Definition 1.1. Let $(G,+)$ be any abelian semigroup, A and B two subsets of G. The sumset $A+B$ is defined as

$$
\begin{equation*}
A+B=\{a+b: a \in A, b \in B\} \tag{1.1}
\end{equation*}
$$

Proposition 1.2. If $G=\mathbb{Z}$ or, more generally, a sub-semigroup of any totally ordered group, and A, B are two finite subsets of G, then

$$
\begin{equation*}
|A+B| \geq|A|+|B|-1 \tag{1.2}
\end{equation*}
$$

Proof. Let $|A|=m,|B|=n$ and write the elements of each set in increasing order, say

$$
\begin{equation*}
A=\left\{a_{1}<a_{2}<\cdots<a_{m}\right\}, \quad B=\left\{b_{1}<b_{2}<\cdots<b_{n}\right\} . \tag{1.3}
\end{equation*}
$$

Then we can explicitly write down a strictly increasing sequence of $m+n-1$ elements in $A+B$, for example

$$
\begin{equation*}
a_{1}+b_{1}<a_{1}+b_{2}<\cdots<a_{1}+b_{n}<a_{2}+b_{n}<\cdots<a_{m}+b_{n} . \tag{1.4}
\end{equation*}
$$

This proposition does not hold in general. For example, if H is a finite subgroup of G and $A=B=H$, then $A+B=H$ also. However, there is an appropriate generalisation of the proposition to arbitrary abelian groups, known as Kemperman's theorem. Here we will only discuss the special (and most important) case where $G=\mathbb{Z}_{p}$, for some prime p.

Theorem 1.3. (Cauchy-Davenport-Chowla) Let p be a prime and let A, B be subsets of \mathbb{Z}_{p}. Then

$$
\begin{equation*}
|A+B| \geq \min \{p,|A|+|B|-1\} \tag{1.5}
\end{equation*}
$$

Proof. Let $|A|=r,|B|=s$. First note that it suffices to prove that

$$
\begin{equation*}
r+s-1 \leq p \Rightarrow|A+B| \geq r+s-1 \tag{1.6}
\end{equation*}
$$

For if $r+s-1>p$, then we can just remove some elements from A and/or B and thus obtain subsets $A^{\prime} \subseteq A, B^{\prime} \subseteq B$ such that $\left|A^{\prime}\right|+\left|B^{\prime}\right|-1=p$. Once we know that $\left|A^{\prime}+B^{\prime}\right|=p$, then one must also have $|A+B|=p$, since $A^{\prime}+B^{\prime} \subseteq A+B$.

So let's assume (1.6). We then proceed by induction on $s=|B|$. If $s=1$, then $B=\{b\}$ is a singelton set and $A+B=A+\{b\}$ is just a translation of the set A. Hence, in this case, $|A+B|=|A|=r=r+s-1$.

So now suppose $s>1$ and that (1.6) holds for all smaller values of s. Note that the theorem is also trivial if $r=p$, so we may assume that $r<p$. Now choose any non-zero element $b \in B$ (since $s>1$ such an element exists) and consider

$$
\begin{equation*}
X=\{a+b: a \in A\} . \tag{1.7}
\end{equation*}
$$

I claim that X cannot coincide with A. For, if it did, then we would have

$$
\begin{equation*}
\sum_{a \in A} a=\sum_{x \in X} x=\sum_{a \in A}(a+b)=\sum_{a \in A} a+r b \tag{1.8}
\end{equation*}
$$

which would imply that $r b=0$ in \mathbb{Z}_{p}. But this is not possible since p is prime, $r<p$ and $b \neq 0$. Thus $X \neq A$ and so there exists $c \in A$ such that $c+b \notin A$. Fix a choice of such a c, and let

$$
\begin{equation*}
C:=\{b \in B: c+b \notin A\} . \tag{1.9}
\end{equation*}
$$

Now let A_{1}, B_{1} be the following two sets :

$$
\begin{equation*}
A_{1}:=A \sqcup(\{c\}+C), \quad B_{1}:=B \backslash C . \tag{1.10}
\end{equation*}
$$

Note that the definition of the set C implies that the disjoint union above really is a disjoint union. Hence it follows that $\left|A_{1}\right|+\left|B_{1}\right|=|A|+|B|$. Moreover, $\left|B_{1}\right|<|B|$ since, by assumption, the set C is non-empty. Moreover, since WLOG $0 \in B$, we may assume that B_{1} is non-empty. Hence we can apply the induction hypothesis to conclude that

$$
\begin{equation*}
\left|A_{1}+B_{1}\right| \geq\left|A_{1}\right|+\left|B_{1}\right|-1=r+s-1 . \tag{1.11}
\end{equation*}
$$

To complete the proof, it thus suffices to show that

$$
\begin{equation*}
A_{1}+B_{1} \subseteq A+B \tag{1.12}
\end{equation*}
$$

So let $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$. There are two cases to consider :
Case 1: $a_{1} \in A$.
Then $b_{1} \in B_{1} \subseteq B$, so $a_{1}+b_{1} \in A+B$ as desired.
Case 2 : $a_{1} \notin A$.
Then there exists $x \in C$ such that $a_{1}=c+x$. Thus $a_{1}+b_{1}=(c+x)+b_{1}=\left(c+b_{1}\right)+x$. Now $x \in C \subseteq B$, so $x \in B$. Also $b_{1} \in B_{1}=B \backslash C$ so, by definition of the set C, this means that $c+b_{1} \in A$. Hence $\left(c+b_{1}\right)+x=a_{1}+b_{1} \in A+B$, and the proof is complete.

