
Solutions to Homework 1
Q.1 (i) Let u1, ..., un be any integers, positive or negative, satisfying

a1u1 + · · · + anun = 1.

We know from the lectures that such integers exist. Now let

m := min{a1, ..., an}, (1)

M := max{|u1|, ..., |un|}, (2)

s :=
n

∑

i=1

ai.

Let r0 := smM . I claim thatG(a1, ..., an) < r0. Clearly, there is a non-
negative solution to

∑

aixi = r0, namelyxi = mM for all i. Now let
δ ∈ {0, 1, ...,m − 1}. Then a solution to

∑

aixi = r0 + δ is given by

xi = mM + δui, i = 1, ..., n. (3)

By (1) and (2), we see that eachxi in (3) is non-negative. Thus we have
shown that there is a non-neagative solution to

∑

aixi = r, for each of a
sequence ofm integers starting atr0 = smM . But from this it follows
easily that there is a non-negative solution for anyr ≥ r0. For suppose
aj = m. Then given a non-negative solution to

∑

aixi = r, for somer, a
non-negative solution to

∑

aix
′

i = r + m is given by

x′

i = xi, if i 6= j, x′

j = xj + 1.

(ii) If a1 = a2 = 1 then the theorem states thatG(1, 1) = −1, in other
words that every non-negative integer can be written asx + y, for some
x, y ≥ 0. This is clear. So we may henceforth assume, without loss of gen-
erality, thata1 > a2 ≥ 1. We shall show two things :

CLAIM 1 : There is no non-negative integer solution to

a1x + a2y = (a1 − 1)(a2 − 1) − 1 = a1a2 − a1 − a2. (4)

CLAIM 2 : There is a non-negative solution to

a1x + a2y = (a1 − 1)(a2 − 1) + δ,

for everyδ ∈ {0, 1, ..., a2 − 1}. The fact that these claims in turn suffice to
establish thatG(a1, a2) = (a1 − 1)(a2 − 1) − 1 is then argued in a manner
similar to that given in part(i) above.

PROOF OFCLAIM 1 : Assume the contrary, and let(x, y) be a non-negative
solution. First look at (4) moduloa1. It reads

a2(y + 1) ≡ 0 (moda1).
1
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Since GCD(a1, a2) = 1 it follows from FTA thata1|y + 1. Sincey is non-
negative, this means thaty ≥ a1 − 1. Similarly, by looking at (4) modulo
a2 we find thatx ≥ a2 − 1. But then

a1x + a2y ≥ a1(a2 − 1) + a2(a1 − 1) = 2a1a2 − a1 − a2 > a1a2 − a1 − a2,

a contradiction.

PROOF OF CLAIM 2 : The equation we want to solve can be rewritten
as

a1(x + 1) + a2(y + 1) = a1a2 + δ′, (5)

whereδ′ ∈ {1, 2, ..., a2}. Since GCD(a1, a2) = 1, the integersa1, 2a1, ..., a2a1

represent, in some order, all congruence classes moduloa2 exactly once. In
particular, there is someξ ∈ {1, 2, ..., a2} such that

a1ξ ≡ δ′ (moda2).

In other words, there exists an integerη ≥ 0 such that

a1ξ = δ + a2η ⇒ a1ξ − a2η = δ.

Note that, sinceξ ≤ a2, we also haveη < a1. Then a non-negative solution
to (5) is given byx + 1 = ξ, y + 1 = η + a1.

(iii) Note that GCD(7, 19) = 1. Let

w := 7x + 19y. (6)

Thus, in terms ofw andz, the equation reads

w + 23z = 11. (7)

One solution to () is clearlyw = 34, z = −1. Since GCD(1, 23) = 1, by
Euclid the general solution to () is thus

w = 34 + 23n, z = −1 − n, n ∈ Z.

Euclid also tells us that the general solution to (6) is

x = x0w + 19m, y = y0w − 7m, m ∈ Z,

where7x0+19y0 = 1. Clearly we can take, for example,x0 = 11, y0 = −4.
Substituting in everything, we find that the general solution to the original
Diophantine equation is

x = 11(34 + 23n) + 19m = 19m + 253n + 374,

y = −4(34 + 23n) − 7m = −7m − 92n − 136,

z = −1 − n, m, n ∈ Z.

(iv) There seems to be a general agreement among those who did the home-
work thatG(7, 19, 23) = 62. Note that(3, 1, 1) is a solution to the equation
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7x + 19y + 23z = 63.

(v) There is a solution if and only ifn ≥ 12 and
n 6∈ {13, 14, 15, 16, 18, 20, 21, 23, 25, 28, 30, 35}. To see where the hell this
problem came from, go to page 7 of the article
http://www.math.chalmers.se/∼hegarty/HK circle oct26.pdf

Q.2 (i) Clearly, it suffices to prove the result for all primitive triples. Let
(x, y, z) be any such triple. By Theorem 3.8 in the lecture notes we have,
without loss of generality,

x = 2ab, y = b2 − a2, z = b2 + a2,

for some relatively prime integersa < b of opposite parity. Since one ofa
andb is thus even, it follows that4|x. If eithera or b is divisible by3, then
so isx. Otherwise,b2 ≡ a2 ≡ 1 (mod3), so3|y. In either case,3|xy. Since
already4|x, FTA implies that12|xy. Finally, it suffices to show that at least
one ofx, y, z is divisible by5. If either a or b is divisible by5, then so is
x. Otherwise, each ofa2 andb2 must be congruent to either+1 or−1 (mod
5). In particular,b2 ≡ ±a2 (mod5), hence5|(b2 ∓ a2), i.e.: 5|y or 5|z, as
required.

(ii) Sincet is odd, there exist positive integersi, j such thatti−4j = 1. Now
let m ∈ N and takex = y = 2tm+j, z = 24m+i. Check thatx4 + y4 = zt.
This gives an infinite family of solutions.

(iii) The exercise is easily reduced to proving that there are no4-tuples
(a, b, c, d) ∈ N

4 satisfying the pair of equations

a2 + b2 = c2, a2 + d2 = b2. (8)

We will use an infinite decscent argument - assuming a solution exists to (8),
we will construct a “smaller” one, in a sense which will become evident as
the argument unfolds. This will yield a contradiction.

We can assume both Pythagorean triples are primitive, because if a prime
p divides any two ofa, b, c, d, then it is easily seen to divide all four, and
hence(a/p, b/p, c/p, d/p) will be a smaller4-tuple satisfying (8). Since
both triples are primitive,b must be odd, hencea must be even. By Theorem
3.8 in the lecture notes, there exist integers positive integersx1, y1, x2, y2,
with GCD(xi, yi) = 1, xi andyi of opposite parity, such that

a = 2x1y1 = 2x2y2, b = y2

1 −x2

1 = y2

2 +x2

2, c = y2

1 +x2

1, d = y2

2 −x2

2.
(9)
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Note that the equations forb lead to

y2

1 = x2

1 + x2

2 + y2

2, (10)

which forcesy1 to be odd andx1 even, as vice versa would lead to the
contradiction0 ≡ 2 (mod4). Let

g1 := GCD(x1, x2), g2 := GCD(y1, y2), g3 := GCD(x1, y2), g4 := GCD(x2, y1).

Since GCD(x1, y1) = GCD(x2, y2) = 1, it is easily seen that thegi are
pairwise relatively prime. Moreoever, the equations fora in (9) imply that
x1y1 = x2y2, from which it then follows that

x1 = g1g3, x2 = g1g4, y1 = g2g4, y2 = g2g3. (11)

Sincey1 is odd andx1 even and thegi are pairwise relatively prime, we
deduce thatg2 andg4 are both odd, and exactly one ofg1 andg3 is even. If
g1 is even andg3 odd, then substituting (11) into (10) leads to

g2

2

(

g2
4 − g2

3

2

)

= g2

1

(

g2
4 + g2

3

2

)

.

The terms on the left and right are relatively prime in pairs,so it must be
the case (by FTA) that

g2

2 =
g2
4 + g2

3

2
, g2

1 =
g2
4 − g2

3

2
,

which implies that the4-tuple (g1, g2, g4, g3) also satisfies (8). Butg1 ≤
g1g2g3g4 = x1y1 < 2x1y1 = a, so this new4-tuple is indeed “smaller”.

If insteadg3 is even andg1 odd, a similar argument leads to the contra-
diction that(g3, g1, g2, g4) is a “smaller”4-tuple. This completes the proof.

(iv) Let d = GCD(p2 − q2, p2 + q2). Thend divides(p2 − q2) ± (p2 + q2),
i.e.: d divides both2p2 and2q2. Henced divides GCD(2p2, 2q2) = 2, since
GCD(p, q) = 1. Hence ifp2 − q2 were to dividep2 + q2, thenp2 − q2

would have to divide2, in other words, sincep > q, eitherp2 − q2 = 1
or p2 − q2 = 2. It is easily checked that the latter equation has no integer
solution, and the only solutions to the former arep = ±1, q = 0. But p and
q are assumed positive, contradiction.

(v) Suppose by way of contradiction that we have a solutionx4 − y4 = z2.
If d |x andd | y, thend2 | z and so(x/d, y/d, z/d2) is another solution. We
may thus supposex, y, z are pairwise relatively prime. The equation fac-
torises asz2 = (x2 − y2)(x2 + y2). Since GCD(x, y) = 1 it follows easily
(see part(iv)) that GCD(x2 − y2, x2 + y2) ∈ {1, 2}. If the GCD is1, then
FTA implies that each ofx2 − y2 andx2 + y2 is a square, i.e.: there ex-
ists integersa, b such thatx2 − y2 = a2 andx2 + y2 = b2. But then the
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4-tuple (y, x, b, a) would satisfy (8), contradicting the fact that the latter
system has no integer solutions. Similarly, if the GCD is2, then we can

write
(

z
2

)2
=

(

x2
−y2

2

) (

x2+y2

2

)

, and now each factor on the right must be

a square. So in this case, there exists integersa, b such thatx2 − y2 = 2a2

andx2 + y2 = 2b2. But then the4-tuple (a, b, x, y) satisfies (8), again a
contradiction.

Q.3 (i) Let p1, p2, . . . , pk be the set of all primes appearing in the factorisa-
tions of eithera or b. Let

a =
k

∏

i=1

pαi

i , b =
k

∏

i=1

pβi

i , αi, βi ≥ 0.

We seek a solution of the form

x =
k

∏

i=1

pγi

i , y =
k

∏

i=1

pδi

i , γi, δi ≥ 0.

One readily checks thataxn = bym is satisfied if and only if, for each
i = 1, . . . , k,

nγi − mδi = βi − αi. (12)

But since GCD(m,n) = 1, (12) will always have a solution in non-negative
integers.

(ii) Write the equation asx/y = n

√

b/a. First, computed = GCD(a, b)
using Euclid’s algorithm. Then divide outd from botha andb, to get new
numbersa1, b1. So far, this runs in polynomial time. Since GCD(b1, a1) =
1, the quotientb1/a1 is then:th power of a rational number if and only if
each ofa1 andb1 is then:th power of an integer (this follows easily from
FTA). Thus we just need to approximaten

√
b1 and n

√
a1. Clearly, an approx-

imation to the nearest integer can be obtained in polynomialtime (by some
kind of divide-and-conquer procedure, in other words, something which
uses the Intermediate Value Theorem), and hence we can also determine in
polynomial time if then:th roots are in fact integers and, if so, which ones.

Q.4 The first two properties are easy to verify, so I will concentrate on
the third. To simplify notation, putξ :=

√
−2. Let a, b be two non-zero el-

ements ofR. First supposeb is a positive integer and leta = x + yξ, where
x, y ∈ Z. Let r1, r2 be the numerically least residues ofx resp.y modulo
b, i.e.: the unique numbersr1, r2 ∈ (−b/2, b/2] such thatx = q1b + r1 and
y = q2b+ r2 for someq1, q2 ∈ Z. Let q := q1 + q2ξ andr := r1 + r2ξ. Then
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a = qb + r and

d(r) = r2

1 + 2r2

2 ≤ 3

(

b

2

)2

< b2 = d(b),

which proves property (iii) of a Euclidean domain in the casewhereb ∈ N.
Now consider a generalb ∈ R. Setu := ab, v := bb = d(b) ∈ N. By the
above, there existq, r ∈ R such that

u = qv + r and 0 < d(r) < d(v).

Dividing across byb we have thata = qb+r0, wherer0 = r/b. But the func-
tion d is clearly multiplicative, sod(v) = d(b)d(b) andd(r) = d(r0)d(b)
and hence0 < d(r) < d(v) implies that0 < d(r0) < d(b), so we are done.

REMARK : One may give a geometric decription of the above argument,
which is probably more enlightening than the‘algebraic’ presentation given
above.R = Z[

√
−2] is a rectangular lattice in the complex plane generated

by 1 and
√
−2. A rectangle with vertices at(0, 0), (1, 0), (1, 2) and(0, 2)

forms a fundamental domain for this lattice (once one removes an appro-
priate part of the boundary). The set{qb : q ∈ R} is an ideal in the ring
and corresponds geoemtrically to a sublattice generated bythe orthogonal
vectorsb and

√
−2 b. These two vectors span a rectangular fundamental

domainF for the sublattice. The pointa ∈ C must lie in some translate
of F , and hence there must be a point in the lattice whose distanceto a is
certainly no more than half the diameter ofF , i.e.: there existsq ∈ R such
that

|a − qb| ≤ 1

2
diam(F) =

1

2

√

d(b)2 + d(
√
−2 b)2 =

√
3

2
d(b) < d(b), v.s.v..

Q.5 (i) Since everyan ≥ 0, the limit, if it exists, must be non-negative.
Subadditivity implies thatan ≤ na1, hencean/n ≤ a1 for anyn. Hence
the sequence(an/n) is bounded and must have a convergent subsequence.
Suppose there is a subsequence(ani

/ni) converging to a limitL, say. IfL
is not the limit of the entire sequence then we can findǫ > 0 and another
subsequence(ami

/mi), such that, for alli ≥ i0,
∣

∣

∣

∣

ani

ni

− L

∣

∣

∣

∣

<
ǫ

2
,

∣

∣

∣

∣

ami

mi

− L

∣

∣

∣

∣

> ǫ. (13)

Let’s suppose that, for alli ≥ i0, ami
/mi > ani

/ni - a similar argument
works in the case of the reverse inequality holding. Thus, by(13), for all
i1, i2 ≥ i0 we have that

ami1

mi1

−
ani2

ni2

>
ǫ

2
.



7

In particular, for alli ≥ i0 one has that

ami

mi

−
ani0

ni0

>
ǫ

2
. (14)

Let S := max{as : 1 ≤ s < ni0}. For eachi, there exist integersqi, ri such
thatmi = qini0 + ri, where0 ≤ ri < ni0 . By subadditivity, we have that
ami

≤ qiani0
+ ari

and hence that

ami

mi

≤
qiani0

+ ari

mi

≤
ani0

ni0

+
S

mi

. (15)

Now S is a fixed number and thusS/mi → 0 asi → ∞. Hence (15) will
contradict (14) for all sufficiently largei. This completes the proof.

(REMARK : The result proven above is known in the literature asFakete’s
Lemma).

(ii) Let m,n ∈ N. If A is a subset of{1, 2, ...,m + n} which is free of
3-term arithmetic progressions, then bothA1 andA2 are also free of 3-APs,
whereA1 := A∩{1, ...,m} andA2 := A∩{m+1, ...,m+n}. This and the
fact that a translate of an AP is still an AP easily lead to the conclusion that
the functionf(n) in this exercise is sub-additive. Then the result follows
immediately from part (i).

(iii) First supposea0 6= 0. Let p be any prime which does not dividea0

and let the setA consist of all multiples ofp. ThenA contains no solutions
to the equationL, as it doesn’t even contain any solutions modulop. Hence,
in this case,

lim inf
n→∞

f(n)

n
≥ lim inf

n→∞

|A ∩ {1, ..., n}|
n

=
1

p
> 0.

Next, suppose
∑n

i=1
ai 6= 0. Let s :=

∑n

i=1
ai, let k be the smallest

positive integer such thatks 6= a0 and letp be any prime satisfyingp >
max{k|s|, |a0|}. Now letA = {n ∈ Z : n ≡ k (modp)}. It is easy to see
that A contains no solutions to the equationL, simply because it doesn’t
even contain any solutions modulop. Hence, as above,lim inf f(n)/n ≥
1/p > 0.

Q.6 (i) In general, one can construct a subset ofN containing no solutions
to some fixed equation by means of agreedy choice procedure, i.e.: go
through the natural numbers in increasing order and, at eachstep, add the
number to the setA if it doesn’t create any solutions. For some equations
(though by no means all !), this turns out to give an optimal construction.
An example is just the equation2x = y. It is easy to check that the setA
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obtained by this greedy choice is the set

A = {n ∈ N : 22k || n for somek ≥ 0}. (16)

In other words,A consists of all those number which are divisible by an
even power of2. This set has an asymptotic density given by

d(A) =
1

2

(

∞
∑

k=0

1

4k

)

=
2

3
.

No set avoiding solutions to2x = y can have a higher asymptotic upper
density. For ifB is such a set, thenB∩2B = φ, where2B = {2b : b ∈ B}.
Thus 1 ≥ d(B ∪ 2B) = d(B) + d(2B) = 3

2
d(B), which implies that

d(B) ≤ 2/3.
From the above reasoning, it is easy to deduce thatlimn→∞ f(n)/n =

2/3. In fact, if one argues more carefully, one can in fact show that, for
everyn ∈ N, the setA ∩ {1, ..., n}, whereA is given by (16), is a subset of
{1, ..., n} of largest possible size containing no solutions to2x = y.

(ii) The limit is at least1/2, because the set of odd numbers avoids so-
lutions to3x = y + z. In fact, the limit is1/2. See the 3-page supplemen-
tary document on the homepage for a proof of a more precise result. For
generalisations of the result, see Papers No. 25 and 29 on my research page.

Q.7 Factorise an integern as

n =
k

∏

i=1

pαi

i .

Then

d(n) =
k

∏

i=1

(αi + 1),

and hence

d(n)

nǫ
=

k
∏

i=1

αi + 1

pǫαi

i

.

Fix ǫ > 0. For a primep and a positive integerα, let fǫ(p, α) := α+1

pǫα . For
fixed ǫ, it is clear thatfǫ(p, α) → 0 as long as any one ofp andα goes to
infinity, even if the other is held fixed. In particular, therewill be only a
finite number (depending onǫ) of pairs(p, α) such thatfǫ(p, α) > 1/2. It
follows easily thatd(n)/nǫ → 0 asn → ∞.

(NOTE : You can replace1/2 by any number strictly less than one and
the argument will work).
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Q.8 It suffices to show that, for anyr > 1 andε > 0 sufficiently small,
there exist primesp, q such that(1− 2ε)r < p/q < (1+3ε)r. By the prime
number theorem,

π((1 − ε)x) ∼ (1 − ε)x

log(1 − ε)x
, π((1 + ε)x) ∼ (1 + ε)x

log(1 + ε)x
,

π((1 − ε)rx) ∼ (1 − ε)rx

log(1 − ε)rx
, π((1 + ε)rx)) ∼ (1 + ε)rx)

log(1 + ε)rx)
.

It follows that, forx sufficiently large andε sufficiently small, there exist
distinct primesp, q such that(1 − ε)x < q < (1 + ε)x and(1 − ε)rx <
p < (1 + ε)rx. Thusr

(

1−ε
1+ε

)

< p/q < r
(

1+ε
1−ε

)

, which in turn implies that
r(1 − 2ε) < p/q < (1 + 3ε)r, for sufficiently smallε.


