Homework 3 (due Friday, Dec. 14)

A total of 8 points or more gives 5 bonus points on the exam. Exercise 6 is worth 2 points. Each $*$ problem is worth 3 points. Note that, in Exercise 6 (iv), only the upper bound is a * problem. All your work must be properly motivated!

In Exercises 1-3 you will require the following terminology : Let \mathcal{L} : $\sum_{i=1}^{n} a_{i} x_{i}=a_{0}$ be a linear Diophantine equation. Let $c \in \mathbb{N}$. We say that the equation \mathcal{L} is c-irregular if there exists a c-coloring of \mathbb{N} for which there are no non-trivial monochromatic solutions to \mathcal{L}. We say that \mathcal{L} is irregular if it is c-irregular for some $c \in \mathbb{N}$. Otherwise, \mathcal{L} is said to be (partition) regular.
Q.1. Let \mathcal{L} be a linear Diophantine equation. Suppose that there exists a $c \in \mathbb{N}$ such that, for every $n \in \mathbb{N}$, there exists a c-coloring of $\{1, \ldots, n\}$ which induces no non-trivial monochromatic solutions to \mathcal{L}. Prove that \mathcal{L} is then irregular.
Q. 2 Prove that the equation $4 x=2 y+z$ is 3-irregular.
(REMARK : The question of whether one can 3 -color the reals such that there are no monochromatic solutions to this equation is known to be undecidable in ZFC-set theory).
Q. 3 Prove that the equation $x=y+z$ is regular.
(Hint : Apply Ramsey's theorem to a suitable graph).
Q. 4 Let $h \geq 2$. Recall that an asymptotic basis A for \mathbb{N}_{0} of order h is said to be thin if the counting function $A(n) / n^{1 / h}$ is bounded. Let's call A skinny if the representation function $r_{A, h}(n)$ is bounded.

Prove that a skinny asymptotic basis of order h is also thin of order h. On the other hand, give an example for each $h \geq 2$ of a thin asymptotic basis of order h which is not skinny.
Q. 5 Prove that the Erdős-Turán Conjecture fails in \mathbb{Z} by exhibiting, for each $h \geq 1$, a basis A for \mathbb{Z} of order h such that $r_{A, h}(n)=1 \forall n \in \mathbb{Z}$.
Q.6. Let A be an asymptotic basis for \mathbb{N}_{0}. An element $a \in A$ is said to be essential if the set $A \backslash\{a\}$ is no longer an asymptotic basis, of any order.
*(i) Prove that if A is an asymptotic basis for \mathbb{N}_{0} and $a \in A$, then a is
essential if and only if $A \backslash\{a\}$ is contained inside some non-trivial, homogeneous arithmetic progression, i.e.: inside $n \mathbb{Z}$ for some $n>1$.
(ii) Deduce from part (i) that an asymptotic basis contains only finitely many essential elements.
(iii) For each $k \geq 1$, give an example of an asymptotic basis with exactly k essential elements.
*(iv) Prove that there exists a function $X: \mathbb{N} \rightarrow \mathbb{N}$ with the following property :

For every $h \in \mathbb{N}$, every asymptotic basis A for \mathbb{N}_{0} of order h and every $a \in A$, either a is essential or the order of $A \backslash\{a\}$ as an asymptotic basis is at most $X(h)$. In fact, prove that, as $h \rightarrow \infty$,

$$
\frac{h^{2}}{4} \lesssim X(h) \lesssim \frac{5 h^{2}}{4} .
$$

Q. 7 If $A \subseteq \mathbb{Z}$, then the difference set $A-A$ is defined as

$$
A-A=\left\{a_{1}-a_{2}: a_{1}, a_{2} \in A\right\}
$$

(i) For a finite set A, give upper and lower bounds for $|A-A|$ in terms of $|A|$, analogous to those given in the lectures for the sumset $A+A$.
(ii) Give any example whatsoever of a finite set A for which $|A+A|>$ $|A-A|$.
*(iii) Prove that there exists a real number $C>0$ such that, for all $n \in \mathbb{N}$, there are at least $C \cdot 2^{n}$ subsets A of $\{1, \ldots, n\}$ which satisfy $|A+A| \geq$ $|A-A|$.
Q. 8 For each $n \in \mathbb{N}$, let

$$
A_{n}:=\left\{k^{2}: 1 \leq k \leq n\right\} .
$$

Prove that, for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{\left|A_{n}-A_{n}\right|}{n^{2-\epsilon}}=+\infty
$$

Q. 9 Let $A \subseteq \mathbb{Z}$ be a finite set, $|A|=k>3$. Prove that if $|A+A| \leq 2 k$ then there exists an arithmetic progression B such that $|B| \leq k+1$ and $A \subseteq B$.
*Q. 10 Let A be a subset of \mathbb{Z}. The product set $A \cdot A$ is defined in the same way as the sumset $A+A$, but with multiplication replacing addition. In other words,

$$
A \cdot A \stackrel{\text { def }}{=}\left\{x \in \mathbb{Z}: x=a_{1} a_{2} \text { for some } a_{1}, a_{2} \in A\right\}
$$

Now let $n \in \mathbb{N}$ and define

$$
f(n):=\min _{|A|=n}(\max \{|A \cdot A|,|A+A|\}) .
$$

Prove that $f(n) / n \rightarrow \infty$ as $n \rightarrow \infty$.

