Solutions to Exam 19-12-12

Q. 1 The usual formula would give as solutions

$$
\begin{equation*}
x \equiv \frac{-9 \pm \sqrt{21}}{6}(\bmod p) \tag{1}
\end{equation*}
$$

The formula makes no sense if $p \mid 6$, i.e.: if $p=2$ or 3 . We first treat these as special cases. If $p=2$ then the congruence becomes $x^{2}+x+1 \equiv 0$, which has no solutions modulo 2 . If $p=3$, then the congruence becomes $5 \equiv 0$, which also has no solutions modulo 3.

So now assume $p>3$. Then (1) says that we have solution(s) if and only if 21 is a quadratic residue modulo p. This will be true if $p=7$. Otherwise, we require that

$$
\begin{equation*}
\left(\frac{21}{p}\right)=\left(\frac{3}{p}\right)\left(\frac{7}{p}\right)=1 \tag{2}
\end{equation*}
$$

We have two cases, depending on whether p is congruent to 1 or 3 (modulo 4).

CASE 1: $p \equiv 1(\bmod 4)$.
By quadratic reciprocity, one has $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)$ and $\left(\frac{7}{p}\right)=\left(\frac{p}{7}\right)$. Hence, by (2), we require in this case that

$$
\begin{equation*}
\left(\frac{p}{3}\right)\left(\frac{p}{7}\right)=1 \tag{3}
\end{equation*}
$$

This gives two options, namely

$$
\begin{equation*}
\left(\frac{p}{3}\right)=\left(\frac{p}{7}\right)=+1 \text { or }\left(\frac{p}{3}\right)=\left(\frac{p}{7}\right)=-1 . \tag{4}
\end{equation*}
$$

CASE 2: $p \equiv 3(\bmod 4)$.
By quadratic reciprocity, one has $\left(\frac{3}{p}\right)=-\left(\frac{p}{3}\right)$ and $\left(\frac{7}{p}\right)=-\left(\frac{p}{7}\right)$. Hence, by (2), we also require in this case that (3) be satisfied and thus get the same two options as in (4). Overall, then, the condition modulo 4 disappears, and we are left with (4).

On the one hand, if both symbols in (4) equal +1 , then $p \equiv 1(\bmod 3)$ and $p \equiv 1,2 \vee 4(\bmod 7)$. By the Chinese Remainder Theorem, we thus have three options modulo 21 , namely $p \equiv 1,4 \vee 16(\bmod 21)$.

On the other hand, if both symbols in (4) equal -1 , then $p \equiv 2(\bmod 3)$ and $p \equiv 3,5 \vee 6(\bmod 7)$. By the Chinese Remainder Theorem, we thus have three more options modulo 21 , namely $p \equiv 5,17 \vee 20(\bmod 21)$.

We conclude that the primes for which the original congruence is solvable are $p=7$ together with all odd primes satisfying

$$
\begin{equation*}
p \equiv \pm 1, \pm 4, \pm 5(\bmod 21) \tag{5}
\end{equation*}
$$

(ii) The primes in part (i), other than $p=7$, fall into 6 congruence classes modulo 21. One has $\phi(21)=\phi(3 \cdot 7)=2 \cdot 6=12$, so there are 12 congruence classes modulo 21 containing infinitely many primes. By the strong form of Dirichlet's theorem, the primes are equidistributed in all 12 classes. It follows that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\pi_{S}(x)}{\pi(x)}=\frac{1}{2} . \tag{6}
\end{equation*}
$$

Q. 2 See Theorem 9.6 in the notes.
Q. 3 See Theorem 4 in the lecture notes from 2004.
Q. 4 See Theorem 6.1 in the notes.
Q. 5 If $A \subseteq \mathbb{Z}_{p}$ then, by the Cauchy-Davenport theorem,

$$
\begin{equation*}
|A+A| \geq \min \{p, 2|A|-1\} \tag{7}
\end{equation*}
$$

If A is sum-free, it follows that $3|A|-1 \leq p$, hence that $|A| \leq(p+1) / 3$. Conversely, suppose $p=3 k+i$, where $i \in\{0,1,2\}$. If $i \in\{0,1\}$, then $A=$ $\{k+1, k+2, \ldots, 2 k\}$ is sum-free. If $i=2$, then $A=\{k+1, k+2, \ldots, 2 k+1\}$ is sum-free.

CONCLUSION: The maximum size of a sum-free subset of \mathbb{Z}_{p} is $\left\lfloor\frac{p+1}{3}\right\rfloor$.
Q. 6 See Theorem 17.6 in the notes. The definition of the representation function $r_{h}(A, n)$ is given earlier in that lecture.
Q. 7 (i) $W(k, l)$ is the least positive integer n such that any l-coloring of the set $\{1,2, \ldots, n\}$ must yield a monochromatic k-term arithmetic progression.
(ii) Consider a uniformly random l-coloring of $\{1,2, \ldots, n\}$. The probability that any given k-term AP will be monochromatic is $l \cdot l^{-k}=l^{-(k-1)}$, since there are l possibilities for the color, and given the color, each of the k terms gets that color with probability l^{-1}. Let $f_{k}(n)$ be the number of k-term APs in $\{1, \ldots, n\}$. By Linearity of Expectation, the expected number of monochromatic k-APs in a uniform coloring is $f_{k}(n) \cdot l^{-(k-1)}$. Hence, if $f_{k}(n) \cdot l^{-(k-1)}<1$, then $W(k, l)>n$.

Now an AP is completely determined by its first term and common differerence. If the first term is x, and the AP lies enitrely inside $\{1, \ldots, n\}$ and
contains k terms in all, then the common difference cannot exceed $\frac{n-x}{k-1}$. It follows that

$$
\begin{equation*}
f_{k}(n) \leq \sum_{x=1}^{n} \frac{n-x}{k-1}=\frac{n(n-1)}{2(k-1)} \tag{8}
\end{equation*}
$$

and hence that $W(k, l)>n$ provided

$$
\begin{equation*}
\frac{n(n-1)}{2(k-1) l^{k-1}}<1 . \tag{9}
\end{equation*}
$$

Since $n(n-1)<n^{2}$, it follows that

$$
\begin{equation*}
W(k, l)>\sqrt{2(k-1)} l^{(k-1) / 2}, \quad \text { Q.E.D. } \tag{10}
\end{equation*}
$$

Q. 8 (i) See the handout from Diestel's book.
(ii) See the Supplementary Notes for Week 50.

