Solutions to Homework 2

Q.1. Denote $[n]=\{1, \ldots, n\}$ for simplicity. We have

$$
\begin{equation*}
n^{2} \cdot p_{n}=\#\{(a, b) \in[n] \times[n]: \operatorname{GCD}(a, b)=1\} \tag{1}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\sum_{k=1}^{n} \phi(k)=\#\{(a, b) \in[n] \times[n]: \operatorname{GCD}(a, b)=1 \text { and } a \leq b\} \tag{2}
\end{equation*}
$$

Hence

$$
n^{2} \cdot p_{n}=2 \sum_{k=1}^{n} \phi(k)-1,
$$

since every unordered pair $\{a, b\}$ of elements of $[n]$ is counted twice in (1) and once in (2), except for $\{1,1\}$, which is counted once in both. Theorem 1.7 in Suppl. Week 46 now implies that $n^{2} \cdot p_{n} \rightarrow 6 / \pi^{2}$, v.s.v.
Q.2. Let p be an odd prime. If a were a primitive root $\bmod p$, then $a(\bmod p)$ would be a generator of the group \mathbb{Z}_{p}^{\times}. But this is a cyclic group of even order $p-1$, hence any square will lie in the unique subgroup of order $(p-1) / 2$ and cannot be a generator.
Q.3. $\phi(37)=36$ and the divisors of 36 are $1,2,3,4,6,9,12,18,36$. Hence if $x \in[1,36]$, then x is a primitive root modulo 37 if and only if $x^{n} \not \equiv 1(\bmod 37)$ for $n \in\{1,2,3,4,6,9,12,18\}$. We can start testing with $x=2$, and in fact this already works. For, modulo 37 ,

$$
\begin{array}{r}
2^{1} \equiv 2, \quad 2^{2} \equiv 4, \quad 2^{3} \equiv 8, \quad 2^{4} \equiv 16 \\
2^{6} \equiv 27, \quad 2^{9} \equiv 31, \quad 2^{12} \equiv 26, \quad 2^{18} \equiv-1
\end{array}
$$

So 2 is one primitive root. The complete list of primitive roots modulo 37 is given by

$$
\left\{2^{t}(\bmod 37): 1 \leq t \leq 36 \text { and } \operatorname{GCD}(t, 36)=1\right\}
$$

Now $\phi(36)=\phi\left(2^{2} \cdot 3^{2}\right)=\left(2^{2}-2\right)\left(3^{2}-3\right)=12$, so there are 12 possibilities for t, and one readily checks that these are

$$
t \in\{1,5,7,11,13,17,19,23,25,29,31,35\}
$$

So it remains to compute $2^{t}(\bmod 37)$ for each t in this list. Note that, since $37 \equiv 1(\bmod 4)$, if x is a primitive root then so is $37-x$, so we really only need to compute half of them. Anyway, one finds that the complete list of primitive roots modulo 37 is

$$
\{ \pm 2, \pm 5, \pm 13, \pm 15, \pm 17, \pm 18\}
$$

Q.4(i) For each prime p, let S^{p} denote the set of those positive integers n such that the highest power of p dividing n is an even power. Then, as proven in the lectures,

$$
\begin{equation*}
S_{2}=\bigcap_{p \equiv 3(\bmod 4)} S^{p} \tag{3}
\end{equation*}
$$

Consider any such p. Let $p S^{p}:=\left\{p n: n \in S^{p}\right\}$. Then \mathbb{N} is the disjoint union of S^{p} and $p S^{p}$. Since $d\left(p S^{p}\right)=\frac{1}{p} d\left(S^{p}\right)$, it follows that $d\left(S^{p}\right)=$ $1-\frac{1}{p+1}$. By (4) and the Chinese Remainder Theorem, it follows that

$$
d\left(S_{2}\right)=\prod_{p \equiv 3(\bmod 4)}\left(1-\frac{1}{p+1}\right) .
$$

So we just need to prove that the infinite product converges to zero. Taking logarithms in the usual manner, this is equivalent to showing that

$$
\sum_{p \equiv 3(\bmod 4)} \frac{1}{p+1}=+\infty
$$

But this fact follows from the analytic form of Dirichlet's theorem (Theorem 15.2 in the lecture notes).
(ii) From Theorem 10.1 in the lecture notes, we know that the complement S_{3}^{c} is given by

$$
S_{3}^{c}=\left\{4^{k}(8 l+7): k, l \in \mathbb{N}_{0}\right\} .
$$

Hence,

$$
d\left(S_{3}^{c}\right)=\frac{1}{8}\left(\sum_{k=0}^{\infty} \frac{1}{4^{k}}\right)=\frac{1}{8} \times \frac{4}{3}=\frac{1}{6}
$$

and so $d\left(S_{3}\right)=1-\frac{1}{6}=\frac{5}{6}$.
Q.5. This alternative proof of Theorem 9.3 is due to Donald Zagier. See
D. ZAGIER, A one-sentence proof that every prime $p \equiv 1(\bmod 4)$ is a sum of two squares, Amer. Math. Monthly 97, No. 2, (1990), p. 144.
Q.6. First, one computes $16144=2^{4} \cdot 1009$, so

$$
\left(\frac{16144}{377}\right)=\left(\frac{2}{377}\right)^{4}\left(\frac{1009}{377}\right)=\left(\frac{1009}{377}\right) .
$$

Next, since $1009=2 \cdot 377+255$, we have

$$
\left(\frac{1009}{377}\right)=\left(\frac{255}{377}\right) .
$$

Since $377 \equiv 1(\bmod 4)$, Jacobi reciprocity implies that

$$
\left(\frac{255}{377}\right)=\left(\frac{377}{255}\right) .
$$

Next, since $377=1 \cdot 255+122$ one has

$$
\left(\frac{377}{255}\right)=\left(\frac{122}{255}\right)=\left(\frac{2}{255}\right)\left(\frac{61}{255}\right)=\left(\frac{61}{255}\right)
$$

since $255 \equiv 7(\bmod 8)$ and hence $\left(\frac{2}{255}\right)=+1$. Next, since $61 \equiv 1(\bmod 4)$, Jacobi reciprocity implies that

$$
\left(\frac{61}{255}\right)=\left(\frac{255}{61}\right) .
$$

Since $255=4 \cdot 61+11$, one deduces in turn that

$$
\left(\frac{255}{61}\right)=\left(\frac{11}{61}\right)
$$

Since $61 \equiv 1(\bmod 4)$ Jacobi reciprocity and the fact that $61=5 \cdot 11+6$ now give that

$$
\left(\frac{11}{61}\right)=\left(\frac{61}{11}\right)=\left(\frac{6}{11}\right) .
$$

Since $11 \equiv 3(\bmod 8)$, we then have

$$
\left(\frac{6}{11}\right)=\left(\frac{2}{11}\right)\left(\frac{3}{11}\right)=-\left(\frac{3}{11}\right) .
$$

Since both 3 and 11 are congruent to $3(\bmod 4)$, Jacobi reciprocity implies that

$$
-\left(\frac{3}{11}\right)=-\left[-\left(\frac{11}{3}\right)\right]=\left(\frac{11}{3}\right) .
$$

And now, finally, since $11 \equiv 2(\bmod 3)$, we have

$$
\left(\frac{11}{3}\right)=\left(\frac{2}{3}\right)=-1
$$

So we conclude that

$$
\left(\frac{16144}{377}\right)=-1
$$

Q.7(i) The proof is by contradiction. Suppose that the limit is not zero. Then there exists $\epsilon>0$, an infinite sequence $N_{1}<N_{2}<\cdots$ of positive integers and subsets $A_{i} \subseteq\left[1, N_{i}\right]$ such that each $\left|A_{i}\right| \geq \epsilon N_{i}$ and each A_{i} is free of non-trivial solutions to \mathcal{L}. I claim that there is some constant $C>0$,
depending on \mathcal{L} only, such that the following holds :
Let $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ be any non-trivial solution to \mathcal{L}. Let $t_{1}<t_{2}<$ $\cdots<t_{k}$ be the full list of distinct integers such that every x_{i} equals one of the t_{j}. Then $t_{j+1} / t_{j} \leq C$ for each $j=1, \ldots, k-1$.

Indeed, it is here that we use the fact that we are only interested in nontrivial solutions. Non-triviality implies that, for any fixed $j \in\{1, \ldots, k\}$,

$$
\sum_{x_{i}=t_{j}} a_{i} \neq 0,
$$

and it is this which implies the existence of the constant C, depending only on the coefficients a_{1}, \ldots, a_{n}.

Now choose a sequence d_{1}, d_{2}, \ldots of positive integers which recursively satisfy

$$
d_{l}>C\left(\sum_{i=1}^{l} N_{i}+\sum_{i=1}^{l-1} d_{i}\right) .
$$

We are going to construct a set $A \subseteq \mathbb{N}$ which is free of non-trivial solutions to \mathcal{L} and satisfies $\bar{d}(A) \geq \epsilon$ - this will give the desired contradiction. For each $l>0$, put

$$
B_{l}=A_{l}+\xi_{l}=\left\{u+\xi_{l}: u \in A_{l}\right\},
$$

where

$$
\xi_{l}:=\sum_{i=1}^{l}\left(N_{i}+d_{i}\right) .
$$

Then take

$$
A=\bigsqcup_{l=1}^{\infty} B_{l} .
$$

Indeed, by construction the B_{l} do not overlap and, crucially, the the choice of the numbers d_{l} ensures that any non-trivial solution to \mathcal{L} in A must be entirely contained inside just one of the B_{l}. But each B_{l} is just a translate of the corresponding A_{l}, and hence is free of non-trivial solutions.

Finally, for each $l>0$, let M_{l} be the rightmost element of B_{l}. It is clear from the construction that $\left|A \cap\left[1, M_{l}\right]\right|>\epsilon M_{l}$, and hence $\bar{d}(A) \geq \epsilon$, v.s.v.
(ii) Let $\left(x_{1}, \ldots, x_{n}\right)$ be any non-trivial solution to $\mathcal{L}: \sum_{i=1}^{n} a_{i} x_{i}=0$, where \mathcal{L} is invariant, i.e.: $\sum_{i=1}^{n} a_{i}=0$. Let $k=\max \left\{\left|x_{i}\right|: i=1, \ldots, n\right\}$. Now let A be subset of \mathbb{N} of positive upper density. By Szemerédi's theorem, A
contains a non-trivial arithmetic progression of length $2 k+1$, which we can write as

$$
\{a-k d, a-(k-1) d, \ldots, a, a+d, \ldots, a+k d\}, \quad a, d, a-k d \in \mathbb{N}
$$

For $i=1, \ldots, n$, set $y_{i}:=a+x_{i} d$. Then

$$
\sum a_{i} y_{i}=\left(\sum a_{i}\right) a+\left(\sum a_{i} x_{i}\right) d=0+0=0
$$

so $\left(y_{1}, \ldots, y_{n}\right)$ is a solution to \mathcal{L} inside A. Since the solution $\left(x_{1}, \ldots, x_{n}\right)$ was assumed to be non-tririval, so also is the solution $\left(y_{1}, \ldots, y_{n}\right)$. Hence A contains non-trivial solutions to \mathcal{L}, as desired.
Q.8(i) Regarding the function $d(n)$, we have

$$
S:=\sum_{n=1}^{N} d(n)=\sum_{n=1}^{N}\left(\sum_{d \mid n} 1\right)=\sum_{d=1}^{N}\left\lfloor\frac{N}{d}\right\rfloor
$$

Now $\lfloor N / d\rfloor=N / d+O(1)$, hence
$S=N\left(\sum_{d=1}^{N} \frac{1}{d}\right)+\sum_{d=1}^{N} O(1)=N(\log N+O(1))+O(N)=N \log N+O(N)$, which implies that $S \sim N \log N$.
(ii) Regarding the function $\sigma(n)$, we have

$$
\begin{array}{r}
S:=\sum_{n=1}^{N} \sigma(n)=\sum_{n=1}^{N}\left(\sum_{d \mid n} d\right)=\sum_{n=1}^{N}\left(\sum_{d \mid n} \frac{n}{d}\right) \\
=\sum_{d=1}^{N}\left(\sum_{m=1}^{\lfloor N / d\rfloor} m\right)=\sum_{d=1}^{N}\left\{\frac{1}{2}\left\lfloor\frac{N}{d}\right\rfloor\left(\left\lfloor\frac{N}{d}\right\rfloor+1\right)\right\} \\
=\sum_{d=1}^{N}\left\{\frac{N^{2}}{2 d^{2}}+O\left(\frac{N}{d}\right)\right\}=\frac{N^{2}}{2}\left(\sum_{d=1}^{N} \frac{1}{d^{2}}\right)+O\left(N \cdot \sum_{d=1}^{N} \frac{1}{d}\right) .
\end{array}
$$

Hence, as $N \rightarrow \infty$, one has

$$
S \rightarrow \frac{N^{2}}{2} \zeta(2)+O(N \log N)=\frac{\pi^{2}}{12} N^{2}+O(N \log N)
$$

so that $S \sim \frac{\pi^{2}}{12} N^{2}$, v.s.v.
Q.9. Numbers of formulas below are in the Supplementary Lecture Notes for Week 46.
(i) Suppose $\operatorname{Re}(s)>2$. Then, by (1.5) and (1.6),

$$
\begin{aligned}
& \frac{\zeta(s-1)}{\zeta(s)}=\zeta(s-1) \times \frac{1}{\zeta(s)}=\left(\sum_{n=1}^{\infty} \frac{1}{n^{s-1}}\right)\left(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}\right) \\
& =\left(\sum_{n=1}^{\infty} \frac{n}{n^{s}}\right)\left(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}\right)=\sum_{n=1}^{\infty} \frac{\sum_{d \mid n} \mu(d) \frac{n}{d}}{n^{s}}=\sum_{n=1}^{\infty} \frac{\phi(n)}{n^{s}} .
\end{aligned}
$$

To summarise, for $\operatorname{Re}(s)>2$ one has the series representation

$$
\frac{\zeta(s-1)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\phi(n)}{n^{s}} .
$$

(ii) Suppose $\operatorname{Re}(s)>1$. Then

$$
(\zeta(s))^{2}=\zeta(s) \cdot \zeta(s)=\left(\sum_{n=1}^{\infty} \frac{1}{n^{s}}\right)\left(\sum_{n=1}^{\infty} \frac{1}{n^{s}}\right)=\sum_{n=1}^{\infty} \frac{\sum_{d \mid n} 1}{n^{s}}=\sum_{n=1}^{\infty} \frac{d(n)}{n^{s}} .
$$

(iii) Suppose $\operatorname{Re}(s)>2$. Then

$$
\zeta(s) \zeta(s-1)=\left(\sum_{n=1}^{\infty} \frac{1}{n^{s}}\right)\left(\sum_{n=1}^{\infty} \frac{n}{n^{s}}\right)=\sum_{n=1}^{\infty} \frac{\sum_{d \mid n} d}{n^{s}}=\sum_{n=1}^{\infty} \frac{\sigma(n)}{n^{s}} .
$$

Q.10. Here C_{n} denotes the cyclic group of order n. Let $p-1$ have prime factorisation

$$
p-1=\prod_{i=1}^{k} q_{i}^{\alpha_{i}} .
$$

Then

$$
\begin{equation*}
\mathbb{Z}_{p}^{\times} \cong C_{p-1} \cong \prod_{i=1}^{k} C_{q_{i}^{\alpha_{i}}} . \tag{4}
\end{equation*}
$$

Let x_{1}, \ldots, x_{k} be integers $(\bmod p)$ which generate the cyclic factors in the product (4), and note that

$$
\begin{equation*}
x=\prod_{i=1}^{k} x_{i}^{u_{i}} \tag{5}
\end{equation*}
$$

is a primitive root $\bmod p$ if and only if $G C D\left(u_{i}, q_{i}\right)=1$ for $i=1, \ldots, k$.
CASE 1: $\mu(p-1)=0$.
This means that $p-1$ is not squarefree, in other words that some $\alpha_{i}>1$. Without loss of generality, suppose that $\alpha_{1}>1$. Now let $a:=x_{1}^{q_{1}}(\bmod p)$.

Then x is a primitive root $\bmod p$ if and only if $a x$ is. Let \mathcal{P} denote the set of all primitive roots $\bmod p$. Then, $\bmod p$,

$$
S \equiv \sum_{x \in \mathcal{P}} x \equiv \sum_{x \in \mathcal{P}} a x \equiv a S
$$

But, since $\alpha_{1}>1$, we have $a \not \equiv 0(\bmod p)$. Hence we must have $S \equiv$ $0(\bmod p)$. This deals with Case 1.

CASE 2: $\mu(p-1)=(-1)^{k}$.
This means that each $\alpha_{i}=1$. Then, by (5),

$$
\begin{equation*}
\sum_{x \in \mathcal{P}} x \equiv \sum_{u_{1}=1}^{q_{1}-1} \cdots \sum_{u_{k}=1}^{q_{k}-1} x_{1}^{u_{1}} \cdots x_{k}^{u_{k}}=\prod_{i=1}^{k}\left(\sum_{u_{i}=1}^{q_{i}-1} x_{i}^{u_{i}}\right) . \tag{6}
\end{equation*}
$$

Fix any i. Then $x_{i}^{q_{i}} \equiv 1(\bmod p)$, hence, $\bmod p$,

$$
0 \equiv x_{i}^{q_{i}}-1=\left(x_{i}-1\right)\left(1+x_{i}+\cdots+x_{i}^{q_{i}-1}\right) .
$$

Since $x_{i} \not \equiv 1$, it follows that

$$
1+x_{i}+\cdots+x_{i}^{q_{i}-1} \equiv 0(\bmod p)
$$

In other words, every factor in the product (6) is congruent to $-1(\bmod p)$. Hence the product is congruent to $(-1)^{k}=\mu(p-1)$, v.s.v.
Q.11. This is a well-known result called Wolstenholme's Theorem. For a presentation of the 'standard proof', see for example
http://projectpen.files.wordpress.com/2009/04/pen-a23-a24-version-edited2.pdf

