
SUPPLEMENTARY LECTURENOTES ONDIRICHLET’ S THEOREM

The purpose of these notes is to complete the proof of Dirichlet’s theorem (The-
orem 7.5). In the ordinary lecture notes, we had reduced the proof to showing that
L(1, χ) 6= 0, whenχ is any non-trivial Dirichlet character. Actually, for thisreduc-
tion to be meaningful, we must know thatL-functions can be extended to the left of
Re(s) > 1, and we glossed over the details of this a bit in the notes. So the first step is
to deal rigorously with this:

Theorem 1.1. (i) There is a function A(s) which is analytic in Re(s) > 0 such that,
when Re(s) > 1,

ζ(s) =
s

s − 1
+ A(s). (1.1)

In other words, ζ(s) can be extended to a meromorphic function in Re(s) > 0, which is
analytic except for a single simple pole at s = 1, with residue 1.
(ii) Let χ be any non-trivial Dirichlet character. Then the function L(s, χ) can be
extended to an analyitc function in Re(s) > 0.

Proof. (i) For Re(s) > 1 we have of courseζ(s) =
∑∞

n=1 1/ns. Apply Abel summation
with an = 1, bn = 1/ns. Since the series is convergent, we have

ζ(s) =
∞

∑

n=1

n

(

1

ns
−

1

(n + 1)s

)

, Re(s) > 1. (1.2)

The term in brackets can be written ass
∫ n+1

n
x−s dx. Writing x = ⌊x⌋ + {x}, where

{x} ∈ [0, 1) denotes the fractional part ofx, it follows that, again for Re(s) > 1,

ζ(s) = s

∫ ∞

1

(x − {x})x−s−1 dx =
s

s − 1
+ A(s), (1.3)

whereA(s) =
∫ ∞

1
{x}x−s−1 dx. But since{x} is a bounded function, this integral con-

verges in Re(s) > 0 and hence defines an analytic function ofs in this region.

(ii) The proof is similar. For Re(s) > 1 we haveL(s, χ) =
∑∞

n=1
χ(n)
ns

. Forx ∈ [1,∞)
let S(x) :=

∑

n≤x χ(n). Using Abel summation as before, we obtain the expression

L(s, χ) = s

∫ ∞

1

S(x)x−s−1 dx. (1.4)

But sinceχ is a non-trivial character, the functionS(x) is bounded, by Lemma 14.2(ii).
Hence the right-hand side of (1.4) defines an analytic function ofs all the way down to
Re(s) > 0. ¤

So now we know for sure that Theorem 15.2 in the notes makes rigorous sense. In
what follows, d is a fixed positive integer and̂G denotes the group of all extended
Dirichlet characters modulod. We continue with a lemma:

Lemma 1.2. If s > 1 is real, then
∏

χ∈Ĝ L(s, χ) is a positive real number greater than
one.
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Proof. From equation (15.3) in the notes we deduce that, for Re(s) > 1,

∑

χ∈Ĝ

log L(s, χ) =
∑

χ

∑

p

∞
∑

m=1

χ(pm)

mpms
. (1.5)

The sum is absolutely convergent so we can interchange things at will. We rewrite the
above as

∑

χ∈Ĝ

log L(s, χ) =
∑

p

∞
∑

m=1

1

mpms

∑

χ

χ(pm). (1.6)

By Lemma 14.2(i), the inner sum is either zero or|Ĝ|, i.e.: a positive integer. Hence,
if s > 1 is real, the entire sum on the right of (1.6) is some positive real number. Thus
∑

χ log L(s, χ) is a positive real number. Exponentiating, it follows that
∏

χ L(s, χ) is
a real number greater than one. ¤

From the lemma, we can deal with complex characters.

Proposition 1.3. If χ is a complex character, then L(1, χ) 6= 0.

Proof. If χ is complex, thenχ 6= χ. From the definition of the L-series we see immedi-
ately that, ifs > 1 is real, thenL(s, χ) = L(s, χ). Taking limits ass → 1+, it follows
that if L(1, χ) = 0 then alsoL(1, χ) = 0. Hence, in this case, at least two terms of the
product

∏

χ∈Ĝ L(s, χ) tend to zero ass → 1+. But only one term in the product tends
to infinity, and it has a simple pole ats = 1 - this follows from Theorem 1.1 above and
equation (15.8) in the notes. Hence, the entire product would tend to zero ass → 1+.
This contradicts Lemma 1.2. ¤

To complete the proof of Dirichlet’s theorem, it remains to show thatL(1, χ) 6= 0
whenχ is a non-trivial, real extended Dirichlet character. This is actually by far the
hardest part of Dirichlet’s original proof. We shall present a much shorter (though still
highly non-trivial) proof due to de la Vallée Poussin (1896).

Let χ be a non-trivial real character and assumeL(1, χ) = 0. We shall obtain a
contradiction by considering the function

ψ(s) =
L(s, χ)L(s, χ0)

L(2s, χ0)
. (1.7)

CLAIM 1: ψ(s) is analytic in Re(s) > 1/2.

Since we’re assumingL(1, χ) = 0, the simple pole ofL(s, χ0) at s = 1 will be can-
celled by this zero, so we don’t have a problem ats = 1. For all other values ofs in the
range Re(s) > 1/2, it follows from Theorem 1.1 and (15.8) thatψ(s) is analytic.

CLAIM 2: ψ(s) → 0 ass → 1
2

+
.

This also follows from Theorem 1.1 and (15.8), since the denominatorL(2s, χ0) will
head to infinity ass → 1

2

+
, whereas both terms in the numerator will converge to finite

values.
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Next, let us confine attention to Re(s) > 1, in which case all three L-functions making
up ψ have Euler product representations, as in Lemma 15.1. Usingthe facts that (i)
all Euler products converge absolutely, so we can regroup and cancel terms willy-nilly
(ii) χ is real, soχ(p) ∈ {±1} for all p not dividingd, (iii) the identity (1 − p−2s) =
(1 + p−s)(1 − p−s), one finds eventually that, for Re(s) > 1,

ψ(s) =
∏

p: χ(p)=+1

1 + p−s

1 − p−s
. (1.8)

Using the binomial theorem, it follows that

ψ(s) =
∏

p: χ(p)=+1

(1 + p−s)
∞

∑

m=0

p−ms. (1.9)

This can be expanded to a Dirichlet series

ψ(s) =
∞

∑

n=1

an

ns
(1.10)

where, and this is the only relevant point, every coefficientan is a non-negative real
number1 anda1 = 1. The Dirichlet series is absolutely convergent, so can be differen-
tiated term by term ad nauseum. Hence, for anym ∈ N0 and Re(s) > 1,

ψ(m)(s) = (−1)m

∞
∑

n=1

an(log n)m

ns
. (1.11)

By Claim 1 and standard complex analysis tjafs,ψ(s) can be expanded as a Taylor
series abouts = 2 with radius of convergence at least3/2. Hence, for Re(s) > 1/2,

ψ(s) =
∞

∑

m=0

1

m!
ψ(m)(2)(s − 2)m. (1.12)

Substituting from (1.11) we have

ψ(s) =
∞

∑

m=0

1

m!
bm(2 − s)m, (1.13)

where

bm =
∞

∑

n=1

an(log n)m

n2
. (1.14)

All that’s relevant is that, since theai are all non-negative reals, the same is true of
the bi. Hence, fors real ands ∈

(

1
2
, 2

]

, the right-hand side of (1.13) is a real-valued,

decreasing function ofs. In particular, this means thatψ(s) has a limit ass → 1
2

+
and

lim
s→ 1

2

+
ψ(s) ≥ ψ(2). (1.15)

But ψ(2) ≥ 1, by (1.10), sincea1 ≥ 1 and allan ≥ 0. This contradicts Claim 2 and
completes the proof.

1Some coefficients will be zero, since only those primes for which χ(p) = +1 appear in (1.9).


