
Solutions to Homework 2

Q.1. Denote[n] = {1, . . . , n} for simplicity. We have

n2 · pn = #{(a, b) ∈ [n] × [n] : GCD(a, b) = 1}. (1)

On the other hand,
n

∑

k=1

φ(k) = #{(a, b) ∈ [n] × [n] : GCD(a, b) = 1 anda ≤ b}. (2)

Hence

n2 · pn = 2
n

∑

k=1

φ(k) − 1,

since every unordered pair{a, b} of elements of[n] is counted twice in (1)
and once in (2), except for{1, 1}, which is counted once in both. Theorem
1.7 in Suppl. Week 46 now implies thatn2 · pn → 6/π2, v.s.v.

Q.2. Let p be an odd prime. Ifa were a primitive root modp, thena(modp)
would be a generator of the groupZ

×
p . But this is a cyclic group of even or-

derp−1, hence any square will lie in the unique subgroup of order(p−1)/2
and cannot be a generator.

Q.3. φ(37) = 36 and the divisors of36 are 1, 2, 3, 4, 6, 9, 12, 18, 36.
Hence ifx ∈ [1, 36], thenx is a primitive root modulo37 if and only if
xn 6≡ 1 (mod37) for n ∈ {1, 2, 3, 4, 6, 9, 12, 18}. We can start testing
with x = 2, and in fact this already works. For, modulo37,

21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 16,

26 ≡ 27, 29 ≡ 31, 212 ≡ 26, 218 ≡ −1.

So2 is one primitive root. The complete list of primitive roots modulo37
is given by

{2t (mod37) : 1 ≤ t ≤ 36 and GCD(t, 36) = 1}.

Nowφ(36) = φ(22 ·32) = (22−2)(32−3) = 12, so there are12 possibilities
for t, and one readily checks that these are

t ∈ {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35}.

So it remains to compute2t (mod37) for eacht in this list. Note that, since
37 ≡ 1(mod4), if x is a primitive root then so is37 − x, so we really only
need to compute half of them. Anyway, one finds that the complete list of
primitive roots modulo37 is

{±2, ±5, ±13, ±15, ±17, ±18}.
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Q.4(i) For each primep, let Sp denote the set of those positive integersn
such that the highest power ofp dividing n is an even power. Then, as
proven in the lectures,

S2 =
⋂

p≡3 (mod4)

Sp. (3)

Consider any suchp. Let pSp := {pn : n ∈ Sp}. ThenN is the disjoint
union of Sp andpSp. Sinced(pSp) = 1

p
d(Sp), it follows that d(Sp) =

1 − 1
p+1

. By (4) and the Chinese Remainder Theorem, it follows that

d(S2) =
∏

p≡3 (mod4)

(

1 −
1

p + 1

)

.

So we just need to prove that the infinite product converges tozero. Taking
logarithms in the usual manner, this is equivalent to showing that

∑

p≡3 (mod4)

1

p + 1
= +∞.

But this fact follows from the analytic form of Dirichlet’s theorem (Theo-
rem 15.2 in the lecture notes).

(ii) From Theorem 10.1 in the lecture notes, we know that the complement
Sc

3 is given by
Sc

3 = {4k(8l + 7) : k, l ∈ N0}.

Hence,

d(Sc
3) =

1

8

(

∞
∑

k=0

1

4k

)

=
1

8
×

4

3
=

1

6

and sod(S3) = 1 − 1
6

= 5
6
.

Q.5. This alternative proof of Theorem 9.3 is due to Donald Zagier. See

D. ZAGIER, A one-sentence proof that every primep ≡ 1(mod4) is a
sum of two squares,Amer. Math. Monthly 97, No. 2, (1990), p. 144.

Q.6. First, one computes16144 = 24 · 1009, so
(

16144

377

)

=

(

2

377

)4 (

1009

377

)

=

(

1009

377

)

.

Next, since1009 = 2 · 377 + 255, we have
(

1009

377

)

=

(

255

377

)

.
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Since377 ≡ 1 (mod4), Jacobi reciprocity implies that
(

255

377

)

=

(

377

255

)

.

Next, since377 = 1 · 255 + 122 one has
(

377

255

)

=

(

122

255

)

=

(

2

255

)(

61

255

)

=

(

61

255

)

,

since255 ≡ 7 (mod8) and hence
(

2
255

)

= +1. Next, since61 ≡ 1 (mod4),
Jacobi reciprocity implies that

(

61

255

)

=

(

255

61

)

.

Since255 = 4 · 61 + 11, one deduces in turn that
(

255

61

)

=

(

11

61

)

.

Since61 ≡ 1 (mod4), Jacobi reciprocity and the fact that61 = 5 · 11 + 6
now give that

(

11

61

)

=

(

61

11

)

=

(

6

11

)

.

Since11 ≡ 3 (mod8), we then have
(

6

11

)

=

(

2

11

)(

3

11

)

= −

(

3

11

)

.

Since both3 and11 are congruent to3 (mod4), Jacobi reciprocity implies
that

−

(

3

11

)

= −

[

−

(

11

3

)]

=

(

11

3

)

.

And now, finally, since11 ≡ 2 (mod3), we have
(

11

3

)

=

(

2

3

)

= −1.

So we conclude that
(

16144

377

)

= −1.

Q.7(i) The proof is by contradiction. Suppose that the limit is not zero.
Then there existsǫ > 0, an infinite sequenceN1 < N2 < · · · of positive
integers and subsetsAi ⊆ [1, Ni] such that each|Ai| ≥ ǫNi and eachAi is
free of non-trivial solutions toL. I claim that there is some constantC > 0,
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depending onL only, such that the following holds :

Let (x1, ..., xn) ∈ N
n be any non-trivial solution toL. Let t1 < t2 <

· · · < tk be the full list of distinct integers such that everyxi equals one of
thetj. Thentj+1/tj ≤ C for eachj = 1, ..., k − 1.

Indeed, it is here that we use the fact that we are only interested in non-
trivial solutions. Non-triviality implies that, for any fixedj ∈ {1, ..., k},

∑

xi=tj

ai 6= 0,

and it is this which implies the existence of the constantC, depending only
on the coefficientsa1, ..., an.

Now choose a sequenced1, d2, ... of positive integers which recursively sat-
isfy

dl > C

(

l
∑

i=1

Ni +
l−1
∑

i=1

di

)

.

We are going to construct a setA ⊆ N which is free of non-trivial solutions
to L and satisfiesd(A) ≥ ǫ - this will give the desired contradiction. For
eachl > 0, put

Bl = Al + ξl = {u + ξl : u ∈ Al},

where

ξl :=
l

∑

i=1

(Ni + di).

Then take

A =
∞
⊔

l=1

Bl.

Indeed, by construction theBl do not overlap and, crucially, the the choice
of the numbersdl ensures that any non-trivial solution toL in A must be
entirely contained inside just one of theBl. But eachBl is just a translate
of the correspondingAl, and hence is free of non-trivial solutions.

Finally, for eachl > 0, let Ml be the rightmost element ofBl. It is clear
from the construction that|A ∩ [1,Ml]| > ǫMl, and henced(A) ≥ ǫ, v.s.v.

(ii) Let (x1, ..., xn) be any non-trivial solution toL :
∑n

i=1 aixi = 0, where
L is invariant, i.e.:

∑n
i=1 ai = 0. Let k = max{|xi| : i = 1, ..., n}. Now

let A be subset ofN of positive upper density. By Szemerédi’s theorem,A
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contains a non-trivial arithmetic progression of length2k+1, which we can
write as

{a − kd, a − (k − 1)d, ..., a, a + d, ..., a + kd}, a, d, a − kd ∈ N.

For i = 1, ..., n, setyi := a + xid. Then
∑

aiyi =
(

∑

ai

)

a +
(

∑

aixi

)

d = 0 + 0 = 0,

so (y1, ..., yn) is a solution toL insideA. Since the solution(x1, ..., xn)
was assumed to be non-tririval, so also is the solution(y1, ..., yn). HenceA
contains non-trivial solutions toL, as desired.

Q.8(i) Regarding the functiond(n), we have

S :=
N

∑

n=1

d(n) =
N

∑

n=1





∑

d|n

1



 =
N

∑

d=1

⌊
N

d
⌋.

Now ⌊N/d⌋ = N/d + O(1), hence

S = N

(

N
∑

d=1

1

d

)

+
N

∑

d=1

O(1) = N(log N + O(1)) + O(N) = N log N + O(N),

which implies thatS ∼ N log N .

(ii) Regarding the functionσ(n), we have

S :=
N

∑

n=1

σ(n) =
N

∑

n=1





∑

d|n

d



 =
N

∑

n=1





∑

d|n

n

d





=
N

∑

d=1





⌊N/d⌋
∑

m=1

m



 =
N

∑

d=1

{

1

2
⌊
N

d
⌋

(

⌊
N

d
⌋ + 1

)}

=
N

∑

d=1

{

N2

2d2
+ O

(

N

d

)}

=
N2

2

(

N
∑

d=1

1

d2

)

+ O

(

N ·
N

∑

d=1

1

d

)

.

Hence, asN → ∞, one has

S →
N2

2
ζ(2) + O(N log N) =

π2

12
N2 + O(N log N),

so thatS ∼ π2

12
N2, v.s.v.

Q.9. Numbers of formulas below are in the Supplementary Lecture Notes
for Week 46.
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(i) Suppose Re(s) > 2. Then, by (1.5) and (1.6),

ζ(s − 1)

ζ(s)
= ζ(s − 1) ×

1

ζ(s)
=

(

∞
∑

n=1

1

ns−1

) (

∞
∑

n=1

µ(n)

ns

)

=

(

∞
∑

n=1

n

ns

) (

∞
∑

n=1

µ(n)

ns

)

=
∞

∑

n=1

∑

d|n µ(d)n
d

ns
=

∞
∑

n=1

φ(n)

ns
.

To summarise, for Re(s) > 2 one has the series representation

ζ(s − 1)

ζ(s)
=

∞
∑

n=1

φ(n)

ns
.

(ii) Suppose Re(s) > 1. Then

(ζ(s))2 = ζ(s) · ζ(s) =

(

∞
∑

n=1

1

ns

) (

∞
∑

n=1

1

ns

)

=
∞

∑

n=1

∑

d|n 1

ns
=

∞
∑

n=1

d(n)

ns
.

(iii) Suppose Re(s) > 2. Then

ζ(s)ζ(s − 1) =

(

∞
∑

n=1

1

ns

) (

∞
∑

n=1

n

ns

)

=
∞

∑

n=1

∑

d|n d

ns
=

∞
∑

n=1

σ(n)

ns
.

Q.10. HereCn denotes the cyclic group of ordern. Let p − 1 have prime
factorisation

p − 1 =
k

∏

i=1

qαi

i .

Then

Z
×
p
∼= Cp−1

∼=

k
∏

i=1

Cq
αi
i

. (4)

Let x1, ..., xk be integers (modp) which generate the cyclic factors in the
product (4), and note that

x =
k

∏

i=1

xui

i (5)

is a primitive root modp if and only if GCD(ui, qi) = 1 for i = 1, ..., k.

CASE 1: µ(p − 1) = 0.

This means thatp − 1 is not squarefree, in other words that someαi > 1.
Without loss of generality, suppose thatα1 > 1. Now leta := xq1

1 (modp).



7

Thenx is a primitive root modp if and only if ax is. LetP denote the set
of all primitive roots modp. Then, modp,

S ≡
∑

x∈P

x ≡
∑

x∈P

ax ≡ aS.

But, sinceα1 > 1, we havea 6≡ 0 (modp). Hence we must haveS ≡
0 (modp). This deals with Case 1.

CASE 2: µ(p − 1) = (−1)k.

This means that eachαi = 1. Then, by (5),

∑

x∈P

x ≡

q1−1
∑

u1=1

· · ·

qk−1
∑

uk=1

xu1

1 · · ·xuk

k =
k

∏

i=1

(

qi−1
∑

ui=1

xui

i

)

. (6)

Fix anyi. Thenxqi

i ≡ 1 (modp), hence, modp,

0 ≡ xqi

i − 1 = (xi − 1)(1 + xi + · · · + xqi−1
i ).

Sincexi 6≡ 1, it follows that

1 + xi + · · · + xqi−1
i ≡ 0 (modp).

In other words, every factor in the product (6) is congruent to −1 (modp).
Hence the product is congruent to(−1)k = µ(p − 1), v.s.v.

Q.11. This is a well-known result calledWolstenholme’s Theorem. For
a presentation of the‘standard proof’, see for example

http://projectpen.files.wordpress.com/2009/04/pen-a23-a24-version-edited2.pdf


