
Solutions to Exam 19-12-12

Q.1 The usual formula would give as solutions

x ≡ −9 ±
√

21

6
(modp). (1)

The formula makes no sense ifp|6, i.e.: if p = 2 or 3. We first treat these as
special cases. Ifp = 2 then the congruence becomesx2 +x+1 ≡ 0, which
has no solutions modulo2. If p = 3, then the congruence becomes5 ≡ 0,
which also has no solutions modulo3.

So now assumep > 3. Then (1) says that we have solution(s) if and only
if 21 is a quadratic residue modulop. This will be true ifp = 7. Otherwise,
we require that

(

21

p

)

=

(

3

p

) (

7

p

)

= 1. (2)

We have two cases, depending on whetherp is congruent to1 or 3 (modulo
4).

CASE 1: p ≡ 1 (mod4).

By quadratic reciprocity, one has
(

3
p

)

=
(

p
3

)

and
(

7
p

)

=
(

p
7

)

. Hence,

by (2), we require in this case that
(p

3

) (p

7

)

= 1. (3)

This gives two options, namely
(p

3

)

=
(p

7

)

= +1 or
(p

3

)

=
(p

7

)

= −1. (4)

CASE 2: p ≡ 3 (mod4).

By quadratic reciprocity, one has
(

3
p

)

= −
(

p
3

)

and
(

7
p

)

= −
(

p
7

)

. Hence,

by (2), we also require in this case that (3) be satisfied and thus get the same
two options as in (4). Overall, then, the condition modulo4 disappears, and
we are left with (4).

On the one hand, if both symbols in (4) equal +1, thenp ≡ 1 (mod3)
andp ≡ 1, 2 ∨ 4 (mod7). By the Chinese Remainder Theorem, we thus
have three options modulo21, namelyp ≡ 1, 4 ∨ 16 (mod21).

On the other hand, if both symbols in (4) equal -1, thenp ≡ 2 (mod3)
andp ≡ 3, 5 ∨ 6 (mod7). By the Chinese Remainder Theorem, we thus
have three more options modulo21, namelyp ≡ 5, 17 ∨ 20 (mod21).
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We conclude that the primes for which the original congruence is solvable
arep = 7 together with all odd primes satisfying

p ≡ ±1,±4,±5 (mod21). (5)

(ii) The primes in part(i), other thanp = 7, fall into 6 congruence classes
modulo 21. One hasφ(21) = φ(3 · 7) = 2 · 6 = 12, so there are12
congruence classes modulo21 containing infinitely many primes. By the
strong form of Dirichlet’s theorem, the primes are equidistributed in all12
classes. It follows that

lim
x→∞

πS(x)

π(x)
=

1

2
. (6)

Q.2 See Theorem 9.6 in the notes.

Q.3 See Theorem 4 in the lecture notes from 2004.

Q.4 See Theorem 6.1 in the notes.

Q.5 If A ⊆ Zp then, by the Cauchy-Davenport theorem,

|A + A| ≥ min{p, 2|A| − 1}. (7)

If A is sum-free, it follows that3|A| − 1 ≤ p, hence that|A| ≤ (p + 1)/3.
Conversely, supposep = 3k+i, wherei ∈ {0, 1, 2}. If i ∈ {0, 1}, thenA =
{k+1, k+2, ..., 2k} is sum-free. Ifi = 2, thenA = {k+1, k+2, ..., 2k+1}
is sum-free.

CONCLUSION: The maximum size of a sum-free subset ofZp is
⌊p+1

3
⌋.

Q.6 See Theorem 17.6 in the notes. The definition of the representation
functionrh(A, n) is given earlier in that lecture.

Q.7 (i) W (k, l) is the least positive integern such that anyl-coloring of
the set{1, 2, ..., n} must yield a monochromatick-term arithmetic progres-
sion.
(ii) Consider a uniformly randoml-coloring of{1, 2, ..., n}. The probabil-
ity that any givenk-term AP will be monochromatic isl · l−k = l−(k−1),
since there arel possibilities for the color, and given the color, each of the
k terms gets that color with probabilityl−1. Let fk(n) be the number of
k-term APs in{1, ..., n}. By Linearity of Expectation, the expected number
of monochromatick-APs in a uniform coloring isfk(n) · l−(k−1). Hence, if
fk(n) · l−(k−1) < 1, thenW (k, l) > n.

Now an AP is completely determined by its first term and commondif-
fererence. If the first term isx, and the AP lies enitrely inside{1, ..., n} and
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containsk terms in all, then the common difference cannot exceedn−x
k−1

. It
follows that

fk(n) ≤
n

∑

x=1

n − x

k − 1
=

n(n − 1)

2(k − 1)
, (8)

and hence thatW (k, l) > n provided

n(n − 1)

2(k − 1)lk−1
< 1. (9)

Sincen(n − 1) < n2, it follows that

W (k, l) >
√

2(k − 1)l(k−1)/2, Q.E.D. (10)

Q.8 (i) See the handout from Diestel’s book.
(ii) See the Supplementary Notes for Week 50.


