SUPPLEMENTARY LECTURENOTES: WEEK 48

MONDAY, NOVEMBER 29

Definition 1.1. Let (G, +) be any abelian semigroug, and B two subsets ofy. The
sumsetd + B is defined as

A+B={a+b:a€ A, be B}. (1.1)
Proposition 1.2. If G = Z or, more generally, a sub-semigroup of any totally ordered
group, andA, B are two finite subsets @f, then
|A+ B| > |A|+ |B| — 1. (1.2)
Proof. Let |A| = m, | B| = n and write the elements of each set in increasing order, say
A={a1 <ay<---<ap}, B={b<by<---<by}. (1.3)

Then we can explicitly write down a strictly increasing seqoe ofm +n — 1 elements
in A+ B, for example

ap+b<ar+by<---<a +b,<ay+b, < <a,+b, (1.4)
O

This proposition does not hold in general. For examplé/ i a finite subgroup ofr
andA = B = H,thenA+ B = H also. However, there is an appropriate generalisation
of the proposition to arbitrary abelian groups, knowrkasnperman'’s theorenmHere
we will only discuss the special (and most important) caserety = Z,, for some
prime p.

Theorem 1.3. (Cauchy-Davenport-Chowla).etp be a prime and letd, B be subsets
of Z,. Then
|A+ B| > min{p, |A| + |B| — 1}. (1.5)

Proof. Let |A| =,

B| = s. First note that it suffices to prove that
r+s—1<p=|A+B|>r+s—1. (1.6)

Forif r + s —1 > p, then we can just remove some elements frdrand/or B and
thus obtain subsetd’ C A, B’ C B suchthatA’| + |B’| — 1 = p. Once we know that
|A" + B'| = p, then one must also hayd + B| = p, sinceA’ + B’ C A+ B.

So let's assume (1.6). We then proceed by inductios ea |B|. If s = 1, then
B = {b} is a singelton set and + B = A + {b} is just a translation of the set.
Hence, inthiscaseA + B| = |[A|=r=r+s— 1.

So now suppose > 1 and that (1.6) holds for all smaller valuesofNote that the
theorem is also trivial if = p, SO we may assume that p. Now choose any non-zero
element € B (sinces > 1 such an element exists) and consider

X={a+b:ae A} (1.7)
| claim thatX cannot coincide withd. For, if it did, then we would have

Za:Zx:Z(a+b):Za+rb, (1.8)

acA zeX acA acA
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which would imply that-b = 0 in Z,. But this is not possible singeis prime,r < p
andb # 0. ThusX # A and so there existse A such that + b ¢ A. Fix a choice of
such &, and let

C:={beB:c+b¢g A}. (1.9
Now let A;, B; be the following two sets :

Note that the definition of the sé&t implies that the disjoint union above really is a
disjoint union. Hence it follows thatA,| + |B,| = |A| + |B|. Moreover,|B;| < |B|
since, by assumption, the sétis non-empty. Moreover, since WLOG< B, we may
assume thaB; is non-empty. Hence we can apply the induction hypothesistalude
that

|A1 + By| > A1+ |Bi| —1=r+s—1. (1.11)
To complete the proof, it thus suffices to show that
A+ B C A+ B. (1.12)

So leta; € A; andb; € B;. There are two cases to consider :

Case L a; € A.

Thenb, € B; C B, S0a; + b; € A+ B as desired.

Case 2 a, € A.

Then there exists € C such thati; = c+x. Thusa, +b; = (c+2)+b; = (c+by) +z.
Nowz € C' C B, sox € B. Alsob, € B; = B\C so, by definition of the sef, this

means that + b; € A. Hence(c+ b;) + 2 = a3 + by € A+ B, and the proof is
complete. O



