Solutionsto Exam 19-12-12
Q.1 The usual formula would give as solutions
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The formula makes no senseif;, i.e.: if p = 2 or 3. We first treat these as
special cases. jf = 2 then the congruence becomést z + 1 = 0, which
has no solutions modut2. If p = 3, then the congruence beconies 0,
which also has no solutions modulo

So now assumg > 3. Then (1) says that we have solution(s) if and only
if 21 is a quadratic residue moduto This will be true ifp = 7. Otherwise,

We have two cases, depending on whethisrcongruent td or 3 (modulo
4).

CAsSE1l:p =1 (mod4).

By quadratic reciprocity, one ha(s%) = (2) and <§) = (Z). Hence,
by (2), we require in this case that
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This gives two options, namely
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CASE 2: p = 3 (mod4).

By quadratic reciprocity, one hz{sip) =—(2) and <I—7)> = — (Z). Hence,
by (2), we also require in this case that (3) be satisfied amslglet the same
two options as in (4). Overall, then, the condition moduldisappears, and
we are left with (4).

On the one hand, if both symbols in (4) equal +1, thea 1 (mod3)
andp = 1,2V 4 (mod7). By the Chinese Remainder Theorem, we thus
have three options modufd, namelyp = 1,4 v 16 (mod21).

On the other hand, if both symbols in (4) equal -1, thes 2 (mod3)
andp = 3,5V 6 (mod7). By the Chinese Remainder Theorem, we thus

have three more options moduld, namelyp = 5,17 v 20 (mod21).
1



We conclude that the primes for which the original congrggssolvable
arep = 7 together with all odd primes satisfying
p==+1,4+4,+5 (mod21). (5)
(if) The primes in parti), other tharp = 7, fall into 6 congruence classes
modulo21. One hasp(21) = ¢(3-7) = 2-6 = 12, so there ard?2
congruence classes moduld containing infinitely many primes. By the
strong form of Dirichlet’s theorem, the primes are equidlsited in all12
classes. It follows that
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Q.2 See Theorem 9.6 in the notes.

Q.3 See Theorem 4 in the lecture notes from 2004.
Q.4 See Theorem 6.1 in the notes.

Q.51f A C Z, then, by the Cauchy-Davenport theorem,
|A+ A| > min{p, 2|A| — 1}. (7

If Ais sum-free, it follows thaB|A| — 1 < p, hence thatA| < (p +1)/3.
Conversely, suppose= 3k+i, wherei € {0,1,2}. If i € {0,1}, thenA =
{k+1,k+2,...,2k} issum-free. I = 2, thenA = {k+1,k+2,....,2k+1}
is sum-free.

CoNcLUsION: The maximum size of a sum-free subseZgfis

252,

Q.6 See Theorem 17.6 in the notes. The definition of the repratent
functionr, (A, n) is given earlier in that lecture.

Q.7 (i) W(k,1) is the least positive integer such that any-coloring of
the set{1, 2, ..., n} must yield a monochromaticterm arithmetic progres-
sion.
(i) Consider a uniformly randorircoloring of {1, 2, ...,n}. The probabil-
ity that any givenk-term AP will be monochromatic is- [=% = [~(+=1),
since there aré possibilities for the color, and given the color, each of the
k terms gets that color with probability*. Let fi(n) be the number of
k-term APsin{1,...,n}. By Linearity of Expectation, the expected number
of monochromatid:-APs in a uniform coloring igfy.(n) - I=~). Hence, if
fe(n) - 1Im* =D < 1, thenW (k,1) > n.

Now an AP is completely determined by its first term and commién
fererence. If the first term ig, and the AP lies enitrely insidl, ..., n} and
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containsk terms in all, then the common difference cannot exc%g’fd It

follows that
“n—z nn-1)
Jiln) < Zek—1 2k-1)
and hence thdt/(k,[) > n provided
n(n—1)
2(k — 1)[F1
Sincen(n — 1) < n?, it follows that

< 1.

W(k,1) > /2(k — 1)I*Y2  Q.E.D.

Q.8 (i) See the handout from Diestel’s book.
(i) See the Supplementary Notes for Week 50.
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