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Definition 1.1. Let (G, +) be any abelian semigroup,A andB two subsets ofG. The
sumsetA + B is defined as

A + B = {a + b : a ∈ A, b ∈ B}. (1.1)

Proposition 1.2. If G = Z or, more generally, a sub-semigroup of any totally ordered
group, andA,B are two finite subsets ofG, then

|A + B| ≥ |A| + |B| − 1. (1.2)

Proof. Let |A| = m, |B| = n and write the elements of each set in increasing order, say

A = {a1 < a2 < · · · < am}, B = {b1 < b2 < · · · < bn}. (1.3)

Then we can explicitly write down a strictly increasing sequence ofm+n−1 elements
in A + B, for example

a1 + b1 < a1 + b2 < · · · < a1 + bn < a2 + bn < · · · < am + bn. (1.4)
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This proposition does not hold in general. For example, ifH is a finite subgroup ofG
andA = B = H, thenA+B = H also. However, there is an appropriate generalisation
of the proposition to arbitrary abelian groups, known asKemperman’s theorem. Here
we will only discuss the special (and most important) case whereG = Zp, for some
primep.

Theorem 1.3. (Cauchy-Davenport-Chowla)Letp be a prime and letA,B be subsets
of Zp. Then

|A + B| ≥ min{p, |A| + |B| − 1}. (1.5)

Proof. Let |A| = r, |B| = s. First note that it suffices to prove that

r + s − 1 ≤ p ⇒ |A + B| ≥ r + s − 1. (1.6)

For if r + s − 1 > p, then we can just remove some elements fromA and/orB and
thus obtain subsetsA′ ⊆ A, B′ ⊆ B such that|A′| + |B′| − 1 = p. Once we know that
|A′ + B′| = p, then one must also have|A + B| = p, sinceA′ + B′ ⊆ A + B.

So let’s assume (1.6). We then proceed by induction ons = |B|. If s = 1, then
B = {b} is a singelton set andA + B = A + {b} is just a translation of the setA.
Hence, in this case,|A + B| = |A| = r = r + s − 1.

So now supposes > 1 and that (1.6) holds for all smaller values ofs. Note that the
theorem is also trivial ifr = p, so we may assume thatr < p. Now choose any non-zero
elementb ∈ B (sinces > 1 such an element exists) and consider

X = {a + b : a ∈ A}. (1.7)

I claim thatX cannot coincide withA. For, if it did, then we would have
∑

a∈A

a =
∑

x∈X

x =
∑

a∈A

(a + b) =
∑

a∈A

a + rb, (1.8)
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which would imply thatrb = 0 in Zp. But this is not possible sincep is prime,r < p

andb 6= 0. ThusX 6= A and so there existsc ∈ A such thatc + b 6∈ A. Fix a choice of
such ac, and let

C := {b ∈ B : c + b 6∈ A}. (1.9)
Now letA1, B1 be the following two sets :

A1 := A ⊔ ({c} + C), B1 := B\C. (1.10)

Note that the definition of the setC implies that the disjoint union above really is a
disjoint union. Hence it follows that|A1| + |B1| = |A| + |B|. Moreover,|B1| < |B|
since, by assumption, the setC is non-empty. Moreover, since WLOG0 ∈ B, we may
assume thatB1 is non-empty. Hence we can apply the induction hypothesis toconclude
that

|A1 + B1| ≥ |A1| + |B1| − 1 = r + s − 1. (1.11)
To complete the proof, it thus suffices to show that

A1 + B1 ⊆ A + B. (1.12)

So leta1 ∈ A1 andb1 ∈ B1. There are two cases to consider :

Case 1: a1 ∈ A.

Thenb1 ∈ B1 ⊆ B, soa1 + b1 ∈ A + B as desired.

Case 2: a1 6∈ A.

Then there existsx ∈ C such thata1 = c+x. Thusa1+b1 = (c+x)+b1 = (c+b1)+x.
Now x ∈ C ⊆ B, sox ∈ B. Also b1 ∈ B1 = B\C so, by definition of the setC, this
means thatc + b1 ∈ A. Hence(c + b1) + x = a1 + b1 ∈ A + B, and the proof is
complete. �


