Solutionsto Homework 1
Q.1 (i) Letuy, ..., u, be any integers, positive or negative, satisfying
auy + - -+ apu, = 1.
We know from the lectures that such integers exist. Now let

m := min{ay, ..., a, }, Q)
M = max{|u], ..., |un|}, (2)

S = E a;.
i=1

Letry := smM. | claim thatG(ay,...,a,) < ro. Clearly, there is a non-
negative solution t®_ a;x; = 19, namelyx; = mM for all i. Now let
5 €{0,1,...,m — 1}. Then a solution t® _ a;x; = ro + 4 is given by
ri=mM +ou;, i=1,...,n. 3)

By (1) and (2), we see that eaahin (3) is non-negative. Thus we have
shown that there is a non-neagative solutioryta,;x; = r, for each of a
sequence ofn integers starting at, = smM . But from this it follows
easily that there is a non-negative solution for any r,. For suppose
a; = m. Then given a non-negative solution}da;z; = r, for somer, a
non-negative solution ty a;z; = r + m is given by

vy =, fi#j, af=x;+1
(i) If a; = ay = 1 then the theorem states thaf1,1) = —1, in other
words that every non-negative integer can be writterr asy, for some

x,y > 0. This is clear. So we may henceforth assume, without losgif g
erality, thata; > a, > 1. We shall show two things :

CLAIM 1 : There is no non-negative integer solution to
a1z + asy = (a1 — 1)(ag — 1) — 1 = ajas — ay — as. (4)
CLAIM 2 : There is a hon-negative solution to
a1z + asy = (a1 — 1)(ag — 1) + 9,

for everyo € {0, 1,...,a2 — 1}. The fact that these claims in turn suffice to
establish tha&(a;, as) = (a1 — 1)(as — 1) — 1 is then argued in a manner
similar to that given in parti) above.

PrROOF OFCLAIM 1 : Assume the contrary, and let, y) be a non-negative
solution. First look at (4) modula; . It reads

as(y+1) =0 (moday).
1



2

Since GCDia,, as) = 1 it follows from FTA thata, |y + 1. Sincey is non-
negative, this means that> a; — 1. Similarly, by looking at (4) modulo
as We find thatr > a, — 1. But then

a1 +agy > ai(az — 1) +az(a; — 1) = 2a1a2 — ay — ag > a1az — ay — as,

a contradiction.

PROOF OFCLAIM 2 : The equation we want to solve can be rewritten
as

ar(z +1)+ax(y + 1) = aras + &', (5)
whered’ € {1,2,...,;as}. Since GCQa4, as) = 1, the integers, 2ay, ..., asa;
represent, in some order, all congruence classes magd@actly once. In
particular, there is somge {1,2, ..., as} such that

a;§ = ¢ (moday).
In other words, there exists an integel 0 such that
a1 =90+ am = @€ —an =20.
Note that, sincé < a,, we also have) < a,. Then a non-negative solution
to(5)isgivenbyr+1 =&, y+1=n+a;.

(iii) Note that GCD7,19) = 1. Let

w:=Tr + 19y. (6)
Thus, in terms ofv andz, the equation reads
w~+ 23z = 11. (7

One solution to () is clearlw = 34, z = —1. Since GCD1,23) = 1, by
Euclid the general solution to () is thus

w=34+23n, z=—-1—n, necZ.
Euclid also tells us that the general solution to (6) is
r=xow+ 19m, y=1yow—"Tm, m € Z,
where7zy+19y, = 1. Clearly we can take, for example, = 11, yo = —4.
Substituting in everything, we find that the general solutio the original
Diophantine equation is
r = 11(34 4+ 23n) + 19m = 19m + 253n + 374,
y = —4(34423n) — Tm = —Tm — 92n — 136,
z=—-1—n, mné€lZ.
(iv) There seems to be a general agreement among those who dahtlee h
work thatG(7, 19, 23) = 62. Note that(3, 1, 1) is a solution to the equation



7z + 19y 4 23z = 63.

(v) There is a solution if and only it > 12 and

n & {13,14,15, 16, 18, 20, 21, 23, 25, 28, 30, 35}. To see where the hell this
problem came from, go to page 7 of the article

http://ww. mat h. chal nmers. se/ ~hegarty/ HKci rcl e.oct 26. pdf

Q.2 (i) Clearly, it suffices to prove the result for all primitive tiés. Let
(x,y, z) be any such triple. By Theorem 3.8 in the lecture notes we have,
without loss of generality,

r=2ab, y=1"0—ad* 2z=0b"+d°

for some relatively prime integers < b of opposite parity. Since one of
andb is thus even, it follows that|x. If eithera or b is divisible by3, then
so isz. Otherwise)p? = a*> = 1 (mod3), so3|y. In either case3|zy. Since
already4|z, FTA implies thatl2|zy. Finally, it suffices to show that at least
one ofzx, y, z is divisible by5. If eithera or b is divisible by5, then so is
x. Otherwise, each af? andb? must be congruent to eitherl or —1 (mod
5). In particularp? = +a* (mod5), hence5|(b? F a?), i.e.: 5|y or 5|z, as
required.

(i) Sincet is odd, there exist positive integerg such thati—4; = 1. Now
letm € N and taker = y = 2!+, » = 2™+ Check that:* + y* = 2t
This gives an infinite family of solutions.

(iii) The exercise is easily reduced to proving that there ard-tuples
(a,b, c,d) € N* satisfying the pair of equations

a® +b* = a’ +d* =17 (8)

We will use an infinite decscent argument - assuming a soletasts to (8),
we will construct a “smaller” one, in a sense which will beaavident as
the argument unfolds. This will yield a contradiction.

We can assume both Pythagorean triples are primitive, lsedba prime
p divides any two ofu, b, ¢, d, then it is easily seen to divide all four, and
hence(a/p,b/p,c/p,d/p) will be a smallerd-tuple satisfying (8). Since
both triples are primitive) must be odd, heneemust be even. By Theorem
3.8 in the lecture notes, there exist integers positivegerer., 1, 2, yo,
with GCD(z;, y;) = 1, x; andy; of opposite parity, such that
a=2ry =29y, b=yi—al =yi+a5, c=yi+al, d=y;—ai

9)
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Note that the equations férlead to
Yi= a1+ + 4, (10)

which forcesy; to be odd andr; even, as vice versa would lead to the
contradictior) = 2 (mod4). Let

g1 = GCD(%,xz)» g2 ‘= GCD(yhyQ)v g3 = GCD(%,yz)’ ga = GCD(Z‘%?A)-

Since GCDzy,y;) = GCD(zq,y2) = 1, it is easily seen that the, are
pairwise relatively prime. Moreoever, the equationsdan (9) imply that
T1y1 = T2Ye, from which it then follows that

T1 = G193, T2 = G101, Y1 = G294, Y2 = G203 (11)

Sincey; is odd andz; even and they; are pairwise relatively prime, we
deduce that, andg, are both odd, and exactly one @fandgs is even. If
g1 IS even andj; odd, then substituting (11) into (10) leads to

2 (=B _ o (it
2 2 ! 2 '

The terms on the left and right are relatively prime in pas,it must be
the case (by FTA) that
o _9it9 . 9i— 9

92 - 2 ) gl - 2 ’
which implies that thel-tuple (g1, 92, 94, g3) also satisfies (8). Buf; <
J1929394 = T1y1 < 2x1Y1 = a, SO this newd-tuple is indeed “smaller”.

If insteadgs is even andy; odd, a similar argument leads to the contra-

diction that(gs, g1, 92, g4) is a “smaller’4-tuple. This completes the proof.

(iv) Letd = GCD(p? — ¢%, p* + ¢*). Thend divides(p? — ¢*) + (p* + ¢?),

i.e.: d divides both2p? and24¢?. Henced divides GCO2p?, 2¢*) = 2, since
GCD(p,q) = 1. Hence ifp? — ¢*> were to dividep? + ¢, thenp? — ¢
would have to divide2, in other words, since > ¢, eitherp? — ¢*> = 1

or p?> — ¢*> = 2. Itis easily checked that the latter equation has no integer
solution, and the only solutions to the former are +1, ¢ = 0. Butp and

g are assumed positive, contradiction.

(v) Suppose by way of contradiction that we have a solutiba- y* = 22.

If |z andd |y, thend? |z and so(z/d,y/d, z/d?*) is another solution. We
may thus suppose, y, z are pairwise relatively prime. The equation fac-
torises ag? = (2?2 — y?)(2? + y?). Since GCOz,y) = 1 it follows easily
(see par(iv)) that GCOx? — 42, 2% + y*) € {1,2}. If the GCD is1, then
FTA implies that each of? — y? andz? + 32 is a square, i.e.: there ex-
ists integers:, b such thatr? — y? = a? andxz? + y> = b*. But then the
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4-tuple (y, z, b, a) would satisfy (8), contradicting the fact that the latter
system has no integer solutions. Similarly, if the GC2,ghen we can

write (2)* = (#) (#) and now each factor on the right must be

a square. So in this case, there exists integgrsuch that:? — y? = 2a?
andz? + y* = 20?. But then thei-tuple (a, b, x,y) satisfies (8), again a
contradiction.

Q.3 (i) Letpy, po, ..., pr be the set of all primes appearing in the factorisa-
tions of eithera or b. Let

k k
a=[[pe bv=]]p" oaBi>0
=1 =1

We seek a solution of the form

k

k
e=1Iw" =1l wda=o0
i=1

i=1

One readily checks thatz” = by™ is satisfied if and only if, for each
i=1,...k,

ny; —mo; = B — . (12)

But since GCDm,n) = 1, (12) will always have a solution in non-negative
integers.

(i) Write the equation as/y = {/b/a. First, computel = GCD(a, b)
using Euclid’s algorithm. Then divide odtfrom botha andb, to get new
numbersay, b;. So far, this runs in polynomial time. Since GG, a;) =

1, the quotient, /a; is then:th power of a rational number if and only if
each ofa; andb; is then:th power of an integer (this follows easily from
FTA). Thus we just need to approxima{é; and {/a;. Clearly, an approx-
imation to the nearest integer can be obtained in polynotinie (by some
kind of divide-and-conquer procedure, in other words, gbing which
uses the Intermediate Value Theorem), and hence we canetisordne in
polynomial time if then:th roots are in fact integers and, if so, which ones.

Q.4 The first two properties are easy to verify, so | will concatgron
the third. To simplify notation, put := +/—2. Leta, b be two non-zero el-
ements ofRR. First supposé is a positive integer and let= x + y£, where
x,y € Z. Letry,ry be the numerically least residuesofesp. y modulo
b, i.e.: the unique numbers, r, € (—b/2,b/2] such thatr = ¢;b + r; and
Yy = qab+ 1o for somegy, g € Z. Letq := g1 + g€ andr := r; + £, Then
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a=qb+ rand

2
dir)y =71} +2r3 <3 (g) < b* = d(b),

which proves property (iii) of a Euclidean domain in the cagereb € N.
Now consider a generale R. Setu := ab, v := bb = d(b) € N. By the
above, there exist, » € R such that

u=qu+r and 0 < d(r) < d(v).

Dividing across by we have that. = gb+r,, wherer, = r/b. But the func-
tion d is clearly multiplicative, sal(v) = d(b)d(b) andd(r) = d(ro)d(b)
and hencé® < d(r) < d(v) implies thatd < d(r¢) < d(b), SO we are done.

REMARK : One may give a geometric decription of the above argument,
which is probably more enlightening than tiaégebraic’ presentation given
above.R = Z[y/—2] is a rectangular lattice in the complex plane generated
by 1 and+v/—2. A rectangle with vertices a0, 0), (1,0), (1,2) and (0, 2)
forms a fundamental domain for this lattice (once one rers@re appro-
priate part of the boundary). The sgtb : ¢ € R} is an ideal in the ring
and corresponds geoemtrically to a sublattice generatetebgrthogonal
vectorsb and+/—2 b. These two vectors span a rectangular fundamental
domainF for the sublattice. The point € C must lie in some translate
of F, and hence there must be a point in the lattice whose distances
certainly no more than half the diameter®f i.e.: there existg € R such
that

la — qb| < dlan‘(]-" \/d 2 1 d(v/-2b)2 = \/_ d(b) < d(b), v.s.v.

Q.5 (i) Since everya,, > 0, the limit, if it exists, must be non-negative.

Subadditivity implies that,, < na,, hencea, /n < a, for anyn. Hence

the sequencés,, /n) is bounded and must have a convergent subsequence.
Suppose there is a subsequefce/n;) converging to a limitZ, say. If L

is not the limit of the entire sequence then we can find 0 and another
subsequencegr,,, /m;), such that, for alf > i,

a”"—L‘<E

) s - L
2

m;

> €. 13)

n;

Let's suppose that, for all > iy, a,,,/m; > a,,/n; - a similar argument
works in the case of the reverse inequality holding. Thus(13y, for all
11,19 > 19 We have that

amil a/7’L7;2 €

mil niz 2



In particular, for alli > i, one has that

O ay,
A (14)

m; N 2

LetS := max{as : 1 < s < n;,}. For each, there exist integerg, r; such
thatm; = ¢;n;, + r;, where0 < r; < n;,. By subadditivity, we have that
Ay < i, + Qr, and hence that
: iQp,; 1 A Qn,
Oy By T O iy | S (15)

m; m; N, m;

Now S is a fixed number and thu$/m; — 0 asi — oo. Hence (15) will
contradict (14) for all sufficiently largé This completes the proof.

(REMARK : The result proven above is known in the literatur&alete’ s
Lemma).

(i) Letm,n € N. If Ais a subset of1,2,...,m + n} which is free of
3-term arithmetic progressions, then bethand A, are also free of 3-APs,
whereA; := An{l,...,m}andA; := An{m+1,...,m+n}. This and the
fact that a translate of an AP is still an AP easily lead to tectusion that
the functionf(n) in this exercise is sub-additive. Then the result follows
immediately from part (i).

(iii) First suppose, # 0. Letp be any prime which does not dividg
and let the setl consist of all multiples op. ThenA contains no solutions
to the equatior, as it doesn’t even contain any solutions modulélence,
in this case,

f(n) JAN{L 1

liminf —— > limin =—->0.
n—oo n n—oo n p

Next, suppose "  a; # 0. Lets := > "  a;, letk be the smallest
positive integer such thdts # ay and letp be any prime satisfying >
max{k|s|,|ao|}. Now letA = {n € Z : n = k (modp)}. Itis easy to see
that A contains no solutions to the equatidn simply because it doesn’t
even contain any solutions moduyto Hence, as abovéim inf f(n)/n >
1/p>0.

Q.6 (i) In general, one can construct a subselNafontaining no solutions

to some fixed equation by means ofyeeedy choice procedure, i.e.. go
through the natural numbers in increasing order and, at stegh add the
number to the sefl if it doesn’t create any solutions. For some equations
(though by no means all !), this turns out to give an optimailstauction.

An example is just the equatidx = y. It is easy to check that the sdt
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obtained by this greedy choice is the set
A= {n € N:2% || n for somek > 0}. (16)

In other words,A consists of all those number which are divisible by an
even power oR. This set has an asymptotic density given by

1 {1 2
d4) =3 (Z 4—> =3
k=0
No set avoiding solutions tdxz = y can have a higher asymptotic upper
density. For ifB is such a set, theBN2B = ¢, where2B = {2b: b € B}.
Thusl > d(B U2B) = d(B) + d(2B) = 2d(B), which implies that
d(B) <2/3.

From the above reasoning, it is easy to deducelihat .., f(n)/n =
2/3. In fact, if one argues more carefully, one can in fact shoat, tfor
everyn € N, the setA N {1, ...,n}, whereA is given by (16), is a subset of
{1,...,n} of largest possible size containing no solutiong:to= y.

(i) The limit is at leastl /2, because the set of odd numbers avoids so-
lutions to3x = y + z. In fact, the limit is1 /2. See the 3-page supplemen-
tary document on the homepage for a proof of a more precisdt.résor
generalisations of the result, see Papers No. 25 and 29 oasegrnch page.
Q.7 Factorise an integer as

k
o= T
=1

Then

and hence

Fix e > 0. For a primep and a positive integet, let f.(p, ) := ";;21. For
fixede, it is clear thatf.(p, «) — 0 as long as any one gfanda goes to
infinity, even if the other is held fixed. In particular, thesdl be only a
finite number (depending o) of pairs(p, a) such thatf.(p,«) > 1/2. It
follows easily thati(n)/n¢ — 0 asn — oc.

(NOTE : You can replacd /2 by any number strictly less than one and

the argument will work).



Q.8 It suffices to show that, for any > 1 ande > 0 sufficiently small,
there exist primeg, ¢ such thai{1 — 2¢)r < p/q < (14 3¢)r. By the prime
number theorem,

N (1—8)1' . ) (1"‘5)1‘
m((1 - e)z) log(1 — &)z’ (A +e)) log(1 +e)z’
(]_ — g)rx (]_ + 5)7“1’)
(1 —¢e)rx) ~ Tog(1— &)ra’ m((1+e)rz)) ~ log(1 + &)rz)’

It follows that, forz sufficiently large and sufficiently small, there exist
distinct primesp, ¢ such that(l — )z < ¢ < (1 +e)x and(1l — e)rz <
p < (1+¢)rz. Thusr (1=5) < p/q < r (1=£), which in turn implies that
r(1—2¢) < p/q < (1+ 3e)r, for sufficiently smalk.



