Solutions to Exam 27-08-15

Q.1 (a) Theorem 3.8 in the lecture notes.
(b) Theorem 4.1 in the lecture notes.

Q.2 (a) (ay, by) = (2, 1) is one solution. For any k£ € N define the positive
integers a, by by
ar + \/gbk = (&1 + \/gbl)k

It is clear that the sequences (ay,) and (by,) are both strictly increasing. More-
over, (ag, by) is a solution for every k since

a2 — 3b7 = (ar + V3be)(ax — V3by) =
— (ay + V3b1)"(ay — V3b)F = (0 — 362)F = 1.

(b) For any integers a, b, if we set

v =a(a®—3b%), y=>5b3Ba®>-"b%), z=a>+0b (1)
then one checks directly that (z, y, z) is a solution. It is also easy to
check that we get a primitive solution whenever GCD(a, b) = 1 and a

and b have opposite parity. Thus there are infinitely many primitive solu-
tions. To see where this idea “comes from”, one factorises the equation as
(z + 1y)(z — iy) = 2. If GCD(z, y) = 1, one checks that = + iy are rela-
tively prime in Z[i| hence, by the unique factorisation property, there must
exist integers a, b such that x + iy = (a + ib)3, which leads to (1).

Q.3 (a) Theorem 12.4 in the lecture notes.
(b) Theorem 11.7 in the lecture notes.

Q4 1Ifp =2orp =7, then z = 0 is a solution. Now suppose p & {2, 7}.
We seek all p for which (%) = +1. We have <%> = (}%) <I—7)>, so there
are two cases to consider.

CASE 1: (%) - (g) — 41

If (%) = +1, then it follows from Gauss Lemma that p = £1 (mod 8).

Subcase 1(a): p = 1 (mod 8). In particular, p = 1 (mod 4) so, by qua-
dratic reciprocity, (%) = (). Thus (%) = +1, which is the case if and
only if p =1, 2, 4 (mod 7). By the Chinese Remainder Theorem, there are

thus three possibilities for p mod 56, namely p = 1, 9, 25 (mod 56).
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Subcase 1(b): p = 7 (mod 8). In particular, p = 3 (mod 4) so, by qua-
dratic reciprocity, (%) = — (&). Thus (%) = —1, which is the case if and

only if p = 3, 5, 6 (mod 7). By the Chinese Remainder Theorem, there are
thus three possibilities for p mod 56, namely p = 31, 47, 55 (mod 56).

In total, from Case 1 we get six possibilities for p (mod 56), namely
p==+1, £9, £25 (mod 56).

CASE 2: (12)) - (g) =1

A similar analysis to Case 1 (details left to reader) leads to a further six
possibilities for p (mod 56), namely

p =45, £11, £13 (mod 56).
FINAL ANSWER: p =2,p =Torp = +1, £5, £9, +11, +13, £25 (mod 56).

Q.5 Theorem 1.7 in the supplementary lecture notes to Week 47, plus Ex-
ercise 1 on Homework 2.

Q.6 (a) (i) Since n is always a divisor of itself, the quotient # is always
at least one. If n is prime, then o(n) = n + 1 and, since there are infinitely

many primes, it follows that

timint 2 — 1.
n—o0 n
(ii) Suppose n is the product of the first k£ primes, which we denote py, ..., ps.

Then n/p; is a divisor of n for each i and so

k
o(n) 1

We know that the right-hand sum diverges as & — oo (Corollary 5.5 in the
lecture notes), hence
lim sup w = 00.
n—00 n

(iii) A priori,

n on -
0(n)§n—|—§—0——+~~:n-<z

3 k=1

| =

) = (14 o0(1))(nlogn).

It follows that, for any € > 0,

. o(n)
nlgrolo nlte =0
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(b) If Re(s) > 1 then we have the Euler product formula for the zeta func-
tion (Theorem 5.3 in the lecture notes), thus

-T2
and '

1\
¢2s) =] (1 - T) .
p
p
Using the fact that 1 — t? = (1 +¢)(1 — t), it follows that

G-m(5)-5

n=1
where a(n) = 1if n is squarefree and a(n) = 0 otherwise. In other words,
a(n) = |u(n)|, v.s.v.

Q.7 (a) Proposition 1.6 in Supplement 2 to Week 50.
(b) See Theorem 1.7 and preceeding text in Supplement 2 to Week 50.

Q.8 We can construct a 3-AP avoiding subset of {1, 2, ..., n} using the
same idea as for constructing the usual Cantor set, namely as follows: Di-
vide the interval {1, ..., n} into three subintervals A; U By U C}, whose
lengths are as close to equal as possible and such that, if (a, b, ¢) is any
3-term AP with ¢« € A, and ¢ € (], then one must have b € B;. Remove
B; and repeat the above procedure for both A; and C. Iterate as far as
possible.

By construction, the resulting subset X C {1, ..., n} will contain no
3-APs and it is easy to show that | X| = Q(n?/?).



