SUPPLEMENTARY LECTURE NOTES : WEEK 49

FRIDAY, DECEMBER 10

Lemma 1.1. Let ϵ, γ be positive real numbers satisfying $\gamma < 1$, $\epsilon < \gamma/3$. Let G be a tripartite graph satisfying the following conditions :

- (i) V(G) is the disjoint union of sets A, B, C of equal size, n say,
- (ii) each of the edge densities d(A, B), d(A, C) and d(B, C) is at least γ ,

(iii) each of the pairs (A, B), (A, C) and (B, C) is ϵ -regular. Then G contains at least $\frac{8(1-2\epsilon)\gamma^3}{27}n^3$ triangles.

Proof. Let A_1 denote the set of those vertices $a \in A$ which have at least $2\gamma n/3$ neighbors in B. I claim that

$$|A_1| \ge (1-\epsilon)n. \tag{1.1}$$

For suppose otherwise. Then $|A \setminus A_1| > \epsilon |A|$. Since (A, B) is an ϵ -regular pair, it would follow that

$$|d(A \setminus A_1, B) - d(A, B)| \le \epsilon.$$
(1.2)

Since $\epsilon < \gamma/3$, this implies that $d(A \setminus A_1, B) > 2\gamma/3$. But then there must be some vertex in $A \setminus A_1$ which has more than $2\gamma n/3$ neighbors in B, contradicting the definition of the set A_1 . This proves (1.1). Similarly, if we let A_2 denote the set of those $a \in A$ which have at least $2\gamma n/3$ neighbors in C, then $|A_2| \ge (1-\epsilon)n$. Hence $|A_1 \cap A_2| \ge \epsilon$ $(1-2\epsilon)n$. Now let $a \in A_1 \cap A_2$. Let $N_B(a)$ (resp. $N_C(a)$) denote the set of neighbors of a in B (resp. in C). By assumption, each of $N_B(a)$ and $N_C(a)$ has size at least $2\gamma n/3$. Since $\epsilon < \gamma/3$ and the pair (B, C) is ϵ -regular, it follows that

$$|d(N_B(a), N_C(a)) - d(B, C)| \le \epsilon \Rightarrow d(N_B(a), N_C(a)) \ge 2\gamma/3.$$
(1.3)

Hence

$$|N_B(a), N_C(a)|| \ge \frac{2\gamma}{3} |N_B(a)||N_C(a)| \ge \left(\frac{2\gamma}{3}\right)^3 n^2.$$
(1.4)

But for any edge $\{b, c\}$ between $N_B(a)$ and $N_C(a)$, the vertices $\{a, b, c\}$ form a triangle. Hence the vertex a is contained in at least $\left(\frac{2\gamma}{3}\right)^3 n^2$ triangles. Since this holds for any $a \in A_1 \cap A_2$, it follows that G contains at least $\left[(1-2\epsilon)n\right]\left[\left(\frac{2\gamma}{3}\right)^3 n^2\right]$ triangles, as required.

Theorem 1.2. (Triangle Counting Lemma) For every $\gamma > 0$, there exists $\delta = \delta(\gamma) > 0$ such that the following holds :

If G is a graph on n vertices such that at least $\gamma \begin{pmatrix} n \\ 2 \end{pmatrix}$ edges need to be removed from G in order to make it triangle-free, then G must contain at least $\delta \begin{pmatrix} n \\ 3 \end{pmatrix}$ triangles.

Proof. We may assume that $\gamma \leq 1$. Let $\epsilon = \gamma/10^{100}$, say, $m = \lceil 1/\epsilon \rceil$. Let M be the integer in the statement of the Regularity Lemma, corresponding to the pair (ϵ, m) . Let G be a graph on n vertices, for some $n \ge M^M$, say. By the Regularity Lemma, there exists an ϵ -regular partition $\{V_0, V_1, ..., V_k\}$ of V(G) such that $m \leq k \leq M$. Clearly, for this choice of ϵ, m, M, n , there will be no more than $\frac{\gamma}{2} \begin{pmatrix} n \\ 2 \end{pmatrix}$ edges in G which are

of the following types¹ :

(i) both vertices lie inside the same V_i ,

(ii) one vertex lies in V_0 ,

(iii) the vertices lie in V_i and V_j , where $1 \le i < j \le k$ and the pair (V_i, V_j) is not ϵ -regular,

(iv) the vertices lie in V_i and V_j , where $1 \le i < j \le k$ and $d(V_i, V_j) < \gamma/10^{50}$, say.

Hence, even if we remove all edges of types (i)-(iv) from G, we will still need to remove at least $\frac{\gamma}{2} \begin{pmatrix} n \\ 2 \end{pmatrix}$ further edges in order to make G triangle-free. Pick any remaining triangle $\{a, b, c\}$ in G. Then $a \in V_i$, $b \in V_j$, $c \in V_l$, where i, j, l are distinct elements of $\{1, ..., k\}$ and each of the pairs (V_i, V_j) , (V_i, V_l) and (V_j, V_l) is both ϵ -regular and has density at least $\gamma/10^{50}$. Note furthermore that each of the sets V_i, V_j, V_l has size at least $\left(\frac{1-\epsilon}{M}\right)n$. Hence, it follows from Lemma 1.1 that the number $N_{i,j,l}$ of triangles in G with one vertex in each of V_i, V_j and V_l satisfies

$$N_{i,j,l} \ge \frac{8(1-2\epsilon)}{27} \left(\frac{\gamma}{10^{50}}\right)^3 \left[\frac{(1-\epsilon)n}{M}\right]^3.$$
 (1.5)

Hence we can take

$$\delta = \delta(\gamma) = \frac{8(1 - 2\epsilon)(1 - \epsilon)^3 \gamma^3}{27 \cdot 10^{50} \cdot M^3}.$$
(1.6)

We can now prove Roth's theorem.

Theorem 1.3. (Roth 1956) Let $\epsilon > 0$. Then there exists a positive integer n_{ϵ} such that, if $n \ge n_{\epsilon}$ and S is a subset of $\{1, ..., n\}$ of size at least ϵn , then S contains a non-trivial 3-term arithmetic progression.

Proof. Fix $\epsilon > 0$, let $n \in \mathbb{N}$ and let $S \subseteq \{1, ..., n\}$ be given satisfying $|S| \ge \epsilon n$. Let G be the following tripartite graph : $V(G) = A \sqcup B \sqcup C$, where

$$A = \{(i, 1) : 1 \le i \le n\},\$$

$$B = \{(j, 2) : 1 \le j \le 2n\},\$$

$$C = \{(k, 3) : 1 \le k \le 3n\},\$$

and the edges of G are defined as follows :

(i, 1) is joined to (j, 2) if and only if $j - i \in S$,

(j, 2) is joined to (k, 3) if and only if $k - j \in S$,

(i, 1) is joined to (k, 3) if and only if $k - i \in 2 * S = \{2s : s \in S\}$.

By construction, (i, 1), (j, 2) and (k, 3) form a triangle in G if and only if $(j - i, \frac{k-i}{2}, k - j)$ is a 3-term arithmetic progression in S. Here, the progression may be trivial. Now $|S| \ge \epsilon n$. Given $s \in S$ and $i \in \{1, ..., n\}$, there is a unique choice of $j \in \{1, ..., 2n\}, k \in \{1, ..., 3n\}$ such that j - i = k - j = s. Hence G contains at least

¹The details of the verification are left to the reader. Note that our choice of ϵ is extreme - one could get away with a far bigger $\epsilon = \epsilon(\gamma)$.

 ϵn^2 triangles corresponding to trivial AP:s. The crucial point is that these triangles are pairwise edge-disjoint. Hence, in order to make G triangle-free, we need to remove at least one edge from each of these 'trivial' triangles, hence at least ϵn^2 edges in all. Since |V(G)| = 6n, we thus need to remove at least $\frac{\epsilon}{18} \begin{pmatrix} |V(G)| \\ 2 \end{pmatrix}$ edges in order to make G triangle-free. By Theorem 1.2, there exists $\delta = \delta(\epsilon) > 0$ such that G has at least δn^3 triangles. But each triangle comes from some 3-term AP in S, and the number of trivial APs cannot, by the same argument as above, exceed $|S|n \leq n^2$. Hence, if $n > 1/\delta$, then S must contain a non-trivial 3-term AP.