Solutions to Homework 1

Q. 1 (i) Let u_{1}, \ldots, u_{n} be any integers, positive or negative, satisfying

$$
a_{1} u_{1}+\cdots+a_{n} u_{n}=1 .
$$

We know from the lectures that such integers exist. Now let

$$
\begin{array}{r}
m:=\min \left\{a_{1}, \ldots, a_{n}\right\}, \\
M:=\max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\}, \tag{2}\\
s:=\sum_{i=1}^{n} a_{i} .
\end{array}
$$

Let $r_{0}:=s m M$. I claim that $G\left(a_{1}, \ldots, a_{n}\right)<r_{0}$. Clearly, there is a nonnegative solution to $\sum a_{i} x_{i}=r_{0}$, namely $x_{i}=m M$ for all i. Now let $\delta \in\{0,1, \ldots, m-1\}$. Then a solution to $\sum a_{i} x_{i}=r_{0}+\delta$ is given by

$$
\begin{equation*}
x_{i}=m M+\delta u_{i}, \quad i=1, \ldots, n . \tag{3}
\end{equation*}
$$

By (1) and (2), we see that each x_{i} in (3) is non-negative. Thus we have shown that there is a non-neagative solution to $\sum a_{i} x_{i}=r$, for each of a sequence of m integers starting at $r_{0}=s m M$. But from this it follows easily that there is a non-negative solution for any $r \geq r_{0}$. For suppose $a_{j}=m$. Then given a non-negative solution to $\sum a_{i} x_{i}=r$, for some r, a non-negative solution to $\sum a_{i} x_{i}^{\prime}=r+m$ is given by

$$
x_{i}^{\prime}=x_{i}, \quad \text { if } i \neq j, \quad x_{j}^{\prime}=x_{j}+1 .
$$

(ii) If $a_{1}=a_{2}=1$ then the theorem states that $G(1,1)=-1$, in other words that every non-negative integer can be written as $x+y$, for some $x, y \geq 0$. This is clear. So we may henceforth assume, without loss of generality, that $a_{1}>a_{2} \geq 1$. We shall show two things :

Claim 1 : There is no non-negative integer solution to

$$
\begin{equation*}
a_{1} x+a_{2} y=\left(a_{1}-1\right)\left(a_{2}-1\right)-1=a_{1} a_{2}-a_{1}-a_{2} . \tag{4}
\end{equation*}
$$

CLAIM 2 : There is a non-negative solution to

$$
a_{1} x+a_{2} y=\left(a_{1}-1\right)\left(a_{2}-1\right)+\delta,
$$

for every $\delta \in\left\{0,1, \ldots, a_{2}-1\right\}$. The fact that these claims in turn suffice to establish that $G\left(a_{1}, a_{2}\right)=\left(a_{1}-1\right)\left(a_{2}-1\right)-1$ is then argued in a manner similar to that given in part (i) above.

Proof of Claim 1: Assume the contrary, and let (x, y) be a non-negative solution. First look at (4) modulo a_{1}. It reads

$$
a_{2}(y+1) \equiv 0\left(\bmod a_{1}\right)
$$

Since $\operatorname{GCD}\left(a_{1}, a_{2}\right)=1$ it follows from FTA that $a_{1} \mid y+1$. Since y is nonnegative, this means that $y \geq a_{1}-1$. Similarly, by looking at (4) modulo a_{2} we find that $x \geq a_{2}-1$. But then
$a_{1} x+a_{2} y \geq a_{1}\left(a_{2}-1\right)+a_{2}\left(a_{1}-1\right)=2 a_{1} a_{2}-a_{1}-a_{2}>a_{1} a_{2}-a_{1}-a_{2}$, a contradiction.

Proof of Claim 2 : The equation we want to solve can be rewritten as

$$
\begin{equation*}
a_{1}(x+1)+a_{2}(y+1)=a_{1} a_{2}+\delta^{\prime}, \tag{5}
\end{equation*}
$$

where $\delta^{\prime} \in\left\{1,2, \ldots, a_{2}\right\}$. Since $\operatorname{GCD}\left(a_{1}, a_{2}\right)=1$, the integers $a_{1}, 2 a_{1}, \ldots, a_{2} a_{1}$ represent, in some order, all congruence classes modulo a_{2} exactly once. In particular, there is some $\xi \in\left\{1,2, \ldots, a_{2}\right\}$ such that

$$
a_{1} \xi \equiv \delta^{\prime}\left(\bmod a_{2}\right)
$$

In other words, there exists an integer $\eta \geq 0$ such that

$$
a_{1} \xi=\delta+a_{2} \eta \Rightarrow a_{1} \xi-a_{2} \eta=\delta
$$

Note that, since $\xi \leq a_{2}$, we also have $\eta<a_{1}$. Then a non-negative solution to (5) is given by $x+1=\xi, y+1=\eta+a_{1}$.
(iii) Note that $\operatorname{GCD}(7,19)=1$. Let

$$
\begin{equation*}
w:=7 x+19 y . \tag{6}
\end{equation*}
$$

Thus, in terms of w and z, the equation reads

$$
\begin{equation*}
w+23 z=11 . \tag{7}
\end{equation*}
$$

One solution to () is clearly $w=34, z=-1$. Since $\operatorname{GCD}(1,23)=1$, by Euclid the general solution to () is thus

$$
w=34+23 n, \quad z=-1-n, \quad n \in \mathbb{Z}
$$

Euclid also tells us that the general solution to (6) is

$$
x=x_{0} w+19 m, \quad y=y_{0} w-7 m, \quad m \in \mathbb{Z},
$$

where $7 x_{0}+19 y_{0}=1$. Clearly we can take, for example, $x_{0}=11, y_{0}=-4$. Substituting in everything, we find that the general solution to the original Diophantine equation is

$$
\begin{array}{r}
x=11(34+23 n)+19 m=19 m+253 n+374, \\
y=-4(34+23 n)-7 m=-7 m-92 n-136, \\
z=-1-n, \quad m, n \in \mathbb{Z} .
\end{array}
$$

(iv) There seems to be a general agreement among those who did the homework that $G(7,19,23)=62$. Note that $(3,1,1)$ is a solution to the equation
$7 x+19 y+23 z=63$.
(v) There is a solution if and only if $n \geq 12$ and
$n \notin\{13,14,15,16,18,20,21,23,25,28,30,35\}$. To see where the hell this problem came from, go to page 7 of the article
http://www.math.chalmers.se/~hegarty/HK_circle_oct26.pdf
Q. 2 (i) Clearly, it suffices to prove the result for all primitive triples. Let (x, y, z) be any such triple. By Theorem 3.8 in the lecture notes we have, without loss of generality,

$$
x=2 a b, \quad y=b^{2}-a^{2}, \quad z=b^{2}+a^{2},
$$

for some relatively prime integers $a<b$ of opposite parity. Since one of a and b is thus even, it follows that $4 \mid x$. If either a or b is divisible by 3 , then so is x. Otherwise, $b^{2} \equiv a^{2} \equiv 1(\bmod 3)$, so $3 \mid y$. In either case, $3 \mid x y$. Since already $4 \mid x$, FTA implies that $12 \mid x y$. Finally, it suffices to show that at least one of x, y, z is divisible by 5 . If either a or b is divisible by 5 , then so is x. Otherwise, each of a^{2} and b^{2} must be congruent to either +1 or $-1(\bmod$ 5). In particular, $b^{2} \equiv \pm a^{2}(\bmod 5)$, hence $5 \mid\left(b^{2} \mp a^{2}\right)$, i.e.: $5 \mid y$ or $5 \mid z$, as required.
(ii) Since t is odd, there exist positive integers i, j such that $t i-4 j=1$. Now let $m \in \mathbb{N}$ and take $x=y=2^{t m+j}, z=2^{4 m+i}$. Check that $x^{4}+y^{4}=z^{t}$. This gives an infinite family of solutions.
(iii) The exercise is easily reduced to proving that there are no 4-tuples $(a, b, c, d) \in \mathbb{N}^{4}$ satisfying the pair of equations

$$
\begin{equation*}
a^{2}+b^{2}=c^{2}, \quad a^{2}+d^{2}=b^{2} . \tag{8}
\end{equation*}
$$

We will use an infinite decscent argument - assuming a solution exists to (8), we will construct a "smaller" one, in a sense which will become evident as the argument unfolds. This will yield a contradiction.

We can assume both Pythagorean triples are primitive, because if a prime p divides any two of a, b, c, d, then it is easily seen to divide all four, and hence ($a / p, b / p, c / p, d / p$) will be a smaller 4-tuple satisfying (8). Since both triples are primitive, b must be odd, hence a must be even. By Theorem 3.8 in the lecture notes, there exist integers positive integers $x_{1}, y_{1}, x_{2}, y_{2}$, with $\operatorname{GCD}\left(x_{i}, y_{i}\right)=1, x_{i}$ and y_{i} of opposite parity, such that

$$
\begin{equation*}
a=2 x_{1} y_{1}=2 x_{2} y_{2}, \quad b=y_{1}^{2}-x_{1}^{2}=y_{2}^{2}+x_{2}^{2}, \quad c=y_{1}^{2}+x_{1}^{2}, \quad d=y_{2}^{2}-x_{2}^{2} . \tag{9}
\end{equation*}
$$

Note that the equations for b lead to

$$
\begin{equation*}
y_{1}^{2}=x_{1}^{2}+x_{2}^{2}+y_{2}^{2}, \tag{10}
\end{equation*}
$$

which forces y_{1} to be odd and x_{1} even, as vice versa would lead to the contradiction $0 \equiv 2(\bmod 4)$. Let
$g_{1}:=\operatorname{GCD}\left(x_{1}, x_{2}\right), \quad g_{2}:=\operatorname{GCD}\left(y_{1}, y_{2}\right), \quad g_{3}:=\operatorname{GCD}\left(x_{1}, y_{2}\right), \quad g_{4}:=\operatorname{GCD}\left(x_{2}, y_{1}\right)$.
Since $\operatorname{GCD}\left(x_{1}, y_{1}\right)=\operatorname{GCD}\left(x_{2}, y_{2}\right)=1$, it is easily seen that the g_{i} are pairwise relatively prime. Moreoever, the equations for a in (9) imply that $x_{1} y_{1}=x_{2} y_{2}$, from which it then follows that

$$
\begin{equation*}
x_{1}=g_{1} g_{3}, \quad x_{2}=g_{1} g_{4}, \quad y_{1}=g_{2} g_{4}, \quad y_{2}=g_{2} g_{3} \tag{11}
\end{equation*}
$$

Since y_{1} is odd and x_{1} even and the g_{i} are pairwise relatively prime, we deduce that g_{2} and g_{4} are both odd, and exactly one of g_{1} and g_{3} is even. If g_{1} is even and g_{3} odd, then substituting (11) into (10) leads to

$$
g_{2}^{2}\left(\frac{g_{4}^{2}-g_{3}^{2}}{2}\right)=g_{1}^{2}\left(\frac{g_{4}^{2}+g_{3}^{2}}{2}\right) .
$$

The terms on the left and right are relatively prime in pairs, so it must be the case (by FTA) that

$$
g_{2}^{2}=\frac{g_{4}^{2}+g_{3}^{2}}{2}, \quad g_{1}^{2}=\frac{g_{4}^{2}-g_{3}^{2}}{2}
$$

which implies that the 4 -tuple ($g_{1}, g_{2}, g_{4}, g_{3}$) also satisfies (8). But $g_{1} \leq$ $g_{1} g_{2} g_{3} g_{4}=x_{1} y_{1}<2 x_{1} y_{1}=a$, so this new 4 -tuple is indeed "smaller".

If instead g_{3} is even and g_{1} odd, a similar argument leads to the contradiction that ($g_{3}, g_{1}, g_{2}, g_{4}$) is a "smaller" 4 -tuple. This completes the proof.
(iv) Let $d=\operatorname{GCD}\left(p^{2}-q^{2}, p^{2}+q^{2}\right)$. Then d divides $\left(p^{2}-q^{2}\right) \pm\left(p^{2}+q^{2}\right)$, i.e.: d divides both $2 p^{2}$ and $2 q^{2}$. Hence d divides $\operatorname{GCD}\left(2 p^{2}, 2 q^{2}\right)=2$, since $\operatorname{GCD}(p, q)=1$. Hence if $p^{2}-q^{2}$ were to divide $p^{2}+q^{2}$, then $p^{2}-q^{2}$ would have to divide 2 , in other words, since $p>q$, either $p^{2}-q^{2}=1$ or $p^{2}-q^{2}=2$. It is easily checked that the latter equation has no integer solution, and the only solutions to the former are $p= \pm 1, q=0$. But p and q are assumed positive, contradiction.
(v) Suppose by way of contradiction that we have a solution $x^{4}-y^{4}=z^{2}$. If $d \mid x$ and $d \mid y$, then $d^{2} \mid z$ and so $\left(x / d, y / d, z / d^{2}\right)$ is another solution. We may thus suppose x, y, z are pairwise relatively prime. The equation factorises as $z^{2}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$. Since $\operatorname{GCD}(x, y)=1$ it follows easily (see part (iv)) that $\operatorname{GCD}\left(x^{2}-y^{2}, x^{2}+y^{2}\right) \in\{1,2\}$. If the GCD is 1 , then FTA implies that each of $x^{2}-y^{2}$ and $x^{2}+y^{2}$ is a square, i.e.: there exists integers a, b such that $x^{2}-y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$. But then the

4 -tuple (y, x, b, a) would satisfy (8), contradicting the fact that the latter system has no integer solutions. Similarly, if the GCD is 2, then we can write $\left(\frac{z}{2}\right)^{2}=\left(\frac{x^{2}-y^{2}}{2}\right)\left(\frac{x^{2}+y^{2}}{2}\right)$, and now each factor on the right must be a square. So in this case, there exists integers a, b such that $x^{2}-y^{2}=2 a^{2}$ and $x^{2}+y^{2}=2 b^{2}$. But then the 4 -tuple (a, b, x, y) satisfies (8), again a contradiction.
Q. 3 (i) Let $p_{1}, p_{2}, \ldots, p_{k}$ be the set of all primes appearing in the factorisations of either a or b. Let

$$
a=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}, \quad b=\prod_{i=1}^{k} p_{i}^{\beta_{i}}, \quad \alpha_{i}, \beta_{i} \geq 0 .
$$

We seek a solution of the form

$$
x=\prod_{i=1}^{k} p_{i}^{\gamma_{i}}, \quad y=\prod_{i=1}^{k} p_{i}^{\delta_{i}}, \quad \gamma_{i}, \delta_{i} \geq 0
$$

One readily checks that $a x^{n}=b y^{m}$ is satisfied if and only if, for each $i=1, \ldots, k$,

$$
\begin{equation*}
n \gamma_{i}-m \delta_{i}=\beta_{i}-\alpha_{i} . \tag{12}
\end{equation*}
$$

But since $\operatorname{GCD}(m, n)=1$, (12) will always have a solution in non-negative integers.
(ii) Write the equation as $x / y=\sqrt[n]{b / a}$. First, compute $d=\operatorname{GCD}(a, b)$ using Euclid's algorithm. Then divide out d from both a and b, to get new numbers a_{1}, b_{1}. So far, this runs in polynomial time. Since $\operatorname{GCD}\left(b_{1}, a_{1}\right)=$ 1 , the quotient b_{1} / a_{1} is the n :th power of a rational number if and only if each of a_{1} and b_{1} is the n :th power of an integer (this follows easily from FTA). Thus we just need to approximate $\sqrt[n]{b_{1}}$ and $\sqrt[n]{a_{1}}$. Clearly, an approximation to the nearest integer can be obtained in polynomial time (by some kind of divide-and-conquer procedure, in other words, something which uses the Intermediate Value Theorem), and hence we can also determine in polynomial time if the n :th roots are in fact integers and, if so, which ones.
Q. 4 The first two properties are easy to verify, so I will concentrate on the third. To simplify notation, put $\xi:=\sqrt{-2}$. Let a, b be two non-zero elements of R. First suppose b is a positive integer and let $a=x+y \xi$, where $x, y \in \mathbb{Z}$. Let r_{1}, r_{2} be the numerically least residues of x resp. y modulo b, i.e.: the unique numbers $r_{1}, r_{2} \in(-b / 2, b / 2]$ such that $x=q_{1} b+r_{1}$ and $y=q_{2} b+r_{2}$ for some $q_{1}, q_{2} \in \mathbb{Z}$. Let $q:=q_{1}+q_{2} \xi$ and $r:=r_{1}+r_{2} \xi$. Then
$a=q b+r$ and

$$
d(r)=r_{1}^{2}+2 r_{2}^{2} \leq 3\left(\frac{b}{2}\right)^{2}<b^{2}=d(b)
$$

which proves property (iii) of a Euclidean domain in the case where $b \in \mathbb{N}$. Now consider a general $b \in R$. Set $u:=a \bar{b}, v:=b \bar{b}=d(b) \in \mathbb{N}$. By the above, there exist $q, r \in R$ such that

$$
u=q v+r \text { and } 0<d(r)<d(v) .
$$

Dividing across by \bar{b} we have that $a=q b+r_{0}$, where $r_{0}=r / \bar{b}$. But the function d is clearly multiplicative, so $d(v)=d(b) d(\bar{b})$ and $d(r)=d\left(r_{0}\right) d(\bar{b})$ and hence $0<d(r)<d(v)$ implies that $0<d\left(r_{0}\right)<d(b)$, so we are done.

REMARK : One may give a geometric decription of the above argument, which is probably more enlightening than the 'algebraic' presentation given above. $R=\mathbb{Z}[\sqrt{-2}]$ is a rectangular lattice in the complex plane generated by 1 and $\sqrt{-2}$. A rectangle with vertices at $(0,0),(1,0),(1,2)$ and $(0,2)$ forms a fundamental domain for this lattice (once one removes an appropriate part of the boundary). The set $\{q b: q \in R\}$ is an ideal in the ring and corresponds geoemtrically to a sublattice generated by the orthogonal vectors b and $\sqrt{-2} b$. These two vectors span a rectangular fundamental domain \mathcal{F} for the sublattice. The point $a \in \mathcal{C}$ must lie in some translate of \mathcal{F}, and hence there must be a point in the lattice whose distance to a is certainly no more than half the diameter of \mathcal{F}, i.e.: there exists $q \in R$ such that
$|a-q b| \leq \frac{1}{2} \operatorname{diam}(\mathcal{F})=\frac{1}{2} \sqrt{d(b)^{2}+d(\sqrt{-2} b)^{2}}=\frac{\sqrt{3}}{2} d(b)<d(b), \quad$ v.s.v..
Q. 5 (i) Since every $a_{n} \geq 0$, the limit, if it exists, must be non-negative. Subadditivity implies that $a_{n} \leq n a_{1}$, hence $a_{n} / n \leq a_{1}$ for any n. Hence the sequence (a_{n} / n) is bounded and must have a convergent subsequence. Suppose there is a subsequence $\left(a_{n_{i}} / n_{i}\right)$ converging to a limit L, say. If L is not the limit of the entire sequence then we can find $\epsilon>0$ and another subsequence $\left(a_{m_{i}} / m_{i}\right)$, such that, for all $i \geq i_{0}$,

$$
\begin{equation*}
\left|\frac{a_{n_{i}}}{n_{i}}-L\right|<\frac{\epsilon}{2}, \quad\left|\frac{a_{m_{i}}}{m_{i}}-L\right|>\epsilon . \tag{13}
\end{equation*}
$$

Let's suppose that, for all $i \geq i_{0}, a_{m_{i}} / m_{i}>a_{n_{i}} / n_{i}$ - a similar argument works in the case of the reverse inequality holding. Thus, by (13), for all $i_{1}, i_{2} \geq i_{0}$ we have that

$$
\frac{a_{m_{i_{1}}}}{m_{i_{1}}}-\frac{a_{n_{i_{2}}}}{n_{i_{2}}}>\frac{\epsilon}{2} .
$$

In particular, for all $i \geq i_{0}$ one has that

$$
\begin{equation*}
\frac{a_{m_{i}}}{m_{i}}-\frac{a_{n_{i_{0}}}}{n_{i_{0}}}>\frac{\epsilon}{2} . \tag{14}
\end{equation*}
$$

Let $S:=\max \left\{a_{s}: 1 \leq s<n_{i_{0}}\right\}$. For each i, there exist integers q_{i}, r_{i} such that $m_{i}=q_{i} n_{i_{0}}+r_{i}$, where $0 \leq r_{i}<n_{i_{0}}$. By subadditivity, we have that $a_{m_{i}} \leq q_{i} a_{n_{i_{0}}}+a_{r_{i}}$ and hence that

$$
\begin{equation*}
\frac{a_{m_{i}}}{m_{i}} \leq \frac{q_{i} a_{n_{i_{0}}}+a_{r_{i}}}{m_{i}} \leq \frac{a_{n_{i_{0}}}}{n_{i_{0}}}+\frac{S}{m_{i}} . \tag{15}
\end{equation*}
$$

Now S is a fixed number and thus $S / m_{i} \rightarrow 0$ as $i \rightarrow \infty$. Hence (15) will contradict (14) for all sufficiently large i. This completes the proof.
(REMARK : The result proven above is known in the literature as Fakete's Lemma).
(ii) Let $m, n \in \mathbb{N}$. If A is a subset of $\{1,2, \ldots, m+n\}$ which is free of 3-term arithmetic progressions, then both A_{1} and A_{2} are also free of 3-APs, where $A_{1}:=A \cap\{1, \ldots, m\}$ and $A_{2}:=A \cap\{m+1, \ldots, m+n\}$. This and the fact that a translate of an AP is still an AP easily lead to the conclusion that the function $f(n)$ in this exercise is sub-additive. Then the result follows immediately from part (i).
(iii) First suppose $a_{0} \neq 0$. Let p be any prime which does not divide a_{0} and let the set A consist of all multiples of p. Then A contains no solutions to the equation \mathcal{L}, as it doesn't even contain any solutions modulo p. Hence, in this case,

$$
\liminf _{n \rightarrow \infty} \frac{f(n)}{n} \geq \liminf _{n \rightarrow \infty} \frac{|A \cap\{1, \ldots, n\}|}{n}=\frac{1}{p}>0 .
$$

Next, suppose $\sum_{i=1}^{n} a_{i} \neq 0$. Let $s:=\sum_{i=1}^{n} a_{i}$, let k be the smallest positive integer such that $k s \neq a_{0}$ and let p be any prime satisfying $p>$ $\max \left\{k|s|,\left|a_{0}\right|\right\}$. Now let $A=\{n \in \mathbb{Z}: n \equiv k(\bmod p)\}$. It is easy to see that A contains no solutions to the equation \mathcal{L}, simply because it doesn't even contain any solutions modulo p. Hence, as above, $\lim \inf f(n) / n \geq$ $1 / p>0$.
Q. 6 (i) In general, one can construct a subset of \mathbb{N} containing no solutions to some fixed equation by means of a greedy choice procedure, i.e.: go through the natural numbers in increasing order and, at each step, add the number to the set A if it doesn't create any solutions. For some equations (though by no means all!), this turns out to give an optimal construction. An example is just the equation $2 x=y$. It is easy to check that the set A
obtained by this greedy choice is the set

$$
\begin{equation*}
A=\left\{n \in \mathbb{N}: 2^{2 k} \| n \text { for some } k \geq 0\right\} \tag{16}
\end{equation*}
$$

In other words, A consists of all those number which are divisible by an even power of 2 . This set has an asymptotic density given by

$$
d(A)=\frac{1}{2}\left(\sum_{k=0}^{\infty} \frac{1}{4^{k}}\right)=\frac{2}{3} .
$$

No set avoiding solutions to $2 x=y$ can have a higher asymptotic upper density. For if B is such a set, then $B \cap 2 B=\phi$, where $2 B=\{2 b: b \in B\}$. Thus $1 \geq \bar{d}(B \cup 2 B)=\bar{d}(B)+\bar{d}(2 B)=\frac{3}{2} \bar{d}(B)$, which implies that $\bar{d}(B) \leq 2 / 3$.

From the above reasoning, it is easy to deduce that $\lim _{n \rightarrow \infty} f(n) / n=$ $2 / 3$. In fact, if one argues more carefully, one can in fact show that, for every $n \in \mathbb{N}$, the set $A \cap\{1, \ldots, n\}$, where A is given by (16), is a subset of $\{1, \ldots, n\}$ of largest possible size containing no solutions to $2 x=y$.
(ii) The limit is at least $1 / 2$, because the set of odd numbers avoids solutions to $3 x=y+z$. In fact, the limit is $1 / 2$. See the 3 -page supplementary document on the homepage for a proof of a more precise result. For generalisations of the result, see Papers No. 25 and 29 on my research page.
Q. 7 Factorise an integer n as

$$
n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}} .
$$

Then

$$
d(n)=\prod_{i=1}^{k}\left(\alpha_{i}+1\right)
$$

and hence

$$
\frac{d(n)}{n^{\epsilon}}=\prod_{i=1}^{k} \frac{\alpha_{i}+1}{p_{i}^{\epsilon \alpha_{i}}} .
$$

Fix $\epsilon>0$. For a prime p and a positive integer α, let $f_{\epsilon}(p, \alpha):=\frac{\alpha+1}{p^{c \alpha}}$. For fixed ϵ, it is clear that $f_{\epsilon}(p, \alpha) \rightarrow 0$ as long as any one of p and α goes to infinity, even if the other is held fixed. In particular, there will be only a finite number (depending on ϵ) of pairs (p, α) such that $f_{\epsilon}(p, \alpha)>1 / 2$. It follows easily that $d(n) / n^{\epsilon} \rightarrow 0$ as $n \rightarrow \infty$.
(Note: You can replace $1 / 2$ by any number strictly less than one and the argument will work).
Q. 8 It suffices to show that, for any $r>1$ and $\varepsilon>0$ sufficiently small, there exist primes p, q such that $(1-2 \varepsilon) r<p / q<(1+3 \varepsilon) r$. By the prime number theorem,

$$
\begin{array}{r}
\pi((1-\varepsilon) x) \sim \frac{(1-\varepsilon) x}{\log (1-\varepsilon) x}, \quad \pi((1+\varepsilon) x) \sim \frac{(1+\varepsilon) x}{\log (1+\varepsilon) x}, \\
\left.\pi((1-\varepsilon) r x) \sim \frac{(1-\varepsilon) r x}{\log (1-\varepsilon) r x}, \quad \pi((1+\varepsilon) r x)\right) \sim \frac{(1+\varepsilon) r x)}{\log (1+\varepsilon) r x)} .
\end{array}
$$

It follows that, for x sufficiently large and ε sufficiently small, there exist distinct primes p, q such that $(1-\varepsilon) x<q<(1+\varepsilon) x$ and $(1-\varepsilon) r x<$ $p<(1+\varepsilon) r x$. Thus $r\left(\frac{1-\varepsilon}{1+\varepsilon}\right)<p / q<r\left(\frac{1+\varepsilon}{1-\varepsilon}\right)$, which in turn implies that $r(1-2 \varepsilon)<p / q<(1+3 \varepsilon) r$, for sufficiently small ε.

