)
p<N ptnforanyp < N

This can be donéone prime at a time’ so to speak, by exploiting the fact, foy an

individual primep,
(1 _ i) ((s) = ks (5.9)

s ns '
p pin

As N — oo the RHS of (5.8) will converge to 1, implying (5.7).

An alternative method is to start with the infinite productiarote that, by the bino-
mial theorem, each factor can be expanded as an infinitesserie

<1——1>_1— EOO L (5.10)
ps — pms : '
Thus the infinite product becomes

(35, (511

p m=0

and when one multiplies this out, one sees that, for exery0, the terml /n°® appears
exactly once, by FTA. O

4If you haven't taken a course in complex analysis, and heocé dnderstand the meaning of this
sentence, it doesn’t matter for the sake of this course.
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Remark 5.4. An expression of the form

[, (5.12)

where eacly,(x) is a rational function, is called gBuler product

Corollary 5.5. (Euler) There are infinitely many primes and the sum of their recipro-
cals diverges.

Proof. Taking log of both sides of (5.7) we get, for R¢ > 1,

log C(s Zlog (1 - —> (5.13)

Next recall that the Taylor series for the log function, gadihen|z| < 1, is given by

—log(1 — 2) Z Lm (5.14)

Substituting (5.14) into (5.13) we get, also for(R)e> 1,

g () = 0> L

p m=1

Now group the terms on the RHS into two groups, those with- 1 and those with
m > 1. Note that we are changing the order of summation here, huitiokay because
the series is absolutely convergent wherife> 1°. We obtain

1 —F A1

0g ((s Zp +;7n22mpms (5.16)
The idea now is to look at what happens wher> 17. The sum overn > 2 does not
blow up - in fact, it's value at = 1 can easily be shown to be less than, for example,
2((2) = w2/3. On the other hand, we all know from envariabelanalys (usg, the
integral test) that(s) — 400 ass — 17. This means that the LHS of (5.16) goes to
infinity ass — 1*. It follows that the same is true of the RHS, and hence that

lim d pt=oo. (5.17)
p

(5.15)

mpms

In particular, the sum must contain infinitely many terms.(ithere are infinitely many
primes) andy_ p~! diverges. This proves the corollary. O

SRecall from envariabelanalys that the sum of an absolutetyergent series is independent of the
ordering of the terms. This is not true for conditionally eergent series (Riemann’s theorem).



6. SXTH LECTURE: 10/11

The purpose of this lecture is twofold : (1) using Euler'sules to present some
heuristic arguments for PNT (2) to prove Chebyshev’s 185@lr&gich, until Erdds
and Selberg came along, was as close as anyone got to pravihdpy‘elementary’
means.

FIRST HEURISTIC FORPNT. Letp, denote then:th prime. Corollary 5.5 says that
> 1/p, diverges. This certainly implies that, cannot grow too quickly witm. How
quickly can it grow ? Well, triviallyp,, > n and)_ 1/n diverges. Recall that the latter
is proven by comparing with the integral

1
/— dr = log x, (6.1)
X
which diverges as — oc. Similarly, since for any > 0, the integral
<1 1
/1 e dr = - (6.2)

converges, this suggests thatcan't grow liken!*<, for arbitrarily smalle > 0. This
still leaves some room for manoeuvre, though. Let’'s usedhewing notation :

logOz =2, log®z :=log(log* Y z) ¥V k> 0. (6.3)
Then one easily shows that, for ahy> 0 (the casé = 0 being (6.1)),
1
—— dz = log™V 1. 6.4
/ Hf:o log® z & ©4)

Hence all these integrals diverge, which leaves the pdiggitbor any & > 0, that

k
D ~ H log® n. (6.5)
i=0

Now k£ = 0 is simply unreasonable : it's not the case thmbst’ numbers are prime.
For purely aesthetic reasons (the Ockham’s Razor princgiple)might now settle on
the simplest remaining alternative, namegly= 1, i.e.:

P ~ nlogn. (6.6)

It's easy to check that (6.6) implies (5.5).
There are several obvious problems in turning this hearatyument into a proof.
We mention a few glaring ones :

1. There’s nothing in the argument to rule out a constantiplidative factor, say
Pn ~ 176 nlogn.

2. We are choosing one of infinitely many alternatives on lguaesthetic grounds.

3. More subtly, an expression like (6.6) implies somegularity’ in the distribution of
the primes. There is nothing in our heuristic which mightlakpsuch regularity in the
first place and which would rule out dense clustering of thees in certain intervals
interspaced with long prime-free gaps, in such a way tha) @ly held‘on average’.
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All of these concerns can be addressed by either arguing sthedie grounds or by
collecting large volumes of numerical evidence. Note thabaple of hundred years
ago, the latter option wasn't so readily available. Henbe, eader must decide for
him/herself how convincing the heuristic is, but it shoulel dlear there are serious
problems in turning it into a rigorous proof.

SECOND HEURISTIC FORPNT. Letp be a prime. Choose a positive integer at ran-
donf and letA, denote the event that the chosen integer is a multipte Gllearly,
1 1

Now letp, ¢ be two distinct primes. We claim that

1 - 1 1
P(A,NA,)=— and P(A,N A :(1——)(1——). (6.8)
(Ap N Ay) o (Ap N Ag) p .
Note that the second statement in (6.8) follows from the lfiysan inclusion-exclusion
argument. The first statement is essentially a reformuladfd=TA, which implies that
an integer is divisible by botp andq if and only if it is divisible bypq’. For future

reference, we note an elegant probabilistic interpratadiq6.8), namely

For distinct primegp andg, the eventsl, and A, are independent.  (6.9)

Now back to the heuristic. Le¥ be a large positive integer, and imagine we choose an
integer at random from amond, ..., N'}. Let E' be the event that this integer is prime.
The eventE occurs if and only if our chosen number is not a proper mdtgll any
prime up toN. If we ignore the wordproper’ (thus already introducing a delicate error
in our estimates) then, by (6.8), the probability of the eévéms given by

P(E) =[] (1 - %) . (6.10)

p<N

Now compare this with (5.6) and (5.7). In fact, if we truncéte series for((s) at
n = N, sets = 1 and wave our hands a lot we can postulate that

1T (1 — %) ~ ﬁ (6.11)

p<N n=1

The sum is aboubg N (see (6.1)). Thus we have an argument which suggests that the
probability of an integer from amongd, ..., N} being prime is about/ log N. Clearly,
this implies something like (5.5).

8if you've taken a course in probability theory, you may amjaee that this statement is, strictly
speaking, meaningless. However, | am going to gloss ovdr tmathnicalities here.

"More generally, FTA implies that if GCa, b) = 1 then an integer is divisible by bothandb if
and only if it is divisible byab. Note that this fact really does rely on unique prime fasation. For
consider eq. (4.17). It implies that, in the rifigh/—5], the numbes is divisible by each of the primes
and1 + /—5. However, it is not divisible b2 (1 + /=5).
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This heuristic also suffers many flafyshough of a somewhat different nature to the
first one. It is important to note that the two arguments agaicantly different in
spirit. The latter one can be considered as an exampiprobabilistic’ reasoning, a
strategy which is often very helpful (though sometimes eading) for seeing beyond
the technical difficulties of a particular problem to get aliieg for ‘what’s actually go-
ing on’. We will encounter more examples of this type of hsticireasoning later in
the course.

We now turn to the proof of Chebyshev’s theorem. First somt&éumotation. We write
f(z) < g(x) to denote thatim sup, . f(z)/g(z) < 1. We write f(z) = O(g(x)) to
denote thatimsup,_, f(z)/g(x) < .

Theorem 6.1. (Chebyshev 1852))here exist constants< ¢; < ¢, such that

- S7(x) S e -

(6.14)

&1

log x logx

In the proof presented below, we will determine explicit samtsc; = log2 =~
0.693..., co = 2¢; ~ 1.386.... By refining this basic approach (at the cost of a lot
of extra technical details), Chebyshev was able to give bettestants, his best being
c1 ~ 0.92..., c; ~ 1.105... However, his method does not seem to lead to'tifugh’,
i.e.:c; = co = 1. We will make use of the following function :

Definition. The functionA : N — R defined by

A(n) = { logp, if n > 1andnis a power of the prime, (6.15)

0, if n =1 ornis nota prime power

is called thevon Mangoldt functioh

80ne such flaw is that the approximation (6.11) is wrong by ataont multiplcative factor. In 1874,

Mertens proved that
1 1
1—=) ~ 6.12
H < p) evlog N’ (6.12)

p<N
where~ is the so-calleduler-Mascheroni constant

1
~v:= lim ( E - - logn) . (6.13)
n—oo 1

i=1

I might return to Mertens work later on (haven't decided yet !

9This function was introduced by the German mathematiciansi@n Mangoldt some time around
1878. Itis an important technical tool in the proof of the PNibre precisely, von Mangoldt studied the
function

P(x) =Y A(n), (6.16)
n<z

which had already appeared in Chebyshev’s work. It can beidered as a weighted version of the prime
counting functionr(z). Actually, it also assigns non-zero weights to all prime posy but one can show
that the major contribution comes from the primes themsel#er technical reasons, the functiof)
is easier to study by complex-analytical methods th&an) and the standard approach to proving PNT
first of all leads to an asymptotic estimate fofz). From this it is not too hard to deduce an estimate for
m(x). For some further information, consult Homework 2.
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Proof. of Theorem 6.1IThe starting point of the proof is the identity
Z A(m) = logn. (6.17)

mln

To see this, consider a prime factorisatiomof

n=py'py* - ppt. (6.18)
Then the definition of\ is easily seen to imply that the LHS of (6.17) is just

k k
> a;logp; = log (HP?”) = logn,
=1 =1

which proves (6.17). Next, consider the functibn R™ — R* given by

= A(n)L% . (6.19)
| claim that .
T(z) =axlogz — x4+ O(log z). (6.20)

To show this, we first assert that

ZA(n)L%j:Z CORE (6.21)

n<z n<z \ mln

This identity follows from the observation that, for eaeh < z, the quantityA(m)
appears once on each side of (6.21) for everyy. = such thatn|n. From (6.17) and
(6.21) we deduce that

= Z logn = log(|z]!) (6.22)

Then (6.20) follows from Stirling’s formul&. In order to complete the proof of Cheby-
shev’s theorem, the function which will actually need tadstis

X
S(z) = T(z) — 2T(x/2) = ;A ( LQnJ) . (6.25)
On the one hand, (6.20) is easily checked to imply that
S(z) = (log2)x + O(log x). (6.26)

On the other hand, we shall obtain both upper and lower botordS(x) in terms of
m(x). These will yield, respectively, the lower and upper bouiods (x) in (6.14). First

10Stirling’s formula is usually presented as the statemeit th

nl ~n"e "V 2mn. (6.23)
Taking logarithms, this implies that
logn! = nlogn —n + O(logn). (6.24)

This logarithmic version of Stirling’s formula is actualijuch easier to prove than the formula itself.
One can do so by a careful comparisorigyfn! with the integralfln log z dz. The details are left as an
exercise to the reader.
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to the upper bound. One readily verifies that the bracketiéereince of| |-functions
in (6.25) is less than or equal 1@ for anyx andn. Hence

5(0) < 30 A0) = l108p) - [ 22 < (loga)- Y1 = (o)), (6:27)

n<w p<z p<z

This and (6.26) immediately imply the left-hand inequality(6.14). The lower bound
for S(z) will require a little more work. First observe thatif/2 < n < x then the
bracketed term in (6.25) is equal toHence

S > Y A= Y dogp> (oge/)r(r) — n(x/2)].  (6.28)
z/2<n<x z/2<p<z

From this and (6.26) we deduce that
Xz

< _— : .
7(z) < 7(x/2) + (log 2)1ng " Tos2 + O(1) (6.29)
Iterating, we have for any < |log, x| — 1 that
T T T
)< - . .
T (2’“) =7 (2"7“) + (log 2)2"‘(10gx — klog?2) +00) (6.30)
Adding over all suclk then yields
T
< — :
m(x) < (¢ log 2)logx + O(log x), (6.31)
where
logy 2] =1 log
= e 32
Co kZ:O 2k log x — klog 2 (6.32)

| leave it as a (really ugly !) exercise to the reader to vathfytc, — 2 asr — oo. This
implies the right-hand inequality of (6.14) and completes proof of the theorem. [J

NOTATION: For two functionsf, g : R, — R, we write f(z) = O(g(z)) if f(z) =
O(g(z)) andg(z) = O(f(z)) both hold. We writef (z) = o(g(x)) if
lim, . f(z)/g(x) = 0.

Chebyshev’s theorem says thatr) = © ( - ) In Corollary 5.5 we showed that

log x
>~ 1/p diverges. We will now use Chebyshev’s theorem to deduce a precése result
(Theorem 6.4 below).

DEFINITION: The function¥ : R, — R, is defined as
U(z) =) A(n). (6.33)
n<x

The function¥(x) is a kind of weighted version of the prime-counting functiafx),
which turns out to be useful to work with.

Proposition 6.2.
U(x) =0O(z). (6.34)
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Proof. By the definition of the von Mangoldt function, we have
=> logp+ Y logp. (6.35)
p<w pk<z, k>2

It is easy to see that the second sur{s/z log x) = o(x), so it suffices to show that
the first sum i€ (x). On the one hand,

Zlogp < Zlogm = (log x) Z 1 = (logz)m(xz) = O(x), (6.36)

p<z p<z p<z

by Theorem 6.1. On the other hand,
Sz 3 togp> (jloee) (n(e) - A(VE) =) (637

p<x Vr<p<z

also by Theorem 6.1. This proves the proposition. O

Remark 6.3. The full Prime Number Theorem implies by the same argumesit th
U(z) ~ z. In fact the usual analytic proof of PNT proceeds the othey veaind,
by first establishing the estimate fé(x) and then deducing that faf(x).

The classical “good” estimate for the partial sum of thepemtals of the primes is
the following:

Theorem 6.4.

1
Z—:loglogx+b+0(

p<z

) , (6.38)
log x

whereb is some constant.

Proof. The proof involves studying another function R, — R, defined as

Liz)=Y 10;”’ . (6.39)

p<z

Note that the relationship betwedriz) and the sum in (6.38) is somehat akin to that
betweenV(z) andw(x). The precise relationship between the two will be given in
Claim 2 below. First we verify

CLAamM 1:

L(z) =logz + O(1). (6.40)
Proof of Claim 1:We return to the functiofi’(x) defined in (6.19). Le{¢} denote the
fractional part of a real number Obviously,0 < {t} < 1 for everyt. Thus,

=3 Am) (% - {%}) — (Z #) +0 (Z A(n)> . (6.41)

nlx nlx nlx

The second bracketed sum is what we definedl(@ag and hence i®(x) by Proposition
6.2. Dividing (6.41) across by and using (6.20), we find that

Z# = logz + O(1). (6.42)

n<x
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But, by definition of the functiona andL,

S e 3 e (6:43)

n<z ph<mkz2 D

The second sum is certainly bounded by the same eexpressipaymming instead
over all prime power*, not just those up ta. But the latter is clearly convergent
since

o0

S logp Zlogpz Z 1ng Z 12g_n1 —0(1). (6.44)

Pk, k>2 n=1

Claim 1 follows from (6.42)-(6.44).

CLAIM 2:

“ L(u)
Z— logx /Qu(logu)Q du. (6.45)

p<m
To prove this, we start with the integral and use the definiGbZ to write

© L(u) ! log p 1
/2 u(log u)?2 a _/2 (Z p )“ﬂogu}? - (6:49)

p<w

We can interchange the sum and the integral and use the efeyéact that/ m =

—ogu + C to obtain
v log p log p /
= (6.47)
[ (2% s 25 [ it
Zlogp 1 _ZE_L((%)
B logp logz ) p logx’

p<w p<x

which proves Claim 2.
Let E(z) := L(x) — logz. Claim 1 asserts thdf(x) = O(1). Substituting this into
(6.45) we have

_ (z) * 1 * E(u)

p<m

The first integral idog log x — log log 2. Hence if we let

b:=1—1loglog2+ / & du, (6.49)
2 u(logu)?
then .
Z— = loglogz + b+ &(x), (6.50)
p<z
where @) W
E(x < Eu
= ————du. 6.51
£@) log x +/x u(logu)? " (6:51)
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SinceE(x) = O(1) it is clear thaté(z) = O (L> so the proof of Theorem 6.4 is

logx
complete. O

Remark 6.5. See the lecture notes for the course in Arithmetic Combimcgdor a
nice application of Theorem 6.4.

From Theorem 6.4 and following the same strategy as in thefmfoCorollary 5.5,
it is easy to deduce that

1 c 1
N0 lo(h) o

p<z

for some constant > 0. It requires more work though to show that= e¢=7, see
(6.12). We will not do this here, but see for example Chaptef [8iven-Zuckerman-
Montgomery.
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7. SEVENTH LECTURE: 12/11

The next few lectures will involve somewhat more algebraradarst, let us remind
ourselves of some standard facts and notations with whiciwresbopefully all familiar.

Letn € N. We define the relatiolrtongruence modula’ on Z by
a=b(modn) < nla—b. (7.1)

This is clearly an equivalence relation. There arequivalence classes, represented
most naturally by the numbets1,...,n — 1. The set of equivalence classes is denoted
Z/nZ or Z,. | will primarily use the latter notation. It is called thets#f congru-
ence/residue class@sodulon. The most important basic fact about the sétds that
they inherit the structure of an algebraic ring fr@n

Proposition 7.1. Addition and multiplication of congruence classes modtuie well-
defined, so thakZ, is a commutative ring with unity. In other words,aifb, c,d € 7Z
satisfya = ¢ (modn) andb = d (modn), then also

a+b=c+d(modn) and ab = cd (modn). (7.2)

Now we start a new track for our investigations by noting #hatight modification
of Euclid’s proof of Theorem 1.2 yields a stronger resulinedy :

Theorem 7.2. Letn > 2. Then there are infinitely many primes not congruent to
1 (modn).

Proof. Suppose the contrary and et ..., p,, be a full list of the primes not congruent
to 1 (modn). Consider the number

k
T:=n (sz> — 1. (7.3)

ThenT is clearly not divisible by any,. AlsoT = —1 (modn), thusT # 1 (modn),
sincen > 2. It follows from Proposition 7.1 that at least one prime éacif 7' cannot
be congruent to 1 (mod) either. This contradicts the completeness of our list. [J

Corollary 7.3. (i) There are infinitely many primes congruent to 2 (mod 3).
(if) There are infinitely many primes congruent to 3 (mod 4).
(i) There are infinitely many primes congruent to 5 (mod 6).

Forn = 5 orn > 6, Theorem 7.2 does not tell us whether there are infinitelyyman
primes in any particular congruence class modulolt also doesn't tell us anything
at all about primes congruent to 1 (mejl Now some congruence classes obviously
cannot be full of primes, for

Proposition 7.4. If n € N anda € Z satisfy GCQa,n) > 1, then there is at most one
prime congruent ta (modn), namely GCDa, n) itself, if this happens to be a prime.

It seems reasonable to expect that nothing else can go waodghis is indeed the
case :
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Theorem 7.5. (Dirichlet 1829)Letn € N anda € Z satisfy GCDa,n) = 1. Then
there are infinitely many primes congruentd@modn). In fact, the sum of the recip-
rocals of these primes diverges, for angndn.

Dirichlet’s theorem is regarded as the first major successathods which nowadays
would be referred to asnalytic number theory’. His proof (which is highly nonvial
: see Davenport's book for a full treatment) is loosely basethe techniques of Euler,
but he needed to introduce a generalisation of the zetaifumatowadays known as
Dirichlet L-functions | will define these later on, to give you a jumping-off point i
case you want to study Dirichlet’s proof.

Remark 7.6. As a companion to his elementary proof of the PNT, Selberg gav
elementary proof of Dirichlet’s theorem. Both proofs are wiiwne 50 of the Annals
of Mathematics (1949).

Dirichlet’s theorem still leaves a deeper question unanstyenamely : is it the case
that, for a fixed modulus:, the primes areequidistributedamongst the congruence
classes: (modn) for which GCD(a,n) = 1. The answer is yes, and was proven by
applying to L-functions the same methods used to prove th&é BiEfore stating the
result, we remind ourselves of another piece of standamtioot:

Notation. The Euler ¢-functionis the functiony : N — N defined by
o(n) :=#{a€{0,1,....,n —1} : GCD(a,n) = 1}. (7.4)
Then we have

Theorem 7.7. (Extended PNT)Letn € N anda € Z satisfy GCDa, n) = 1. Forz >
0 let 7, ,(x) denote the number of primes upaovhich are congruent ta (modn).
Then
1 T
Tanl®) ~ Sy logz
The proofs of Theorems 7.5 and 7.7 are beyond the scope afdhise. | want to

prove at least one special case of the former, how&ueaimely that there are infinitely
many primes congruent to 1 (mdg. We need some more algebraic background for
this and much else.

(7.5)

Basically, | am interested in the structure’df as a ring and of that o, the sub-
set of multiplicative units, as a (multiplicative) groupofé that, by Euclid’s Lemma,
|Z:| = ¢(n). The ring structure is fairly straightforward :

Proposition 7.8. Letn € N have prime factorisatiom = Hlep?i. Then there is an
isomorphism of rings

k
Zn = 1] 2,0, (7.6)
=1
where the RHS denotes a direct product of the rigs, : = 1, ..., k.

YThere is a book in the librarlementary Theory of Numbesg Wactaw Siergaski, which contains
‘elementary’ proofs of a number of other special cases.
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Proof. There is a natural map from the LHS to the RHS of (7.6), namely
flz (modn)] = [z (modp*), -, = (modpi*)]. (7.7)

Itis trivial that f respects the operations of addition and multiplicatioh&respective
rings and is thus a ring homomorphism. To prove it is an isqiiem, it just remains
to show it is a bijection of sets. Since it is a map betweenefigndts, it even suffices
to show thatf is injective. And since we already know it is a ring homomasp it
suffices to show that kéf) = {0}. So suppose (modn) is in the kernel off. This
means, by definition, that = 0 (modp;*), for: = 1,...,k. Thusp;" dividesz for
eachi = 1, ..., k and, by FTA (see Footnote 7 in Lecture 6), this implies ﬁé;lpf”,
namelyn, also dividese. Thusz = 0 (modn), as required. O

Remark 7.9. The fact that the mag above is a bijection of sets can be formulated
more concretely as follows : Let, ..., p, be distinct primesqy, ..., o hon-negative
integers and, ..., a; any integers. Let = Hlep?i. Then there is a unique solution

x € {0,1,...,n — 1} to the system of congruences
r =a; (Mmodp]), i=1,..,k. (7.8)

This way of formulating Proposition 7.8 is what is usuallyereed to as th&hinese
Remainder Theorem

The structure o2} as a multiplicative abelian group is more interesting. Ntte
begin with, that a immediate consequence of (7.6) is that

k
=112 (7.9)
=1

where the RHS now denotes a direct product of abelian grougs.réduces the study
of the structure o} to the case where is a prime power. The most important case
then is whem is actually prime, and the following is a fundamental resuldbstract
algebra:

Theorem 7.10.Letp be a prime. Thet; is a cyclic group.

Proof. Assuming you have taken some course in abstract algebsasthiresult whose
proof you should have seen already, so | only want to remindgfahe outline of it.
The theorem is a special case of the fact that the multipheafroup of non-zero ele-
ments in any finite field is cyclic. This is a consequence offtlewing two facts :

1. In afinite field, for any € N the equation:* = 1 has at most solutions. This fact
is easily established, since we can consider the equatiarpalynomial equation and,
since we're working in a field, the number of roots of a polymaincannot exceed its
degree.

2. Let G be a finite multiplicative group. If, for each € N, there are at most so-
lutions in G to the equation* = 1, then( is cyclic. Note that this statement holds
for all finite groups, though it's easier to prove for abelgnoups, which is the only
case we need here. The point is@ifis a non-cyclic, but abelian finite group, then the
Fundamental Theorem for Finite Abelian Groups is easilyjseemply that there must
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be some prime for which G contains a subgroup isomorphicdg x C,. Then already
in this subgroup, we hav# — 1 > p solutions tar? = 1. O

Teminology. Letp be a prime. A generator of the cyclic grotpis called gorimitive
root modulop. For example3 is a primitive root moduld@, since (mod 7),

31=3,32=23=6,3'=4,3°=5,3°=1. (7.10)

Let C,. denote an abstract cyclic group of oradeiFor general prime powers, we have
the following result :

Theorem 7.11.Letp be a prime andv € N. If p is odd theriZ;. is cyclic. Ifp = 2 and
a > 2thenZs., = Cy x Cy—2, the direct product of cyclic groups of ordetand 242,
Moreover, the two factors are always generated-dyand 5.

Proof. The proof is technical and uninspiring and | did not presemtt ithe lecture.
However, in case you are interested, here it is for compéstgnl will leave out some
of the more gory details of the calculations for you to checlrgelf.

First suppose is odd. Letg be a primitive root modulg (which exists by Theo-
rem 7.10). We shall show that for an appropriate choice ofnéegerz, the integer
g + px is a primitive root modulg® for everya > 1. It is required to choose such
that

(g+px)*=1(modp®) = p*t(p—1)]d (7.11)
Note that the order of + pz modulop® dividesp®~!(p — 1) a priori, since the order of
any element in a group divides the group order (Lagrangesoiidm).

First, for any choice of:, the fact thaty is a primitive root modulg already implies
thatp — 1 must divided, sinceg + pr = g (modp) and so

(g+px)* =1 (modp®) = (g +pz)? =1 (modp) & ¢ =1 (modp) < p—1|d.
(7.12)
Sinceg’~! = 1 (modp), we haveg?~! = 1 + py for some integey. The binomial
theorem states that

p—1
-1 p—1 —1—i i
(9 +pz)" = ZO ( ; ) 9" (px)". (7.13)
Modulo p? only the terms = 0, 1 contribute, and we have thgg + px)?~' = 1 + pz
where

z=y+(p—1)g" %z (modp). (7.14)
Since the coefficient af in (7.14) is not divisible by, we can choose such thatz
is not divisible byp. We now claim that this is sufficient for + pz to be the required
primitive root. It needs to be shown that, if GCDp) = 1, then

(1+p2)!" =1 (modp®) = a—1<m. (7.15)

Once again, this follows immediately from the binomial thea, which in this case

states that
pm

L+p2)" =3 ( P ) (p2)'. (7.16)

1
1=0
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Since(z, p) = 1, one sees immediately thait ™! is the highest power of dividing the
i = 1 term. With a little more care one checks that, sipde odd,p™ "2 divides each
term fori > 1. Hence

(1+p2)"" =1+ p™™ (modp™*2), foranym > 0. (7.17)

And (7.15) follows immediately from (7.17). This completbg proof of the theorem
for oddp.

Now supposep = 2. The argument is similar to the above, in particular the bino
mial theorem is used. We omit details, but just note thatriteoto prove the theorem
for o > 3 (it may be proven fory < 3 by inspection), one writes = 1 + 22 and uses
the binomial theorem to prove that

(14+2%)* " =1 (mod2%), (7.18)

(1427 =1+2°" (mod2®). (7.19)
Eq. (7.18) implies that the cyclic subgroup®§. generated by has order*>—2, and
(7.19) implies that—1 is not an element of this subgroup. Then elementary group
theory implies thaZs. is the internal direct product of the subgroups generated by
and5. O

Remark 7.12. Note, in particular, thaZs.. is non-cyclic for alloe > 3. For exampleZ;
is isomorphic to the Kleint groupCy x C,. Observe thaZi = {1, 3,5, 7} and check
directly that1? = 32 = 52 = 72 = 1 (mod3).

2&—2

We shall start applying the above results next day.
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8. BEIGHTH LECTURE: 14/11

Proposition 8.1. Letn € N. Then
1
o(n) :n-H(l—Z—)) : (8.1)

where the product is taken over the distinct prime divisors @fe.: each distinct prime
divisor is counted only once).

Proof. Letn = []._, p. It follows from (7.9) that

k

o(n) =[] o). (8.2)
=1

Thus, in order to prove (8.1), it suffices to show that; = p© is a prime power then
1

o(p*) = p* (1 - 2—9) =p* —p* (8.3)

But this is clear, since an integer is relatively primetdf and only if it is not divisible
by p. Since every:th integer is a multiple op, it follows that1 — }D of thep® integers

among{0, 1, ..., p* — 1} are relatively prime t@. O
Remark 8.2. A function f : N — C is said to bemultiplicativeif
f(ab) = f(a)f(b), whwnever GCQa,b) = 1. (8.4)

Thus Proposition 8.1 implies, in particular, that the Egldunction is multiplicative.

Eqg. (8.1) implies that, in order to computén), it suffices to factorise:.. Hence,
determination of the-function is certainly no more computationally challergihan
integer factorisation. As far as | am aware, it is still anmopeoblem to prove the con-
verse. One needs to be more precise as to what one actualhsrheee, but one way
of posing the problem is as follows :

Question. Can computation of the-function be reduced to integer factorisation in
polynomial time ? In other words, assuming one has an infynfeest algorithm for
computinge, is there a polynomial time algorithm which takes an integexs input
and outputs the prime factorisationof?

Note that it is quite easy to show that the answeyes’, if it is known that the input
n is a product of exactly two distinct primes (see Homework Bis is the situation
which arises in RSA cryptography, for example, where thersigyanf the cryptosystem
is, strictly speaking, dependent on the difficulty of conipgitp(n) for suchn. Hence,
the security is indeed dependent on the difficulty of intdgetorisation.

Remark 8.3. It also follows from (8.1) that the quotiertn)/n can be become arbi-
trarily small (see Homework 2). Clearly, it can also beconietearily close tol, since
o(p) = p— 1 whenp is a prime. It's an interesting question to ask what ‘tneerage’
behaviour of the quotient(n)/n is. One very nice result in this direction is that

Z ¢(n) = %xQ + O(zlogx). (8.5)

n<x
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For a proof of this and similar results, see either the Supptdary Notes to this lecture
or, for example, Chapter 2 of the boAkConcise Introduction to the Theory of Numbers
by Alan Baker. Eq. (8.5) has the nice interpretation that ttubability of a pair of
‘randomly chosen integerébeing relatively prime i$ /7.

Lemma 8.4. If G is a finite group and: € G, thenz!¢! = 1.

Proof. Lagrange’s Theorem states thatifis a subgroup of7, then|H| divides|G]|.
Applying this to the cyclic subgroup generateddywe conclude that™ = 1 for some

n dividing |G|. Hencer!“l = 1 also. O
Proposition 8.5. Letn € Nanda € Z such that GCDa, n) = 1. Then

a®™ =1 (modn). (8.6)
In particular, if p is a prime andz is not a multiple op, then

a’~' =1 (modp). (8.7)
Proof. Apply Lemma 8.4 to the groug’ . O

Remark 8.6. Eq. (8.6) is usually designat&tller’'s Theorenand the special case (8.7)
referred to agermat’s (Little) Theorem

For the remainder of this lecture, we shall discuss the stlgeprimality testing
The problem is to find an efficient algorithm for deciding wietan input» € N is
prime or not. Clearly, primality testing is no more difficufiain factorisation, but it is
certainly conceivable that it might be easier. If so, thatldde a significant finding,
since factorisation seems to be a hard problem. Efficientagdry testing was an issue
of great concern already to people like Euler, Lagrange s&atc., who were interested
for example in compiling long lists of primes and therebyestigating numerically the
behaviour of the functiom(z). Since they didn’t have computers, efficiency was at a
premium.

One of the oldest ideas for testing primality which by-padbe need to factorise a
number is to use (8.7). Given an inputthe strategy can be summarised as follows :

1. Pick arandom: € {1,...,n — 1}. Compute GCDQz, n) using Euclid’s algorithm. If
GCD(z,n) > 1, thenn is not prime. Otherwise go to step 2.

2. Computer™~* (modn). If the answer is not (modn), thenn is not prime. Other-
wise, pick another random numbee {1,...,n — 1} and go back to step 1.

3. If, after a‘large’ number of trials, we still have not been able to codelthatn is
prime, then abort the algorithm and output thas prime.

There is an obvious problem with this strategy : it can givewhrong answer ! The
problem is we don’t knowhow many’ trials have to fail before we can be sure tha
indeed prime. This matter requires a much deeper analydist forns out that nowa-
days there exist very fastpn-deterministigrimality tests, which are essentially based
on Fermat’s Little Theorem (though not so simple as the oserdeed above). What

12pgain, one has to be more precise about what one actuallysrieene, but | will leave that as an
exercise for you to figure out yourselves.
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‘non-deterministic’ means is that the tests involve somdaamess and give the wrong
answer with a very small, but non-zero probability. For atigiical purposes, state-of-
the-art primality tests are foolproof, the probability of @rror being so small that one
would not expect one to be made during the lifetime of the ensig, for example !

But important theoretical considerations remain. Firstlbfiais important to note
that the simple test described above can fail spectacularly

Definition. A composite number € N is called aCarmichael numbeor Euler pseu-
doprimeif "1 = 1 (modn) whenever GCQr,n) = 1.

Example. 561 is a Carmichael number. We ha%él = 3 - 11 - 17. Thus, by eq.
(7.9) and Theorem 7.10,

Lsg = Ly x Liy X Li; = Cy x Crg X Cie (8.8)
= CQ X (CQ X 05) X 016 = (02 X CQ) X (05 X 016) = 02 X 02 X 080,

where we have used the f&tthatC,. x C, = C,, whenever GCDr, s) = 1.

By (8.8), the groufZz,, hasexponengo, i.e.: z% = 1 (mod561) for all z € ZZ,
and 80 is the smallest positive integer for which this is the casénc&80 divides
561 — 1 = 560, it follows that561 is a Carmichael number.

It turns out that there are infinitely many Carmichael numpérsugh this wasn'’t
proven until 1994 ! See the Wikipedia article on them for miafermatiornt*.

Hence, simple-minded primality tests based on FermatideLTtheorem, like the one
described above, cannot be fully deterministic, thougly tire certainly fast. Indeed
we have already shown in an earlier lecture that Euclid’srtigm runs in polynomial
time, and so does a computation of the form : giweh ¢ € N, computez® (modc). A
fast algorithm for performing this latter computation ig tho-calledsquare and multi-
ply algorithn®.

So the important remaining theoretical question is : Doesgtlexist a polynomial time
primality test which is fully deterministic ? The answerygs’. More precisely,

1. In 1976, G.L. Miller and M.O. Rabin presented such a testwéi@r, in order to

prove that it ran in polynomial time, they needed to assureestiicalledGeneralised

Riemann HypothesisThis is a generalisation of the classical Riemann Hyposhiesi
Dirichlet L-functions. For a presentation of the Miller-Rallgorithm, and many other
interesting computational problems, see the book

N. Koblitz, A Course in Number Theory and CryptograpBpringer GTM Series.

13G0 back and check your notes from some abstract algebraeciftings fact confuses you.

Yincluding an estimate for the numbék(z) of Carmichael numbers up te which involves the
functionlog log log = !!

19| did an example at the lecture, and I think it would be toodedito rehash it again here.
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2. In 2002, two Indian CS students presented as part of thedcMthesis, along
with their advisor, the first deterministic primality teshieh could be proved uncon-
ditionally to run in polynomial time. In practice, their @gthm is too slow (despite
improvements in the intervening years) to compete withestédithe-art probabilistic
algorithms, but it is a historical theoretical breakthrbwgince it implies that primality
testing is in the class”. A description of their method, known as tA&S algorithm
can be found in

M. Agrawal, N. Kayal and N. Saxen®&rimes in<?, Ann. Math. (2)160 (2004),
781-793.



