Solutions to Exam 27-08-15

Q. 1 (a) Theorem 3.8 in the lecture notes.
(b) Theorem 4.1 in the lecture notes.
Q. 2 (a) $\left(a_{1}, b_{1}\right)=(2,1)$ is one solution. For any $k \in \mathbb{N}$ define the positive integers a_{k}, b_{k} by

$$
a_{k}+\sqrt{3} b_{k}=\left(a_{1}+\sqrt{3} b_{1}\right)^{k} .
$$

It is clear that the sequences $\left(a_{k}\right)$ and $\left(b_{k}\right)$ are both strictly increasing. Moreover, $\left(a_{k}, b_{k}\right)$ is a solution for every k since

$$
\begin{gathered}
a_{k}^{2}-3 b_{k}^{2}=\left(a_{k}+\sqrt{3} b_{k}\right)\left(a_{k}-\sqrt{3} b_{k}\right)= \\
=\left(a_{1}+\sqrt{3} b_{1}\right)^{k}\left(a_{1}-\sqrt{3} b_{1}\right)^{k}=\left(a_{1}^{2}-3 b_{1}^{2}\right)^{k}=1
\end{gathered}
$$

(b) For any integers a, b, if we set

$$
\begin{equation*}
x=a\left(a^{2}-3 b^{2}\right), \quad y=b\left(3 a^{2}-b^{2}\right), \quad z=a^{2}+b^{2}, \tag{1}
\end{equation*}
$$

then one checks directly that (x, y, z) is a solution. It is also easy to check that we get a primitive solution whenever $\operatorname{GCD}(a, b)=1$ and a and b have opposite parity. Thus there are infinitely many primitive solutions. To see where this idea "comes from", one factorises the equation as $(x+i y)(x-i y)=z^{3}$. If $\operatorname{GCD}(x, y)=1$, one checks that $x \pm i y$ are relatively prime in $\mathbb{Z}[i]$ hence, by the unique factorisation property, there must exist integers a, b such that $x \pm i y=(a \pm i b)^{3}$, which leads to (1).
Q. 3 (a) Theorem 12.4 in the lecture notes.
(b) Theorem 11.7 in the lecture notes.
Q. 4 If $p=2$ or $p=7$, then $x=0$ is a solution. Now suppose $p \notin\{2,7\}$. We seek all p for which $\left(\frac{14}{p}\right)=+1$. We have $\left(\frac{14}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{7}{p}\right)$, so there are two cases to consider.

CASE 1: $\left(\frac{2}{p}\right)=\left(\frac{7}{p}\right)=+1$.
If $\left(\frac{2}{p}\right)=+1$, then it follows from Gauss Lemma that $p \equiv \pm 1(\bmod 8)$.
Subcase $1(a): p \equiv 1(\bmod 8)$. In particular, $p \equiv 1(\bmod 4)$ so, by quadratic reciprocity, $\left(\frac{7}{p}\right)=\left(\frac{p}{7}\right)$. Thus $\left(\frac{p}{7}\right)=+1$, which is the case if and only if $p \equiv 1,2,4(\bmod 7)$. By the Chinese Remainder Theorem, there are thus three possibilities for $p \bmod 56$, namely $p \equiv 1,9,25(\bmod 56)$.

Subcase $1(b): p \equiv 7(\bmod 8)$. In particular, $p \equiv 3(\bmod 4)$ so, by quadratic reciprocity, $\left(\frac{7}{p}\right)=-\left(\frac{p}{7}\right)$. Thus $\left(\frac{p}{7}\right)=-1$, which is the case if and only if $p \equiv 3,5,6(\bmod 7)$. By the Chinese Remainder Theorem, there are thus three possibilities for $p \bmod 56$, namely $p \equiv 31,47,55(\bmod 56)$.

In total, from Case 1 we get six possibilities for $p(\bmod 56)$, namely

$$
p \equiv \pm 1, \pm 9, \pm 25(\bmod 56)
$$

CASE 2: $\left(\frac{2}{p}\right)=\left(\frac{7}{p}\right)=-1$.
A similar analysis to Case 1 (details left to reader) leads to a further six possibilities for $p(\bmod 56)$, namely

$$
p \equiv \pm 5, \pm 11, \pm 13(\bmod 56)
$$

Final Answer: $p=2, p=7$ or $p \equiv \pm 1, \pm 5, \pm 9, \pm 11, \pm 13, \pm 25(\bmod 56)$.
Q. 5 Theorem 1.7 in the supplementary lecture notes to Week 47, plus Exercise 1 on Homework 2.
Q. 6 (a) (i) Since n is always a divisor of itself, the quotient $\frac{\sigma(n)}{n}$ is always at least one. If n is prime, then $\sigma(n)=n+1$ and, since there are infinitely many primes, it follows that

$$
\liminf _{n \rightarrow \infty} \frac{\sigma(n)}{n}=1
$$

(ii) Suppose n is the product of the first k primes, which we denote p_{1}, \ldots, p_{k}. Then n / p_{i} is a divisor of n for each i and so

$$
\frac{\sigma(n)}{n} \geq \sum_{i=1}^{k} \frac{1}{p_{i}} .
$$

We know that the right-hand sum diverges as $k \rightarrow \infty$ (Corollary 5.5 in the lecture notes), hence

$$
\limsup _{n \rightarrow \infty} \frac{\sigma(n)}{n}=\infty
$$

(iii) A priori,

$$
\sigma(n) \leq n+\frac{n}{2}+\frac{n}{3}+\cdots=n \cdot\left(\sum_{k=1}^{n} \frac{1}{k}\right)=(1+o(1))(n \log n) .
$$

It follows that, for any $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{\sigma(n)}{n^{1+\varepsilon}}=0
$$

(b) If $\operatorname{Re}(s)>1$ then we have the Euler product formula for the zeta function (Theorem 5.3 in the lecture notes), thus

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

and

$$
\zeta(2 s)=\prod_{p}\left(1-\frac{1}{p^{2 s}}\right)^{-1}
$$

Using the fact that $1-t^{2}=(1+t)(1-t)$, it follows that

$$
\frac{\zeta(s)}{\zeta(2 s)}=\prod_{p}\left(1+\frac{1}{p^{s}}\right)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

where $a(n)=1$ if n is squarefree and $a(n)=0$ otherwise. In other words, $a(n)=|\mu(n)|$, v.s.v.
Q. 7 (a) Proposition 1.6 in Supplement 2 to Week 50.
(b) See Theorem 1.7 and preceeding text in Supplement 2 to Week 50.
Q. 8 We can construct a 3-AP avoiding subset of $\{1,2, \ldots, n\}$ using the same idea as for constructing the usual Cantor set, namely as follows: Divide the interval $\{1, \ldots, n\}$ into three subintervals $A_{1} \sqcup B_{1} \sqcup C_{1}$, whose lengths are as close to equal as possible and such that, if (a, b, c) is any 3 -term AP with $a \in A_{1}$ and $c \in C_{1}$, then one must have $b \in B_{1}$. Remove B_{1} and repeat the above procedure for both A_{1} and C_{1}. Iterate as far as possible.

By construction, the resulting subset $X \subseteq\{1, \ldots, n\}$ will contain no 3-APs and it is easy to show that $|X|=\Omega\left(n^{2 / 3}\right)$.

