MATEMATIK

Göteborgs Universitet
Peter Hegarty

Dag: 150827 Tid : 14.00-18.30 (Obs! 4.5 hours).
Hjälpmedel: Inga
Vakter: Gustav Kettil 0703-088304, Peter Hegarty 0766-377873.

Tentamenskriving i Talteori (MMA 300)

≥ 50 points, including bonuses from the homeworks, required to pass. In Problems $2,4,6,8$, any results that you use from the lecture notes may be just stated without proof.
$\mathbf{1}(\mathbf{6 p + 9 p})$ (a) State and prove a theorem classifying all primitive Pythagorean triples.
(b) Using the result of part (a), prove the case $n=4$ of Fermat's Last Theorem.
$2(5 \mathbf{p}+7 \mathbf{p})$ (a) Prove that the equation $a^{2}-3 b^{2}=1$ has infinitely many solutions in positive integers.
(Hint: Factorise in $\mathbb{Z}[\sqrt{3}]$).
(b) Prove that the equation $x^{2}+y^{2}=z^{3}$ has infinitely many primitive solutions in positive integers, i.e.: solutions satisfying $\operatorname{GCD}(x, y, z)=1$.
(HINT: $\mathbb{Z}[\sqrt{-1}]$ is a unique factorisation domain).
$3(6 p+9 p)$ (a) State and prove Gauss' Lemma.
(b) State and prove the law of quadratic reciprocity (you may use Gauss' Lemma without proof).
$4(\mathbf{1 0 p})$ Determine all primes p for which the congruence $x^{2} \equiv 14(\bmod p)$ has a solution.
$5(\mathbf{1 2 p})$ Let p_{n} be the probability that two numbers chosen independently and uniformly at random from $\{1,2, \ldots, n\}$ are relatively prime. Determine with proof the limit of p_{n} as $n \rightarrow \infty$.

6 (6p+6p) (a) Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be the sum of positive divisors function. Determine, with proof, each of the following limits:

$$
\liminf _{n \rightarrow \infty} \frac{\sigma(n)}{n}, \quad \limsup _{n \rightarrow \infty} \frac{\sigma(n)}{n}, \quad \lim _{n \rightarrow \infty} \frac{\sigma(n)}{n^{1.001}}
$$

(b) Let $\mu: \mathbb{N} \rightarrow \mathbb{N}$ be the Möbius function. Prove that, if $\operatorname{Re}(s)>1$, then

$$
\frac{\zeta(s)}{\zeta(2 s)}=\sum_{n=1}^{\infty} \frac{|\mu(n)|}{n^{s}}
$$

7 (3p+11p) (a) State Chebyshev's inequality (no proof needed).
(b) Let $f(n)$ be the maximum size of a subset of $\{1,2, \ldots, n\}$ containing distinct subset sums. Prove that

$$
1+\left\lfloor\log _{2} n\right\rfloor \leq f(n) \leq \log _{2} n+\frac{1}{2} \log _{2} \log _{2} n+O(1)
$$

$\mathbf{8}(\mathbf{1 0 p})$ Let $r_{3}(n)$ denote the maximum size of a subset of $\{1,2, \ldots, n\}$ containing no 3 -term arithmetic progressions. Prove that

$$
\liminf _{n \rightarrow \infty} \frac{r_{3}(n)}{n^{2 / 3}}>0
$$

Obs! Tentan beräknas vara färdigrättad den 2 september. Då kan den hämtas i expeditionen (ankn. 3500) mellan kl. 11:00-13:00, alla vardagar utom onsdagar.

