Solutions to Exam 16-01-15

Q. 1 (i) $66=2 \times 3 \times 11$ and $\phi(66)=1 \cdot 2 \cdot 10=20$ so there are 20 primitive roots modulo 67 . If a is any such primitive root, then the full list is given by $\left\{a^{k}: 1 \leq k \leq 66,(k, 66)=1\right\}$, i.e.:
$k \in\{1,5,7,13,17,19,23,25,29,31,35,37,41,43,47,49,53,59,61,65\}$.
I claim that $a=2$ is a primitive root. The proper divisors of 66 are $1,2,3,6,11,22,33$ and one can check that, modulo 67 ,

$$
\begin{array}{r}
2^{1} \equiv 2, \quad 2^{2} \equiv 4, \quad 2^{3} \equiv 8, \quad 2^{6} \equiv-3 \\
2^{11} \equiv-29, \quad 2^{22} \equiv-30, \quad 2^{33} \equiv-1 \tag{1}
\end{array}
$$

(ii) Yes. This can in fact be seen from (1), namely that $-29 \equiv 2^{11}$. This is an element of order $66 / 11=6$ in \mathbb{Z}_{67}^{\times}, hence not a square, since the subgroup of squares has order $66 / 2=33$, which is not a multiple of 6 . Hence, -29 is a quadratic non-residue. So is -1 , since $67 \equiv 3(\bmod 4)$. Thus $+29=(-29)(-1)$ is a quadratic residue.

Alternatively, one can use quadratic reciprocity. Since $29 \equiv 1(\bmod 4)$ and $67=2 \cdot 29+9$, it follows that

$$
\left(\frac{29}{67}\right)=\left(\frac{67}{29}\right)=\left(\frac{9}{29}\right)=\left(\frac{3}{29}\right)^{2}=+1 .
$$

Q. 2 See Theorem 9.6 in the notes. For full points, proofs need to be included of Proposition 9.1, Theorem 9.3 and Lemma 9.5.
Q. 3 If $d=e^{2}$ then $x=e$ gives a solution to the congruence for any p. Conversely, suppose d is a non-square. We need to prove the existence of a prime p such that the congruence has no solution. It suffices to find a prime p such that $\left(\frac{d}{p}\right)=-1$.

Now, since d is not a square, there is at least one prime q such that the highest power of q dividing d is odd. Let q_{1}, \ldots, q_{k} be the full list of such primes. Then, for any prime $p>d$,

$$
\begin{equation*}
\left(\frac{d}{p}\right)=\prod_{i=1}^{k}\left(\frac{q_{i}}{p}\right) . \tag{2}
\end{equation*}
$$

CASE $1: k=1$ and $q_{1}=2$. Choose $p>d$ such that $p \equiv 3(\bmod 8)$. Dirichlet's theorem guarantees the existence of such a prime. By Gauss Lemma, $\left(\frac{2}{p}\right)=-1$ and hence $\left(\frac{d}{p}\right)=-1$, by (2).

CASE 2: $k>1$. Then we may assume $q_{1}>2$. If $p \equiv 1(\bmod 4)$, then
by quadratic reciprocity,

$$
\left(\frac{d}{p}\right)=\prod_{i=1}^{k}\left(\frac{p}{q_{i}}\right) .
$$

Let r_{1} be any quadratic non-residue $\bmod q_{1}$ and, for each $i=2, \ldots, k$, let r_{i} be a quadratic residue $\bmod q_{i}$, where we choose $r_{i}=1$ if $q_{i}=2$. The Chinese Remainder Theorem plus Dirichlet's theorem guarantee the existence of a prime $p>d$ satisfying all the congruences

$$
p \equiv 1(\bmod 4), \quad p \equiv r_{i}\left(\bmod q_{i}\right), i=1, \ldots, k .
$$

For any such prime we will have $\left(\frac{d}{p}\right)=-1$, by (2).
Q. 4 Theorem 6.4 in the lecture notes.
Q. 5 Call a subset S of $\{1,2, \ldots, n\}$ primitive if no element of S is an integer multiple of any other. The set

$$
S_{1}=\left\{\left\lceil\frac{n}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil+1, \ldots, n\right\}
$$

is clearly primitve, thus $g_{2}(n) \geq\left\lfloor\frac{n+1}{2}\right\rfloor$. Conversely, let S be any primitive set. Each element of S can be written uniquely in the form $s=$ $2^{k(s)} a(s)$, where $k(s) \in \mathbb{N}_{0}$ and $a(s)$ is an odd integer in $\{1,2, \ldots, n\}$. If $a\left(s_{1}\right)=a\left(s_{2}\right)$ with $s_{1}<s_{2}$, then s_{1} divides s_{2}. Hence, the cardinality of S does not exceed that of the subset of odd numbers in $\{1,2, \ldots, n\}$, and so $g_{2}(n) \leq\left\lfloor\frac{n+1}{2}\right\rfloor$.
Q. 6 (i) Theorem 20.2 in the lecture notes.
(ii) Lemma 20.3 in the lecture notes.
(iii) Theorem 18.2 in the lecture notes. The proof is in Lecture 21.
Q. 7 This proof will be a little sketchy. There are $\Theta\left(n^{2}\right) 3$-term APs in total in \mathbb{Z}_{n}. List them in any fixed order, and let A_{i} denote the event that the i :th AP is contained in our random set $A=A(n, p)$. Let X_{i} be the indicator of the event A_{i} and let $X=\sum X_{i}$ be the random variable which counts the total number of APs in A. It is clear that, for each $i, \mathbb{E}\left[X_{i}\right]=\mathbb{P}\left(A_{i}\right)=p^{3}$ and hence, by linearity of expectation,

$$
\begin{equation*}
\mathbb{E}[X]=\Theta\left(n^{2} p^{3}\right) . \tag{3}
\end{equation*}
$$

Since $n^{-2 / 3}=o(p(n))$, it follows that $\mathbb{E}[X] \rightarrow \infty$ as $n \rightarrow \infty$. We want to prove that $\mathbb{P}(X>0) \rightarrow 1$. It follows from Chebyshev's inequality (Theorem 20.1 in the notes) that, whenever $\mathbb{E}[X] \rightarrow \infty$, a sufficient condition for
$\mathbb{P}(X>0) \rightarrow 1$ is that $\operatorname{Var}(X)=o\left((\mathbb{E}[X])^{2}\right)$. Hence, by (3), it suffices to prove that

$$
\begin{equation*}
\operatorname{Var}(X)=o\left(n^{4} p^{6}\right) \tag{4}
\end{equation*}
$$

From the general second moment method, we have

$$
\begin{equation*}
\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) . \tag{5}
\end{equation*}
$$

Since X_{i} is an indicator, $\operatorname{Var}\left(X_{i}\right) \leq \mathbb{E}\left[X_{i}\right]$ and so the first sum is at most $\mathbb{E}[X]=\Theta\left(n^{2} p^{3}\right)$. The only pairs (i, j) that contribute to the second sum are those such that the events A_{i} and A_{j} are dependent, which is the case if and only if the i :th and j :th APs share at least one common element.

Case 1: Pairs of APs sharing one term.
It is clear that the number of such pairs is $\Theta\left(n^{3}\right)$, since there are $\Theta(n)$ choices for the common element, and $\Theta(n)$ choices for the common difference in each AP. Any such pair contains a total of 5 distinct elements of \mathbb{Z}_{n}, hence $\mathbb{P}\left(A_{i} \wedge A_{j}\right)=p^{5}$. Thus the contribution to (5) from such pairs is $\Theta\left(n^{3} p^{5}\right)$.

CASE 2: Pairs of APs sharing two terms.
The number of such pairs is $\Theta\left(n^{2}\right)$. For there are so many choices for the first AP in the pair, and then only $O(1)$ choices for the second AP, since a 3 -term AP is completely determined by specifying two of its terms and their positions (1st, 2 nd or 3 rd). In any such pair there are a total of 4 distinct elements of \mathbb{Z}_{n}, hence the contribution of these pairs to (5) is $\Theta\left(n^{2} p^{4}\right)$.

Summarising, we have
$\operatorname{Var}(X)=\Theta\left(n^{2} p^{3}\right)+\Theta\left(n^{2} p^{4}\right)+\Theta\left(n^{3} p^{5}\right)=\left\{\begin{array}{lc}\Theta\left(n^{3} p^{5}\right), & \text { if } \frac{p(n)}{n^{-1 / 2}} \rightarrow \infty, \\ \Theta\left(n^{2} p^{3}\right), & \text { otherwise. }\end{array}\right.$
In any case, since $n^{2} p^{3} \rightarrow \infty$, one easily checks that (4) holds, and we are done.
Q. 8 (i) See the handout from Diestel's book.
(ii), (iii) See the Supplementary Lecture Notes for Week 51.

