Solutions to Homework 1

Q.1 (i) Let $u_1, ..., u_n$ be any integers, positive or negative, satisfying

$$a_1u_1 + \dots + a_nu_n = 1$$

We know from the lectures that such integers exist. Now let

$$m := \min\{a_1, ..., a_n\},\tag{1}$$

$$M := \max\{|u_1|, ..., |u_n|\},$$
(2)

$$s := \sum_{i=1}^{n} a_i.$$

Let $r_0 := smM$. I claim that $G(a_1, ..., a_n) < r_0$. Clearly, there is a nonnegative solution to $\sum a_i x_i = r_0$, namely $x_i = mM$ for all *i*. Now let $\delta \in \{0, 1, ..., m-1\}$. Then a solution to $\sum a_i x_i = r_0 + \delta$ is given by

$$x_i = mM + \delta u_i, \quad i = 1, ..., n.$$
 (3)

By (1) and (2), we see that each x_i in (3) is non-negative. Thus we have shown that there is a non-negative solution to $\sum a_i x_i = r$, for each of a sequence of m integers starting at $r_0 = smM$. But from this it follows easily that there is a non-negative solution for any $r \ge r_0$. For suppose $a_j = m$. Then given a non-negative solution to $\sum a_i x_i = r$, for some r, a non-negative solution to $\sum a_i x'_i = r + m$ is given by

$$x'_{i} = x_{i}, \text{ if } i \neq j, \quad x'_{j} = x_{j} + 1.$$

(ii) If $a_1 = a_2 = 1$ then the theorem states that G(1,1) = -1, in other words that every non-negative integer can be written as x + y, for some $x, y \ge 0$. This is clear. So we may henceforth assume, without loss of generality, that $a_1 > a_2 \ge 1$. We shall show two things :

CLAIM 1 : There is no non-negative integer solution to

$$a_1x + a_2y = (a_1 - 1)(a_2 - 1) - 1 = a_1a_2 - a_1 - a_2.$$
 (4)

CLAIM 2 : There is a non-negative solution to

$$a_1x + a_2y = (a_1 - 1)(a_2 - 1) + \delta,$$

for every $\delta \in \{0, 1, ..., a_2 - 1\}$. The fact that these claims in turn suffice to establish that $G(a_1, a_2) = (a_1 - 1)(a_2 - 1) - 1$ is then argued in a manner similar to that given in part (i) above.

PROOF OF CLAIM 1 : Assume the contrary, and let (x, y) be a non-negative solution. First look at (4) modulo a_1 . It reads

$$a_2(y+1) \equiv 0 \pmod{a_1}.$$

Since $GCD(a_1, a_2) = 1$ it follows from FTA that $a_1|y + 1$. Since y is nonnegative, this means that $y \ge a_1 - 1$. Similarly, by looking at (4) modulo a_2 we find that $x \ge a_2 - 1$. But then

 $a_1x + a_2y \ge a_1(a_2 - 1) + a_2(a_1 - 1) = 2a_1a_2 - a_1 - a_2 > a_1a_2 - a_1 - a_2,$ a contradiction.

PROOF OF CLAIM 2 : The equation we want to solve can be rewritten as

$$a_1(x+1) + a_2(y+1) = a_1a_2 + \delta',$$
(5)

where $\delta' \in \{1, 2, ..., a_2\}$. Since GCD $(a_1, a_2) = 1$, the integers $a_1, 2a_1, ..., a_2a_1$ represent, in some order, all congruence classes modulo a_2 exactly once. In particular, there is some $\xi \in \{1, 2, ..., a_2\}$ such that

$$a_1 \xi \equiv \delta' \pmod{a_2}$$

In other words, there exists an integer $\eta \geq 0$ such that

$$a_1\xi = \delta + a_2\eta \implies a_1\xi - a_2\eta = \delta.$$

Note that, since $\xi \le a_2$, we also have $\eta < a_1$. Then a non-negative solution to (5) is given by $x + 1 = \xi$, $y + 1 = \eta + a_1$.

(iii) Note that GCD(7, 19) = 1. Let

$$w := 7x + 19y. \tag{6}$$

Thus, in terms of w and z, the equation reads

$$w + 23z = 11.$$
 (7)

One solution to () is clearly w = 34, z = -1. Since GCD(1, 23) = 1, by Euclid the general solution to () is thus

$$w = 34 + 23n, \quad z = -1 - n, \quad n \in \mathbb{Z}.$$

Euclid also tells us that the general solution to (6) is

$$x = x_0w + 19m, \quad y = y_0w - 7m, \quad m \in \mathbb{Z}$$

where $7x_0+19y_0 = 1$. Clearly we can take, for example, $x_0 = 11$, $y_0 = -4$. Substituting in everything, we find that the general solution to the original Diophantine equation is

$$x = 11(34 + 23n) + 19m = 19m + 253n + 374,$$

$$y = -4(34 + 23n) - 7m = -7m - 92n - 136,$$

$$z = -1 - n, \quad m, n \in \mathbb{Z}.$$

(iv) There seems to be a general agreement among those who did the homework that G(7, 19, 23) = 62. Note that (3, 1, 1) is a solution to the equation

2

7x + 19y + 23z = 63.

(v) There is a solution if and only if $n \ge 12$ and $n \notin \{13, 14, 15, 16, 18, 20, 21, 23, 25, 28, 30, 35\}$. To see where the hell this problem came from, go to page 7 of the article http://www.math.chalmers.se/~hegarty/HK circle oct26.pdf

Q.2 (i) Clearly, it suffices to prove the result for all primitive triples. Let (x, y, z) be any such triple. By Theorem 3.8 in the lecture notes we have, without loss of generality,

$$x = 2ab, \quad y = b^2 - a^2, \quad z = b^2 + a^2,$$

for some relatively prime integers a < b of opposite parity. Since one of a and b is thus even, it follows that 4|x. If either a or b is divisible by 3, then so is x. Otherwise, $b^2 \equiv a^2 \equiv 1 \pmod{3}$, so 3|y. In either case, 3|xy. Since already 4|x, FTA implies that 12|xy. Finally, it suffices to show that at least one of x, y, z is divisible by 5. If either a or b is divisible by 5, then so is x. Otherwise, each of a^2 and b^2 must be congruent to either +1 or $-1 \pmod{5}$. In particular, $b^2 \equiv \pm a^2 \pmod{5}$, hence $5|(b^2 \mp a^2)$, i.e.: 5|y or 5|z, as required.

(ii) Since t is odd, there exist positive integers i, j such that ti-4j = 1. Now let $m \in \mathbb{N}$ and take $x = y = 2^{tm+j}$, $z = 2^{4m+i}$. Check that $x^4 + y^4 = z^t$. This gives an infinite family of solutions.

(iii) The exercise is easily reduced to proving that there are no 4-tuples $(a, b, c, d) \in \mathbb{N}^4$ satisfying the pair of equations

$$a^{2} + b^{2} = c^{2}, \qquad a^{2} + d^{2} = b^{2}.$$
 (8)

We will use an infinite decscent argument - assuming a solution exists to (8), we will construct a "smaller" one, in a sense which will become evident as the argument unfolds. This will yield a contradiction.

We can assume both Pythagorean triples are primitive, because if a prime p divides any two of a, b, c, d, then it is easily seen to divide all four, and hence (a/p, b/p, c/p, d/p) will be a smaller 4-tuple satisfying (8). Since both triples are primitive, b must be odd, hence a must be even. By Theorem 3.8 in the lecture notes, there exist integers positive integers x_1, y_1, x_2, y_2 , with $GCD(x_i, y_i) = 1$, x_i and y_i of opposite parity, such that

$$a = 2x_1y_1 = 2x_2y_2, \quad b = y_1^2 - x_1^2 = y_2^2 + x_2^2, \quad c = y_1^2 + x_1^2, \quad d = y_2^2 - x_2^2.$$
(9)

Note that the equations for *b* lead to

$$y_1^2 = x_1^2 + x_2^2 + y_2^2, (10)$$

which forces y_1 to be odd and x_1 even, as vice versa would lead to the contradiction $0 \equiv 2 \pmod{4}$. Let

$$g_1 := \operatorname{GCD}(x_1, x_2), \quad g_2 := \operatorname{GCD}(y_1, y_2), \quad g_3 := \operatorname{GCD}(x_1, y_2), \quad g_4 := \operatorname{GCD}(x_2, y_1).$$

Since $GCD(x_1, y_1) = GCD(x_2, y_2) = 1$, it is easily seen that the g_i are pairwise relatively prime. Moreoever, the equations for a in (9) imply that $x_1y_1 = x_2y_2$, from which it then follows that

$$x_1 = g_1 g_3, \quad x_2 = g_1 g_4, \quad y_1 = g_2 g_4, \quad y_2 = g_2 g_3.$$
 (11)

Since y_1 is odd and x_1 even and the g_i are pairwise relatively prime, we deduce that g_2 and g_4 are both odd, and exactly one of g_1 and g_3 is even. If g_1 is even and g_3 odd, then substituting (11) into (10) leads to

$$g_2^2\left(\frac{g_4^2-g_3^2}{2}\right) = g_1^2\left(\frac{g_4^2+g_3^2}{2}\right).$$

The terms on the left and right are relatively prime in pairs, so it must be the case (by FTA) that

$$g_2^2 = rac{g_4^2 + g_3^2}{2}, \quad g_1^2 = rac{g_4^2 - g_3^2}{2},$$

which implies that the 4-tuple (g_1, g_2, g_4, g_3) also satisfies (8). But $g_1 \leq g_1g_2g_3g_4 = x_1y_1 < 2x_1y_1 = a$, so this new 4-tuple is indeed "smaller".

If instead g_3 is even and g_1 odd, a similar argument leads to the contradiction that (g_3, g_1, g_2, g_4) is a "smaller" 4-tuple. This completes the proof.

(iv) Let $d = \text{GCD}(p^2 - q^2, p^2 + q^2)$. Then d divides $(p^2 - q^2) \pm (p^2 + q^2)$, i.e.: d divides both $2p^2$ and $2q^2$. Hence d divides $\text{GCD}(2p^2, 2q^2) = 2$, since GCD(p,q) = 1. Hence if $p^2 - q^2$ were to divide $p^2 + q^2$, then $p^2 - q^2$ would have to divide 2, in other words, since p > q, either $p^2 - q^2 = 1$ or $p^2 - q^2 = 2$. It is easily checked that the latter equation has no integer solution, and the only solutions to the former are $p = \pm 1$, q = 0. But p and q are assumed positive, contradiction.

(v) Suppose by way of contradiction that we have a solution $x^4 - y^4 = z^2$. If $d \mid x$ and $d \mid y$, then $d^2 \mid z$ and so $(x/d, y/d, z/d^2)$ is another solution. We may thus suppose x, y, z are pairwise relatively prime. The equation factorises as $z^2 = (x^2 - y^2)(x^2 + y^2)$. Since GCD(x, y) = 1 it follows easily (see part (iv)) that $\text{GCD}(x^2 - y^2, x^2 + y^2) \in \{1, 2\}$. If the GCD is 1, then FTA implies that each of $x^2 - y^2$ and $x^2 + y^2$ is a square, i.e.: there exists integers a, b such that $x^2 - y^2 = a^2$ and $x^2 + y^2 = b^2$. But then the 4-tuple (y, x, b, a) would satisfy (8), contradicting the fact that the latter system has no integer solutions. Similarly, if the GCD is 2, then we can write $\left(\frac{z}{2}\right)^2 = \left(\frac{x^2-y^2}{2}\right)\left(\frac{x^2+y^2}{2}\right)$, and now each factor on the right must be a square. So in this case, there exists integers a, b such that $x^2 - y^2 = 2a^2$ and $x^2 + y^2 = 2b^2$. But then the 4-tuple (a, b, x, y) satisfies (8), again a contradiction.

Q.3 (i) Let p_1, p_2, \ldots, p_k be the set of all primes appearing in the factorisations of either *a* or *b*. Let

$$a = \prod_{i=1}^{k} p_i^{\alpha_i}, \quad b = \prod_{i=1}^{k} p_i^{\beta_i}, \quad \alpha_i, \beta_i \ge 0.$$

We seek a solution of the form

$$x = \prod_{i=1}^{k} p_i^{\gamma_i}, \quad y = \prod_{i=1}^{k} p_i^{\delta_i}, \quad \gamma_i, \delta_i \ge 0.$$

One readily checks that $ax^n = by^m$ is satisfied if and only if, for each i = 1, ..., k,

$$n\gamma_i - m\delta_i = \beta_i - \alpha_i. \tag{12}$$

But since GCD(m, n) = 1, (12) will always have a solution in non-negative integers.

(ii) Write the equation as $x/y = \sqrt[n]{b/a}$. First, compute d = GCD(a, b) using Euclid's algorithm. Then divide out d from both a and b, to get new numbers a_1, b_1 . So far, this runs in polynomial time. Since $\text{GCD}(b_1, a_1) = 1$, the quotient b_1/a_1 is the *n*:th power of a rational number if and only if each of a_1 and b_1 is the *n*:th power of an integer (this follows easily from FTA). Thus we just need to approximate $\sqrt[n]{b_1}$ and $\sqrt[n]{a_1}$. Clearly, an approximation to the nearest integer can be obtained in polynomial time (by some kind of divide-and-conquer procedure, in other words, something which uses the Intermediate Value Theorem), and hence we can also determine in polynomial time if the *n*:th roots are in fact integers and, if so, which ones.

Q.4 The first two properties are easy to verify, so I will concentrate on the third. To simplify notation, put $\xi := \sqrt{-2}$. Let a, b be two non-zero elements of R. First suppose b is a positive integer and let $a = x + y\xi$, where $x, y \in \mathbb{Z}$. Let r_1, r_2 be the numerically least residues of x resp. y modulo b, i.e.: the unique numbers $r_1, r_2 \in (-b/2, b/2]$ such that $x = q_1b + r_1$ and $y = q_2b + r_2$ for some $q_1, q_2 \in \mathbb{Z}$. Let $q := q_1 + q_2\xi$ and $r := r_1 + r_2\xi$. Then

a = qb + r and

$$d(r) = r_1^2 + 2r_2^2 \le 3\left(\frac{b}{2}\right)^2 < b^2 = d(b),$$

which proves property (iii) of a Euclidean domain in the case where $b \in \mathbb{N}$. Now consider a general $b \in R$. Set $u := a\overline{b}, v := b\overline{b} = d(b) \in \mathbb{N}$. By the above, there exist $q, r \in R$ such that

$$u = qv + r$$
 and $0 < d(r) < d(v)$.

Dividing across by \overline{b} we have that $a = qb+r_0$, where $r_0 = r/\overline{b}$. But the function d is clearly multiplicative, so $d(v) = d(b)d(\overline{b})$ and $d(r) = d(r_0)d(\overline{b})$ and hence 0 < d(r) < d(v) implies that $0 < d(r_0) < d(b)$, so we are done.

REMARK : One may give a geometric decription of the above argument, which is probably more enlightening than the 'algebraic' presentation given above. $R = \mathbb{Z}[\sqrt{-2}]$ is a rectangular lattice in the complex plane generated by 1 and $\sqrt{-2}$. A rectangle with vertices at (0,0), (1,0), (1,2) and (0,2)forms a fundamental domain for this lattice (once one removes an appropriate part of the boundary). The set $\{qb : q \in R\}$ is an ideal in the ring and corresponds geoemtrically to a sublattice generated by the orthogonal vectors b and $\sqrt{-2} b$. These two vectors span a rectangular fundamental domain \mathcal{F} for the sublattice. The point $a \in \mathcal{C}$ must lie in some translate of \mathcal{F} , and hence there must be a point in the lattice whose distance to a is certainly no more than half the diameter of \mathcal{F} , i.e.: there exists $q \in R$ such that

$$|a - qb| \le \frac{1}{2} \operatorname{diam}(\mathcal{F}) = \frac{1}{2} \sqrt{d(b)^2 + d(\sqrt{-2} \ b)^2} = \frac{\sqrt{3}}{2} d(b) < d(b), \quad \text{v.s.v.}$$

Q.5 (i) Since every $a_n \ge 0$, the limit, if it exists, must be non-negative. Subadditivity implies that $a_n \le na_1$, hence $a_n/n \le a_1$ for any n. Hence the sequence (a_n/n) is bounded and must have a convergent subsequence. Suppose there is a subsequence (a_{ni}/n_i) converging to a limit L, say. If Lis not the limit of the entire sequence then we can find $\epsilon > 0$ and another subsequence (a_{mi}/m_i) , such that, for all $i \ge i_0$,

$$\left|\frac{a_{n_i}}{n_i} - L\right| < \frac{\epsilon}{2}, \quad \left|\frac{a_{m_i}}{m_i} - L\right| > \epsilon.$$
 (13)

Let's suppose that, for all $i \ge i_0$, $a_{m_i}/m_i > a_{n_i}/n_i$ - a similar argument works in the case of the reverse inequality holding. Thus, by (13), for all $i_1, i_2 \ge i_0$ we have that

$$\frac{a_{m_{i_1}}}{m_{i_1}} - \frac{a_{n_{i_2}}}{n_{i_2}} > \frac{\epsilon}{2}.$$

In particular, for all $i \ge i_0$ one has that

$$\frac{a_{m_i}}{m_i} - \frac{a_{n_{i_0}}}{n_{i_0}} > \frac{\epsilon}{2}.$$
(14)

Let $S := \max\{a_s : 1 \le s < n_{i_0}\}$. For each *i*, there exist integers q_i, r_i such that $m_i = q_i n_{i_0} + r_i$, where $0 \le r_i < n_{i_0}$. By subadditivity, we have that $a_{m_i} \le q_i a_{n_{i_0}} + a_{r_i}$ and hence that

$$\frac{a_{m_i}}{m_i} \le \frac{q_i a_{n_{i_0}} + a_{r_i}}{m_i} \le \frac{a_{n_{i_0}}}{n_{i_0}} + \frac{S}{m_i}.$$
(15)

Now S is a fixed number and thus $S/m_i \to 0$ as $i \to \infty$. Hence (15) will contradict (14) for all sufficiently large i. This completes the proof.

(REMARK : The result proven above is known in the literature as *Fakete's Lemma*).

(ii) Let $m, n \in \mathbb{N}$. If A is a subset of $\{1, 2, ..., m + n\}$ which is free of 3-term arithmetic progressions, then both A_1 and A_2 are also free of 3-APs, where $A_1 := A \cap \{1, ..., m\}$ and $A_2 := A \cap \{m+1, ..., m+n\}$. This and the fact that a translate of an AP is still an AP easily lead to the conclusion that the function f(n) in this exercise is sub-additive. Then the result follows immediately from part (i).

(iii) First suppose $a_0 \neq 0$. Let p be any prime which does not divide a_0 and let the set A consist of all multiples of p. Then A contains no solutions to the equation \mathcal{L} , as it doesn't even contain any solutions modulo p. Hence, in this case,

$$\liminf_{n \to \infty} \frac{f(n)}{n} \ge \liminf_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n} = \frac{1}{p} > 0.$$

Next, suppose $\sum_{i=1}^{n} a_i \neq 0$. Let $s := \sum_{i=1}^{n} a_i$, let k be the smallest positive integer such that $ks \neq a_0$ and let p be any prime satisfying $p > \max\{k|s|, |a_0|\}$. Now let $A = \{n \in \mathbb{Z} : n \equiv k \pmod{p}\}$. It is easy to see that A contains no solutions to the equation \mathcal{L} , simply because it doesn't even contain any solutions modulo p. Hence, as above, $\liminf f(n)/n \geq 1/p > 0$.

Q.6 (i) In general, one can construct a subset of \mathbb{N} containing no solutions to some fixed equation by means of a *greedy choice procedure*, i.e.: go through the natural numbers in increasing order and, at each step, add the number to the set A if it doesn't create any solutions. For some equations (though by no means all !), this turns out to give an optimal construction. An example is just the equation 2x = y. It is easy to check that the set A

obtained by this greedy choice is the set

$$A = \{ n \in \mathbb{N} : 2^{2k} \mid | n \text{ for some } k \ge 0 \}.$$

$$(16)$$

In other words, A consists of all those number which are divisible by an even power of 2. This set has an asymptotic density given by

$$d(A) = \frac{1}{2} \left(\sum_{k=0}^{\infty} \frac{1}{4^k} \right) = \frac{2}{3}.$$

No set avoiding solutions to 2x = y can have a higher asymptotic upper density. For if B is such a set, then $B \cap 2B = \phi$, where $2B = \{2b : b \in B\}$. Thus $1 \ge \overline{d}(B \cup 2B) = \overline{d}(B) + \overline{d}(2B) = \frac{3}{2}\overline{d}(B)$, which implies that $\overline{d}(B) \le 2/3$.

From the above reasoning, it is easy to deduce that $\lim_{n\to\infty} f(n)/n = 2/3$. In fact, if one argues more carefully, one can in fact show that, for every $n \in \mathbb{N}$, the set $A \cap \{1, ..., n\}$, where A is given by (16), is a subset of $\{1, ..., n\}$ of largest possible size containing no solutions to 2x = y.

(ii) The limit is at least 1/2, because the set of odd numbers avoids solutions to 3x = y + z. In fact, the limit is 1/2. See the 3-page supplementary document on the homepage for a proof of a more precise result. For generalisations of the result, see Papers No. 25 and 29 on my research page.

Q.7 Factorise an integer n as

$$n = \prod_{i=1}^{k} p_i^{\alpha_i}.$$

Then

$$d(n) = \prod_{i=1}^{k} (\alpha_i + 1),$$

and hence

$$\frac{d(n)}{n^{\epsilon}} = \prod_{i=1}^{k} \frac{\alpha_i + 1}{p_i^{\epsilon \alpha_i}}.$$

Fix $\epsilon > 0$. For a prime p and a positive integer α , let $f_{\epsilon}(p, \alpha) := \frac{\alpha+1}{p^{\epsilon\alpha}}$. For fixed ϵ , it is clear that $f_{\epsilon}(p, \alpha) \to 0$ as long as any one of p and α goes to infinity, even if the other is held fixed. In particular, there will be only a finite number (depending on ϵ) of pairs (p, α) such that $f_{\epsilon}(p, \alpha) > 1/2$. It follows easily that $d(n)/n^{\epsilon} \to 0$ as $n \to \infty$.

(NOTE : You can replace 1/2 by any number strictly less than one and the argument will work).

Q.8 It suffices to show that, for any r > 1 and $\varepsilon > 0$ sufficiently small, there exist primes p, q such that $(1 - 2\varepsilon)r < p/q < (1 + 3\varepsilon)r$. By the prime number theorem,

$$\pi((1-\varepsilon)x) \sim \frac{(1-\varepsilon)x}{\log(1-\varepsilon)x}, \quad \pi((1+\varepsilon)x) \sim \frac{(1+\varepsilon)x}{\log(1+\varepsilon)x},$$
$$\pi((1-\varepsilon)rx) \sim \frac{(1-\varepsilon)rx}{\log(1-\varepsilon)rx}, \quad \pi((1+\varepsilon)rx)) \sim \frac{(1+\varepsilon)rx}{\log(1+\varepsilon)rx)}.$$

It follows that, for x sufficiently large and ε sufficiently small, there exist distinct primes p,q such that $(1-\varepsilon)x < q < (1+\varepsilon)x$ and $(1-\varepsilon)rx . Thus <math>r\left(\frac{1-\varepsilon}{1+\varepsilon}\right) < p/q < r\left(\frac{1+\varepsilon}{1-\varepsilon}\right)$, which in turn implies that $r(1-2\varepsilon) < p/q < (1+3\varepsilon)r$, for sufficiently small ε .