Friday, December 10
Lemma 1.1. Let ϵ, γ be positive real numbers satisfying $\gamma<1, \epsilon<\gamma / 3$. Let G be a tripartite graph satisfying the following conditions :
(i) $V(G)$ is the disjoint union of sets A, B, C of equal size, n say,
(ii) each of the edge densities $d(A, B), d(A, C)$ and $d(B, C)$ is at least γ,
(iii) each of the pairs $(A, B),(A, C)$ and (B, C) is ϵ-regular.

Then G contains at least $\frac{8(1-2 \epsilon) \gamma^{3}}{27} n^{3}$ triangles.
Proof. Let A_{1} denote the set of those vercies $a \in A$ which have at least $2 \gamma n / 3$ neighbors in B. I claim that

$$
\begin{equation*}
\left|A_{1}\right| \geq(1-\epsilon) n \tag{1.1}
\end{equation*}
$$

For suppose otherwise. Then $\left|A \backslash A_{1}\right|>\epsilon|A|$. Since (A, B) is an ϵ-regular pair, it would follow that

$$
\begin{equation*}
\left|d\left(A \backslash A_{1}, B\right)-d(A, B)\right| \leq \epsilon \tag{1.2}
\end{equation*}
$$

Since $\epsilon<\gamma / 3$, this implies that $d\left(A \backslash A_{1}, B\right)>2 \gamma / 3$. But then there must be some vertex in $A \backslash A_{1}$ which has more than $2 \gamma n / 3$ neighbors in B, contradicting the definition of the set A_{1}. This proves (1.1). Similarly, if we let A_{2} denote the set of those $a \in A$ which have at least $2 \gamma n / 3$ neighbors in C, then $\left|A_{2}\right| \geq(1-\epsilon) n$. Hence $\left|A_{1} \cap A_{2}\right| \geq$ $(1-2 \epsilon) n$. Now let $a \in A_{1} \cap A_{2}$. Let $N_{B}(a)$ (resp. $N_{C}(a)$) denote the set of neighbors of a in B (resp. in C). By assumption, each of $N_{B}(a)$ and $N_{C}(a)$ has size at least $2 \gamma n / 3$. Since $\epsilon<\gamma / 3$ and the pair (B, C) is ϵ-regular, it follows that

$$
\begin{equation*}
\left|d\left(N_{B}(a), N_{C}(a)\right)-d(B, C)\right| \leq \epsilon \Rightarrow d\left(N_{B}(a), N_{C}(a)\right) \geq 2 \gamma / 3 . \tag{1.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|N_{B}(a), N_{C}(a)\right\| \geq \frac{2 \gamma}{3}\left|N_{B}(a) \| N_{C}(a)\right| \geq\left(\frac{2 \gamma}{3}\right)^{3} n^{2} \tag{1.4}
\end{equation*}
$$

But for any edge $\{b, c\}$ between $N_{B}(a)$ and $N_{C}(a)$, the vertices $\{a, b, c\}$ form a triangle. Hence the vertex a is contained in at least $\left(\frac{2 \gamma}{3}\right)^{3} n^{2}$ triangles. Since this holds for any $a \in A_{1} \cap A_{2}$, it follows that G contains at least $[(1-2 \epsilon) n]\left[\left(\frac{2 \gamma}{3}\right)^{3} n^{2}\right]$ triangles, as required.

Theorem 1.2. (Triangle Counting Lemma) For every $\gamma>0$, there exists $\delta=\delta(\gamma)>0$ such that the following holds :
If G is a graph on n vertices such that at least $\gamma\binom{n}{2}$ edges need to be removed from G in order to make it triangle-free, then G must contain at least $\delta\binom{n}{3}$ triangles.

Proof. We may assume that $\gamma \leq 1$. Let $\epsilon=\gamma / 10^{100}$, say, $m=\lceil 1 / \epsilon\rceil$. Let M be the integer in the statement of the Regularity Lemma, correpsonding to the pair (ϵ, m). Let G be a graph on n vertices, for some $n \geq M^{M}$, say. By the Regularity Lemma, there exists an ϵ-regular partition $\left\{V_{0}, V_{1}, \ldots, V_{k}\right\}$ of $V(G)$ such that $m \leq k \leq M$. Clearly,
for this choice of ϵ, m, M, n, there will be no more than $\frac{\gamma}{2}\binom{n}{2}$ edges in G which are of the following types ${ }^{1}$:
(i) both vertices lie inside the same V_{i},
(ii) one vertex lies in V_{0},
(iii) the vertices lie in V_{i} and V_{j}, where $1 \leq i<j \leq k$ and the pair $\left(V_{i}, V_{j}\right)$ is not ϵ-regular,
(iv) the vertices lie in V_{i} and V_{j}, where $1 \leq i<j \leq k$ and $d\left(V_{i}, V_{j}\right)<\gamma / 10^{50}$, say. Hence, even if we remove all edges of types (i)-(iv) from G, we will still need to remove at least $\frac{\gamma}{2}\binom{n}{2}$ further edges in order to make G triangle-free. Pick any remaining triangle $\{a, b, c\}$ in G. Then $a \in V_{i}, b \in V_{j}, c \in V_{l}$, where i, j, l are distinct elements of $\{1, \ldots, k\}$ and each of the pairs $\left(V_{i}, V_{j}\right),\left(V_{i}, V_{l}\right)$ and $\left(V_{j}, V_{l}\right)$ is both ϵ-regular and has density at least $\gamma / 10^{50}$. Note furthermore that each of the sets V_{i}, V_{j}, V_{l} has size at least $\left(\frac{1-\epsilon}{M}\right) n$. Hence, it follows from Lemma 1.1 that the number $N_{i, j, l}$ of triangles in G with one vertex in each of V_{i}, V_{j} and V_{l} satisfies

$$
\begin{equation*}
N_{i, j, l} \geq \frac{8(1-2 \epsilon)}{27}\left(\frac{\gamma}{10^{50}}\right)^{3}\left[\frac{(1-\epsilon) n}{M}\right]^{3} \tag{1.5}
\end{equation*}
$$

Hence we can take

$$
\begin{equation*}
\delta=\delta(\gamma)=\frac{8(1-2 \epsilon)(1-\epsilon)^{3} \gamma^{3}}{27 \cdot 10^{50} \cdot M^{3}} \tag{1.6}
\end{equation*}
$$

We can now prove Roth's theorem.
Theorem 1.3. (Roth 1956) Let $\epsilon>0$. Then there exists a positive integer n_{ϵ} such that, if $n \geq n_{\epsilon}$ and S is a subset of $\{1, \ldots, n\}$ of size at least ϵ, then S contains a non-trivial 3-term arithmetic progression.

Proof. Fix $\epsilon>0$, let $n \in \mathbb{N}$ and let $S \subseteq\{1, \ldots, n\}$ be given satisfying $|S| \geq \epsilon n$. Let G be the following tripartite graph : $V(G)=A \sqcup B \sqcup C$, where

$$
\begin{array}{r}
A=\{(i, 1): 1 \leq i \leq n\} \\
B=\{(j, 2): 1 \leq j \leq 2 n\} \\
C=\{(k, 3): 1 \leq k \leq 3 n\}
\end{array}
$$

and the edges of G are defined as follows :
$(i, 1)$ is joined to $(j, 2)$ if and only if $j-i \in S$,
$(j, 2)$ is joined to $(k, 3)$ if and only if $k-j \in S$,
$(i, 1)$ is joined to $(k, 3)$ if and only if $k-i \in 2 * S=\{2 s: s \in S\}$.
By construction, $(i, 1),(j, 2)$ and $(k, 3)$ form a triangle in G if and only if $\left(j-i, \frac{k-i}{2}, k-j\right)$ is a 3-term arithmetic progression in S. Here, the progression may be trivial. Now $|S| \geq \epsilon n$. Given $s \in S$ and $i \in\{1, \ldots, n\}$, there is a unique choice of $j \in\{1, \ldots, 2 n\}, k \in\{1, \ldots, 3 n\}$ such that $j-i=k-j=s$. Hence G contains at least

[^0]ϵn^{2} triangles corresponding to trivial AP:s. The crucial point is that these triangles are pairwise edge-disjoint. Hence, in order to make G triangle-free, we need to remove at least one edge from each of these 'trivial' triangles, hence at least ϵn^{2} edges in all. Since $|V(G)|=6 n$, we thus need to remove at least $\frac{\epsilon}{18}\binom{|V(G)|}{2}$ edges in order to make G triangle-free. By Theorem 1.2, there exists $\delta=\delta(\epsilon)>0$ such that G has at least δn^{3} triangles. But each triangle comes from some 3-term AP in S, and the number of trivial APs cannot, by the same argument as above, exceed $|S| n \leq n^{2}$. Hence, if $n>1 / \delta$, then S must contain a non-trivial 3-term AP.

[^0]: ${ }^{1}$ The details of the verification are left to the reader. Note that our choice of ϵ is extreme - one could get away with a far bigger $\epsilon=\epsilon(\gamma)$.

