
Solutions to Exam 27-08-15

Q.1 (a) Theorem 3.8 in the lecture notes.

(b) Theorem 4.1 in the lecture notes.

Q.2 (a) (a1, b1) = (2, 1) is one solution. For any k ∈ N define the positive

integers ak, bk by

ak +
√
3 bk = (a1 +

√
3 b1)

k.

It is clear that the sequences (ak) and (bk) are both strictly increasing. More-

over, (ak, bk) is a solution for every k since

a2k − 3b2k = (ak +
√
3 bk)(ak −

√
3 bk) =

= (a1 +
√
3 b1)

k(a1 −
√
3 b1)

k = (a21 − 3b21)
k = 1.

(b) For any integers a, b, if we set

x = a(a2 − 3b2), y = b(3a2 − b2), z = a2 + b2, (1)

then one checks directly that (x, y, z) is a solution. It is also easy to

check that we get a primitive solution whenever GCD(a, b) = 1 and a
and b have opposite parity. Thus there are infinitely many primitive solu-

tions. To see where this idea “comes from”, one factorises the equation as

(x+ iy)(x− iy) = z3. If GCD(x, y) = 1, one checks that x± iy are rela-

tively prime in Z[i] hence, by the unique factorisation property, there must

exist integers a, b such that x± iy = (a± ib)3, which leads to (1).

Q.3 (a) Theorem 12.4 in the lecture notes.

(b) Theorem 11.7 in the lecture notes.

Q.4 If p = 2 or p = 7, then x = 0 is a solution. Now suppose p 6∈ {2, 7}.

We seek all p for which
(

14
p

)

= +1. We have
(

14
p

)

=
(

2
p

)(

7
p

)

, so there

are two cases to consider.

CASE 1:
(

2
p

)

=
(

7
p

)

= +1.

If
(

2
p

)

= +1, then it follows from Gauss Lemma that p ≡ ±1 (mod 8).

Subcase 1(a): p ≡ 1 (mod 8). In particular, p ≡ 1 (mod 4) so, by qua-

dratic reciprocity,
(

7
p

)

=
(

p
7

)

. Thus
(

p
7

)

= +1, which is the case if and

only if p ≡ 1, 2, 4 (mod 7). By the Chinese Remainder Theorem, there are

thus three possibilities for p mod 56, namely p ≡ 1, 9, 25 (mod 56).
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Subcase 1(b): p ≡ 7 (mod 8). In particular, p ≡ 3 (mod 4) so, by qua-

dratic reciprocity,
(

7
p

)

= −
(

p
7

)

. Thus
(

p
7

)

= −1, which is the case if and

only if p ≡ 3, 5, 6 (mod 7). By the Chinese Remainder Theorem, there are

thus three possibilities for p mod 56, namely p ≡ 31, 47, 55 (mod 56).

In total, from Case 1 we get six possibilities for p (mod 56), namely

p ≡ ±1, ±9, ±25 (mod 56).

CASE 2:
(

2
p

)

=
(

7
p

)

= −1.

A similar analysis to Case 1 (details left to reader) leads to a further six

possibilities for p (mod 56), namely

p ≡ ±5, ±11, ±13 (mod 56).

FINAL ANSWER: p = 2, p = 7 or p ≡ ±1, ±5, ±9, ±11, ±13, ±25 (mod 56).

Q.5 Theorem 1.7 in the supplementary lecture notes to Week 47, plus Ex-

ercise 1 on Homework 2.

Q.6 (a) (i) Since n is always a divisor of itself, the quotient
σ(n)
n

is always

at least one. If n is prime, then σ(n) = n+ 1 and, since there are infinitely

many primes, it follows that

lim inf
n→∞

σ(n)

n
= 1.

(ii) Suppose n is the product of the first k primes, which we denote p1, . . . , pk.

Then n/pi is a divisor of n for each i and so

σ(n)

n
≥

k
∑

i=1

1

pi
.

We know that the right-hand sum diverges as k → ∞ (Corollary 5.5 in the

lecture notes), hence

lim sup
n→∞

σ(n)

n
= ∞.

(iii) A priori,

σ(n) ≤ n+
n

2
+

n

3
+ · · · = n ·

(

n
∑

k=1

1

k

)

= (1 + o(1))(n log n).

It follows that, for any ε > 0,

lim
n→∞

σ(n)

n1+ε
= 0.
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(b) If Re(s) > 1 then we have the Euler product formula for the zeta func-

tion (Theorem 5.3 in the lecture notes), thus

ζ(s) =
∏

p

(

1− 1

ps

)

−1

and

ζ(2s) =
∏

p

(

1− 1

p2s

)

−1

.

Using the fact that 1− t2 = (1 + t)(1− t), it follows that

ζ(s)

ζ(2s)
=
∏

p

(

1 +
1

ps

)

=
∞
∑

n=1

a(n)

ns
,

where a(n) = 1 if n is squarefree and a(n) = 0 otherwise. In other words,

a(n) = |µ(n)|, v.s.v.

Q.7 (a) Proposition 1.6 in Supplement 2 to Week 50.

(b) See Theorem 1.7 and preceeding text in Supplement 2 to Week 50.

Q.8 We can construct a 3-AP avoiding subset of {1, 2, . . . , n} using the

same idea as for constructing the usual Cantor set, namely as follows: Di-

vide the interval {1, . . . , n} into three subintervals A1 ⊔ B1 ⊔ C1, whose

lengths are as close to equal as possible and such that, if (a, b, c) is any

3-term AP with a ∈ A1 and c ∈ C1, then one must have b ∈ B1. Remove

B1 and repeat the above procedure for both A1 and C1. Iterate as far as

possible.

By construction, the resulting subset X ⊆ {1, . . . , n} will contain no

3-APs and it is easy to show that |X| = Ω(n2/3).


