SUPPLEMENTARY LECTURENOTES ONDIRICHLET'S THEOREM

The purpose of these notes is to complete the proof of Deththeorem (The-
orem 7.5). In the ordinary lecture notes, we had reduced tbef o showing that
L(1,x) # 0, wheny is any non-trivial Dirichlet character. Actually, for thieduc-
tion to be meaningful, we must know thatfunctions can be extended to the left of
Re(s) > 1, and we glossed over the details of this a bit in the notesh&dirtst step is
to deal rigorously with this:

Theorem 1.1. (i) There is a function A(s) which is analytic in Re(s) > 0 such that,
when Re(s) > 1,

S
In other words, ((s) can be extended to a meromor phic function in Re(s) > 0, whichis
analytic except for a single simple poleat s = 1, with residue 1.
(i) Let x be any non-trivial Dirichlet character. Then the function L(s, x) can be
extended to an analyitc functionin Re(s) > 0.

Proof. (i) For Rgs) > 1 we have of coursg(s) = >, 1/n®. Apply Abel summation
with a,, = 1, b, = 1/n®. Since the series is convergent, we have

g(s):in(i— ! ) Re(s) > 1. (1.2)

n®  (n+1)

n=1

The term in brackets can be writtena$' ' z~* dz. Writing = = || + {x}, where

{z} € ]0,1) denotes the fractional part of it follows that, again for Rg) > 1,

(o) = [ o= {aha T dn = 2+ Al) (1.3)

whereA(s) = [{z}z~*" dz. But since{z} is a bounded function, this integral con-
verges in R(as) > 0 and hence defines an analytic functiorsai this region.

(i) The proof is similar. For Rgs) > 1 we haveL(s, x) = > >2 XfLZ) Forz € [1,00)

n=1

let S(x) := 3, -, x(n). Using Abel summation as before, we obtain the expression

L(s,x) =s /100 S(z)x™* " dax. (1.4)

But sincey is a non-trivial character, the functidf{z) is bounded, by Lemma 14.2(ii).
Hence the right-hand side of (1.4) defines an analytic fonadf s all the way down to
Re(s) > 0. O

So now we know for sure that Theorem 15.2 in the notes makesotig sense. In
what follows, d is a fixed positive integer and’ denotes the group of all extended
Dirichlet characters modul@. We continue with a lemma:

Lemmalz2. Ifs> lisreal, then]] .4 L(s, x) isapositive real number greater than

one.
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Proof. From equation (15.3) in the notes we deduce that, fgsRe 1,

3 log L(s,x) = ZZZﬁpms- (1.5)

xeG X p m=l1

The sum is absolutely convergent so we can interchangesthaingill. We rewrite the

above as
Z log L(s, x) Z Z

or ZX (1.6)
mp
XEG p m=1

By Lemma 14.2(i), the inner sum is either zero|Gr1, l.e.: a positive integer. Hence,
if s > 1is real, the entire sum on the right of (1.6) is some posita number. Thus
>, log L(s, x) is a positive real number. Exponentiating, it follows that L(s, x) is
a real number greater than one. O

From the lemma, we can deal with complex characters.
Proposition 1.3. If y isa complex character, then L(1, y) # 0.

Proof. If y is complex, therny # x. From the definition of the L-series we see immedi-
ately that, ifs > 1 is real, thenL(s,x) = L(s, x). Taking limits ass — 17, it follows
that if L(1, x) = 0 then alsoL(1,x) = 0. Hence, in this case, at least two terms of the
product] ], . L(s, x) tend to zero as — 17. But only one term in the product tends
to infinity, and it has a simple pole at= 1 - this follows from Theorem 1.1 above and
equation (15.8) in the notes. Hence, the entire productavtarid to zero as — 1.
This contradicts Lemma 1.2. O

To complete the proof of Dirichlet’s theorem, it remains tow thatZ(1, x) # 0
wheny is a non-trivial, real extended Dirichlet character. Thisactually by far the
hardest part of Dirichlet’s original proof. We shall presarmuch shorter (though still
highly non-trivial) proof due to de la Vallée Poussin (1896)

Let x be a non-trivial real character and assuié, y) = 0. We shall obtain a
contradiction by considering the function
L(s,x)L(s, x
o(s) = HE 0L x0)
L(287 XO)
CLAIM 1: ¢(s) is analytic in Rés) > 1/2.

(1.7)

Since we're assuming (1, y) = 0, the simple pole of (s, xo) ats = 1 will be can-
celled by this zero, so we don’t have a problem at 1. For all other values of in the
range Rés) > 1/2, it follows from Theorem 1.1 and (15.8) thats) is analytic.
CLAIM 2:¢(s) — Oass — 1.

This also follows from Theorem 1.1 and (15.8), since the denator L(2s, x,) will

head to infinity as — = ™ whereas both terms in the numerator will converge to finite
values.
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Next, let us confine attention to Rg > 1, in which case all three L-functions making
up ¥ have Euler product representations, as in Lemma 15.1. Ubkmdacts that (i)
all Euler products converge absolutely, so we can regrodpcancel terms willy-nilly
(ii) x is real, sox(p) € {£1} for all p not dividingd, (iii) the identity (1 — p=2¢) =
(14+p~*)(1 — p—*), one finds eventually that, for Re > 1,

1+p7°
Uis)= ] p—t (1.8)
px(p)=+1
Using the binomial theorem, it follows that
is)= [ a+p)d p™ (1.9)
pix(p)=+1 ot

This can be expanded to a Dirichlet series
o] a,
w(s) =) % (1.10)
n=1 n
where, and this is the only relevant point, every coefficients a non-negative real
numbet anda, = 1. The Dirichlet series is absolutely convergent, so can fierdi-

tiated term by term ad nauseum. Hence, for ang N, and Rés) > 1,
- logn)™
(m)(g) = (—1)™ an(—g 1.11
v (s) = (-1) ;; = (1.11)

By Claim 1 and standard complex analysis tjaf¢s) can be expanded as a Taylor
series about = 2 with radius of convergence at least2. Hence, for Rés) > 1/2,

W(s) = 3 o™ (@)(s - 2)" (1.12)
Substituting from (1.11) we haV(;n B
o)=Y b2 )", (1.13)
where "
by = i M. (1.14)
n=1

All that’s relevant is that, since the are all non-negative reals, the same is true of
the b;. Hence, fors real ands € (%, 2], the right-hand side of (1.13) is a real-valued,
decreasing function of. In particular, this means thaif(s) has a limit ass — %’L and

lim (s) > 0(2). (1.15)

s—5

Butv(2) > 1, by (1.10), sincer; > 1 and alla,, > 0. This contradicts Claim 2 and
completes the proof.

1Some coefficients will be zero, since only those primes foictvly (p) = +1 appear in (1.9).



