13. THIRTEENTHLECTURE: 24/11

We now finish off the proof of the reciprocity law.

Proof. of Theorem 11.7By Gauss’ Iemma(§> = (—1)! where! is the number of

integerse € [1, %*] such thafpz], < 0. The latter inequality holds if and only if there
is an integery such that

—g < pr—qy < 0. (13.1)
Hence,] equals the number of integer solutions to the pair of inagasal(13.1) which
in turn satisfy

0<x< g. (13.2)

Note that the right-hand inequality in (13.1) implies that- (£)z > 0, whereas the
left-hand inequality, together with (13.2), imply that

Cop() 1= p+1 prl p 13.3
@ <pr+5<p(;)+s; ( 5 )1TY< 5 =Y<3, (13.3)
sincey is an integer. In other words, every integer solution to 11&nd (13.2) also

satisfies

0<y< g. (13.4)

A similar analysis gives thgt!) = (—1)™, wherem is the number of intgeer solutions

to (13.2), (13.4) and the double-inequality (got by simudtausly interchanging < ¢,
x < yin (13.1),(13.2) and (13.4))

0<pr—qy< g (13.5)

Hence the LHS of (11.13) equals- 1)+, wherel + m is the total number of integer
solutions to (13.2), (13.4) and (got by combining (13.1) &t2i5))

—g <pr—qy < g (13.6)

Egs. (13.2) and (13.4) define a rectanBleontaining; (p — 1)(¢ — 1) integer points.
Hence, to complete the proof, it suffices to show that thez@areven number of integer
points in this rectangle which do not satisfy (13.6). Thes@{s are contained in two
disjoint subsets! and B of R, where

A:={(z,y) e R:px—qy < —q/2}, B :={(z,y) € R:px—qy >p/2}. (13.7)

To prove that the number of integer pointsdru B is even, it suffices to establish a 1-1
correspondence between the integer point4 and those i3. One may now tediously
verify that such a correspondence is given by

()= (600 w9
U



Before moving onto a new topic, we wish to describe JacoBbisresion of Theorem
11.7.

Definition. Letn be any odd integer, and let
k
n=]]r" (13.9)
=1

be its’ prime factorisation. For any integerwe define thedacobi symbo(%) by

(%) - f[ (g) " (13.10)

=1

where each of the terms on the RHS is an ordinary Legendreaymb

Remark 13.1. Note that(%) = 0 if and only if GCD(a,n) > 1. Otherwise (%) = +1.
The Jacobi symbol is multiplicative, i.e.:

()-(2)
n n n

and thus defines a real character moduld@his follows directly from the corresponding
property of Legendre symbols. Howevernifs not a prime, it is not necessarily the case
that(2) = 1 < a is a quadratic residue moduto Indeed, by (7.9) and Theorems 7.10
and 7.11¢ is a quadratic residue madif and only if (%) = 1 for every primep dividing

n. But if, for examplen is a product of two distinct primgsandg, each congruent to

3 (mod 4), ther(=}) = (5) = —1,but () = (2) = (2) () = +1.

Jacobi formulated the following extensions of Propositiéch2, Theorem 12.4 and
Theorem 11.7 respectively. The third part is callediheobi reciprocity law.

Theorem 13.2.Letm, n be any two odd integers. Then

(i)
-1\ o1 [ 1, ifn=1(mod4),
(7) =)= = { —1, if n =23 (mod4). (13.12)
(ii)
2\ w2 (1, ifn=+1(mods),
(ﬁ) =)= = { -1, if Z = +3 (mod8). (13.13)
(iii)
<%> (%) = (—1)im=Dn=1), (13.14)

Proof. The proofs of the various parts of Theorem 13.2 employ theesponding re-
sults for Legendre symbols, the definition of the Jacobi sylmbd repeated use of the

fact that, ifn, n, are any two odd integers, then
1 1 1

We omit the mind-numbingly boring details. O
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Example. Jacobi reciprocity provides an efficient method for compgitLegendre
symbols(%) which involves neither factorising (so as to reduce the problem to Gauss
reciprocity) nor Euler’s criterion. As an example, notetth@’ is a prime and let's com-

pute
366
(@> . (13.16)

Since366 = 2 - 183 we have, by (13.11),

366 2 183
(557) = (07) (52 (1319

Since997 = 5 (mod3s), eq. (13.13) implies that

2
— | = —1. 13.1
(997) (13.18)
Since997 = 1 (mod4), eq. (13.14) implies that
183 997
(557) = (5%5) (13.49

Next, note that the value of a Jacobi symlﬁgl) only depends om (modn). Since
997 = 5 - 183 + 82, we thus have

(%) _ (2) ' (13.20)
183 183

Time-out here : at this point we have

366 82
(@) _ (@) , (13.21)

Now we keep applying the same type of simplifications. Theleeds encouraged to
check the validity of each of the following steps :

(2)- () ()~ ()~ (- ()
(5)-()-()-0)

From this and (13.21), we finally conclude th{gf¢) = +1.

Remark 13.3. The above algorithm for computing a Legendre syn(bg)) has roughly

the same complexity as Euclid’s algorithm for computing G&p), since both involve
repeated divisions.

Remark 13.4. Gauss put a lot of effort into finding generalisations of himdratic
reciprocity law to higher degree congruences. He had a Istioess in particular with
cubic reciprocity, but even here the theory becomes a loencomplicated. A vast
and abstract generalisation of Gauss’ law was formulateBry Artin in the 1920s.

It is called theArtin reciprocity lawand is one of the jewels in the crown of algebraic
number theory, more especially that part of the field calldakss Field TheoryFor an
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introduction to modern algebraic number theory, includatagss field theory see for
example one of the following texts :

S. Lang,Algebraic Number Theonspringer GTM Series.
J.W.S. Cassels and A. Frohlichlgebraic Number TheoryAcademic Press (1967).

Lyou should learn botkBalois theoryandcommutative algebraefore you attempt to learn this stuff.
Parts of Cassels-Frohlich require even more algebraiepresites, mainijhomological algebra



14. FOURTEENTHLECTURE: 26/11

In this and the next lecture, | want to show how Dirichlet uskdracters to prove his
theorem on primes in arithmetic progressions. We will neeg complete proof - this
would take too long and is quite difficult - but will reduce theoblem to a statement
about the zeroes of certain meromorphic functions. This ioerecasting statements
about the distribution of the primes as assertions aboutligtebution of the zeroes
of certain functions of a complex variable has been the aégtriding philosophy in
analytic number theory since the proof of the prime numbeotém in the late 19th
century. Though that represents the most spectacularessugicess of the philosophy,
Dirichlet’'s theorem already hinted at its power. Nowadatgsmost famous expression
is the still wide-open Riemann Hypothesis.

Dirichlet introduced the following generalisation of theta-function :

Definition. Letd € N andy be an extended Dirichlet character moddla heDirichlet
L-functionfor y is the function of a complex variabledefined by

— x(n)

nS

L(s,x) =

, (14.1)

n=1

whenever the series converges.

Note that ifd = 1 andx = xo then L(s,x) = ((s). The basic issue is now for
which s € C the series converges. The answer is

Proposition 14.1.If x is a trivial character, then the series converges fof 8e> 1. If
X is non-trivial, then it converges for R > 0.

The first statement is proven by simply noting thats, v)| < [((s)|, whenever
Re(s) > 1. What's really new here is the second statement. To prove \tésneed
some lemmas, namely : a general fact about characters, lpusotcalled Dirichlet
convergence test. Regarding the former, the result we rseed |

Lemma 14.2. Let G be a finite abelian group.
() Letg € G. Then

G|, ifg=1g,
> x(g) { g2 1o (14.2)
xEG
(ii) Let x € G. Then
. 14.3
29 { X # xo. (14.3)
geG

Proof. (i) If g = 1¢ thenx(g) = 1 for everyx € G. Hence}_ x(g) = |G| = |G|,

by Theorem 11.4. Ifj +# 15 then there exists at least one character - let’s pick one and
denote ity, - with the property thak,(g) # 1. This follows from the proof of Theorem
11.4. Then, sincé! is a group, we have that

D x(9) = (¢  xo)( ZX (14.4)
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Sincey,(g) # 1, it follows that the sum must be zero, v.s.v.

(il) The proof is similar. Ify = y, thenxo(g) = 1 for everyg € G, thuszg Xo(g) =
|G|. If x # xo then there is some, € G such thaty(g.) # 1. Now, since is a group,

> x(9) =D x(g.9) = x(g.) - D x(9)- (14.5)

Sincex(g.) # 1, the sum must equal zero, v.s.v. O

The convergence criterion we need is a classical one whiatyrafyou may have
already seen in some other course.

Lemma 14.3. (Dirichlet’'s convergence test) et (a,)° and (b,)° be sequences of
complex and positive real numbers respectively. Suppeastoliowing two conditions
are satisfied :

(i) the sequencéA v )s° is bounded, wherdly :== S a,,

n=1

(i) the b,, form a non-increasing sequence aia,, .. b, = 0.

Then the sequen-:‘g;ff:l a,b, converges.

Proof. | will not give full details but just indicate the idea. Onessghe so-calledbel
partial summation formulaThis states that, for any sequences), (b,) of complex
numbers, with the sequencd y) defined as above we have, for aNy> 0, that

0o N 00
Y by = Aulby = baa) + Axiibyii + D anbp. (14.6)
n=1 n=1

n=N+2

Specifically, one uses (14.6) to show that, if the conditiohBirichlet’s test are met,
then the tails

™V =) anby (14.7)
n=N
of the product series form a Cauchy sequence, which sufficpsoige that the series
converges. O

Proof. of Proposition 14.1\We can now complete the proof of the assertion that the
series definingL(s, x) converges when Re) > 0, for any non-trivial charactey.
First, to keep things simple, let me assume tha R. Seta, = x(n), b, = n~*.
The second condition in Dirichlet’s test is clearly satidfighens > 0. So is the first
condition by Lemma 14.2(ii), applied to the groGp= Z;;, whered is the modulud of
x. By definition of a Dirichlet character, the sequelngds periodic with period/ and,
wheny is non-trivial, the lemma implies that the sum of theover any single period
is zero.

The proof for non-rea requires a little more careful analysis, and | don’t wantdo g
into it. Itis left as an (optional !) exercise. O

Remark 14.4. Using Abel’s summation formula it can be shown that for nowidl y
(resp. trivialy) and anyd > 0, the seried.(s, x) converges uniformly in Rg) > o
(resp. Rés) > 1+ ) and hence thal(s, x) is analytic in Rés) > 0 (resp. Rés) > 1).



We continue next day ...



15. HFTEENTHLECTURE: 27/11

Once we've introduced the right generalisation of{Heinction, the idea is to imitate
Euler's approach to proving Corollary 5.5. The first step i®agralisation of Theorem
5.3:

Lemma 15.1. For any charactery we have, when Re) > 1, that

Ls.x) =[] (1 . X<p))1 . (15.1)

» p

Proof. Follow exactly the same approach as in the proof of Theor@mFurther details
omitted. 0

We are now ready to state our main result :
Theorem 15.2.Leta,d > 0 and GCOa, d) = 1. If

for every non-trivial charactesy modulod, then there are infinitely many primes=
a (modd). Moreover, the sum of their reciprocals diverges.

Proof. Let x be a character modulé and consider the L-functioi(s, x). Suppose
Re(s) > 1. Take log of both sides of (15.1) and expand the RHS in a Taddes to
obtain, for Ré¢s) > 1, that

log L(s, x) Z Z fnpms : (15.3)

p m=l1

The difference between this and the situation with Corol&Bbyis that now we are only
interested in those primegs= a (modd), for somea with GCD(a,d) = 1. So how do
we isolate these primes in the sum (15.3) ? The trick is to @serha 14.2(i) this time,
again applied to the grou@ = Z}. It yields that

ZY(@X(”) _ { ¢(d), fn=a (mod_d), (15.4)

0, otherwise

where the sum is taken over all extended Dirichlet charasterdulod.
So what we do now is to take a weighted sum of both sides of Yv& all such
characters. By (15.4), we get that

Ld)zx( log L(s, x) = Z > m;ms. (15.5)

m=1 pm=q mOdq)

Here we're still assuming that Re > 1, and the sum is taken over all characters
modulod. Next, as in the proof of Corollary 5.5, we split the terms af tight-hand
sum into two groups, those withh = 1 and those withm > 1. We observe as before
that the latter sum is bounded @s- 1 and conclude that

slirg—ZX a)log L(s,x) = hm Z p° 4+ O(1). (15.6)
p= a(mOdq)
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Dirichlet’'s theorem is precisely the statement that thetliof the right-hand sum is
+00. Hence we have reduced the proof of the theorem to showirig tha

Slirg o ZX )log L(s,x) = +oc. (15.7)
If x = xo, the trivial character, then it is easy to see th&t, yo) — +oc ass — 17,
Indeed, the same method as for the proof of (15.1) can be osgtbtv that

L(s, x0) = H(1—;> -((s), when Rés) > 1. (15.8)

pld

Hence, (15.7) would be proven if we could show that L(s, y) were bounded, as
s — 1T, for everyx # xo.

But we know from Proposition 14.1 and Remark 14.4 that # x,, thenL(s, x)
is analytic in the range Re) > 0. In particular,L(s, x) is bounded as — 1. Hence,
by choosing a suitable branch of the logarithm, the sameues dflog L(s, x) unless
L(1,x) = 0. This completes the proof of Theorem 15.2. O

This is as far as we shall go witklassical analytic number theory’ in this course.
Before moving on in a new direction, | want to prove one finaulewhich has been
mentioned earlier, namely the famous Four Squares Theofdragrange (Theorem
10.2). A full proof will be presented next day. Today, | wiligt prove a lemma, which
is reminiscent of Lemma 9.5 :

Lemma 15.3. The set of non-negative integers which can be expressed as affaur
squares is closed under multiplication.

Proof. This follows immediately from an algebraic identity anadag to (9.5), namely
(@ + 0+ +d)E+ fP+g*+h?) (15.9)
= (ae + bf + cg + dh)* + (af — be + dg — ch)?
+(ag — ce + bh — df)* + (ah — de + cf — bg)*.
Like previously, theright’ way to think about this identity is as an expressiortioé
fact that
|2122] = |21]] 22/, (15.10)

for certain kinds ofnumbers’zy, z,. The question is, what kinds of numbers ? The
answer to this was really only worked out many years afteraage by the Irish math-
ematician and physicist Hamilton, and the numbers in qoestre calledjuaternions
The set of quaternions is denotéd First of all, H is a 4-dimensional vector space over
R, which we can write formally as

H=R®Ri®Rj & Rk. (15.11)

In particular, quaternions can be added componentwise.aWemakeH into a ring by
means of the following multiplication rules :

2= =k =—1, (15.12)
ij=—ji=Fk jk=—kj=1, ki=—ik=j. (15.13)
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Note that the fact that = —1 means that we can identify the subsp&ce Ri with C,

so thatH is also a 2-dimensional vector space oZelAs such, it cannot be a field, since

C is algebraically closedy the Fundamental Theorem of Algebra, and hence has no
finite-dimensional field extensions. And, sure enoudlisn’'t a field, since (15.13) tells

us that multiplication is not commutative. However, it tsirout that all the other field
axioms are satisfied, g is a so-calleddivision ring. In particular, this means that
every non-zero quaternion has a multiplicative inverses i in fact, demonstrated in
the same way as for complex numbers. Let

z:=a+bi+cj+dk (15.14)
be a quaternion. We can define @snjugateby
Z=a—bi—cj—dk (15.15)
and itsabsolute valuga non-negative real number, by
2| = Va2 + b2 + 2 + d2. (15.16)
Then one can check that,4f~ 0, then
E (15.17)
z 2P
Most importantly, the identity (15.9) is just the explioitrfn of (15.10) for quaternionic
absolute values. OJ

2A famous theorem of Frobenius states that the only divisiogsrwhich are finite-dimensional as
vector spaces ovék areRR, C andH (where the dimensions are 1,2 and 4 respectively). Henoagth
you can go beyond to H as long as you're willing to do without commutativity of miplication, in
some very strong sense, you really, really cannot go bejnd
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16. SXTEENTH LECTURE: 28/11

Proof. of Theorem 10.8By Lemma 15.3, it suffices to prove that every prime is a sum
of four squares. And since= 12+12+02+0%, we may confine ourselves to odd primes.

So letp be an odd prime. Let > 0 be such thatp is the smallest non-zero multi-
ple of p expressible as the sum of four squares. Our aim is to show thatl. We
achieve this in several steps :

Step L[ < p.

As z runs over all residue classes modp)®oz? runs over’%1 distinct classes (this fol-
lows from (11.12)). Similarly, ag runs over all classes mggso—1—v? runs over’%1
different classes. By the Pigeonhole principle, and thetfaata®> = (—a)? (modp),
there existr,y € [0,p/2) such thatr> = —1 — 3> (modp), hencer? + y? + 1 = rp,
for some integer. Thusrp is a sum of four squares. Buty € [0,p/2) = r < p (in
fact,r < p/2). Hencel < p, as required.

Step 2 [ is odd.

Suppose

2 4+ y? + 22+ w? =rp, (16.1)
wherer is even. Thenp is even, hence an even numberiof), z andw have to be
even. Hence, WLOG; = y (mod2) andz = w (mod2). But then

- (52) (52) () () e

and the RHS is a sum of four integer squares. This proves thast be odd.

Step 3 We now suppose that> 1 and obtain a contradiction. Let
P24y wt=1p (16.3)
be any representation gf as a sum of four integer squares. keb, ¢, d be the numer-

ically least residues of, y, z andw respectively, modulé, as defined in the statement
of Gauss’ lemma. Thew® + b* 4 ¢ + d? = 2% 4+ y? + 22 + w? = 0 (mod!), say

a4+ b 4+ +d* =kl (16.4)
Sincel is odd, each ofi, b, c andd lies in the OPEN interva(—[/2,1/2) and hence
k < l. By (15.9), the numbetkl)(lp) = I*(kp) can be written as the sum of four
integer squares, which we dendte F, G and H. By inspection of (15.9) and the fact

thatr = a,y = b,z = candw = d (mod!), we see that each d&f, F,G and H is
divisible by!l. Hence, dividing across by, we find that

o (5 () (00 (1). e

is a sum of four integer squares. Since< [, this contradicts the definition éfunless
k = 0. Butif £ = 0 then, by (16.4), each af, b, c andd equals zero, hence each
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of z,y, z andw is divisible by!. But then the LHS of (16.3) is divisible ki, which
implies that! | p. Butp is a prime so eithel = p, which is impossible bystep 1 or
[=1,v.s.v. U

For the remainder of the course, we are going to ask questiamdifferent character
than previously. Basically, one can say that a lot of cladsiamber theory is concerned
with the properties of certain specific sets of numbers, fikenes, squares, numbers
satisfying specific Diophantine equations etc. In the tvedhtcentury it has gradually
become more popular to ask questions about generatandom’ sets of numbers.
This is, of course, a vague statement, though it does refleatidamentally different
viewpoint. Tackling such questions has in turn brought witiew methods to number
theory, many combinatorial or probabilistic, as well as iimgphew applications of more
classical techniques like complex analysis and Fourielyaisa | want to introduce two
subjects, which | will designatadditive number theorgndRamsey theorfy

ADDITIVE NUMBER THEORY

The fundamental concept in this area is the following :

Definition. Let A C Z. Thesumset4d + A is the set consisting of all integers which
can be expressed as a sum of two elements, ofe.:

A+ A={n€Z:n=ay+ ay forsomea;,as € A}. (16.6)

Note that it is allowed to have, = a,. An alternative notation forl + A is2A. Don't
confuse this witl2 x A, which denotes thdilation

2x A={2a:a € A}. (16.7)
In fact, observe that « A C 2A.

Example. A = {0, 1, 3,4, 7}. Then one just computes by hand that

A+ A=1{0,1,2,3,4,56,7,8,10,11,14}. (16.8)
Example. A = {n? : n € N}. Then, by Theorem 9.64 + A consists of alh € N such
that, if p is a prime dividing: andp = 3 (mod4), thenp?*||n, for somek > 0.

Definition. Leth € NandA C Z. The h-fold sumseth A is defined recursively
by
1A=A, 2A=A+4+A, hA=(h—-1)A+ A, forh > 3. (16.9)

In other words,
hA={n€Z:n=a +---+ay, forsomeay,...,a;, € A.} (16.10)

One of the classical notions of additive number theory i®gity the next definition.
In what follows,N,, denotes the set of non-negative integers.

3Another popular heading edditive combinatoricswhich captures large parts of both subjects.
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Definition. Let A C Ny and assumé € A. We say thatd is a (non-negative inte-
ger) basisof orderh > 0 if hA = Ny and(h — 1)A # Ny.

In words, A is a basis of ordek if every positive integer can be expressed as a sum
of at mosth non-zero elements of, andh is the least number for which this is the case.

Examples. Theorems 9.6, 10.1 and 10.2 together say that the squamsafdrasis
of order 4. The Goldbach Conjecture asserts that thedset {0,1} U P, whereP
denotes the set of primes, is a basis of order 3.



