Extremal set systems

Peter Hegarty

May 15, 2000

N.B.: All references pertaining to the material of this talk are contained in an accompanying document called *Notes*.

1. Some things this talk could have been about but (mostly) isn't

• Extremal graph theory: Explores the relationships between various graph invariants. A large field with many well-known theorems and open problems.

Examples: Ramsey theory, Turán's theorem, algorithmic problems etc. etc.

- Extremal problems for hypergraphs: Generalisations of the corresponding problems for graphs.
- **Designs**: A $t-(\nu,k,\lambda)$ design is a collection $\mathcal C$ of k-element subsets of a ν -set X

such that every t-element subset of X appears exactly λ times.

Existence and classification of designs is the basic theoretical problem. But for applications it may also be important to know 'how close one can get'.

- Coding theory: Obviously a subject of great practical importance.
- Combinatorial number theory: Here's a sample unsolved problem from this field:

Question (Erdós \$ 500) : Does there exist an absolute constant C>0 such that if $S\subseteq\{1,...,n\}$ has all subset sums distinct, then $|S|\leq \log_2 n+C$?

2. Some notation and terminology

$$[n] := \{1, 2, ..., n\}$$

 $\mathcal{F} \subseteq 2^{[n]}$ is called a *family* of sets.

 $|\mathcal{F}| :=$ the number of sets in the family.

For each $1 \leq i \leq n$, $\mathcal{F}_i := \{A \in \mathcal{F} : i \in A\}$.

$$\Delta(\mathcal{F}) := \max_{1 \leq i \leq n} |\mathcal{F}_i|.$$

 $\left(egin{array}{c} X \\ k \end{array}
ight)$ is the family of all k-subsets of the set X .

 $a(\mathcal{F})$ denotes the average size of a member of \mathcal{F} , i.e.:

$$a(\mathcal{F}) := \frac{1}{|\mathcal{F}|} \sum_{A \in \mathcal{F}} |A|.$$

Reverse lexicographic order:

Let A, B be finite subsets of **N**. We say that $A <_L B$ if $A \subset B$ or $\max\{x \in A - B\} < \max\{x \in B - A\}$.

We denote by $\mathcal{L}(m)$ (resp. $\mathcal{L}(m,k)$) the family consisting of the m smallest members of \mathbf{N} (resp. $\begin{pmatrix} \mathbf{N} \\ k \end{pmatrix}$) in the reverse lexicographic ordering.

3. 'Lattice' problems

The oldest result in extremal set theory is

Sperner's theorem (1928): If $\mathcal{F}\subseteq 2^{[n]}$ is an antichain, then $|\mathcal{F}|\leq \binom{n}{\lfloor n/2\rfloor}$ with equality iff $\mathcal{F}=\binom{[n]}{\lfloor n/2\rfloor}$ or $\mathcal{F}=\binom{[n]}{\lceil n/2\rceil}$.

Definition : F is union-closed if $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$.

Frankl's (hopeless ?) conjecture (1979) : If $\mathcal{F}\subseteq 2^{[n]}$ is UC, then $\Delta(\mathcal{F})\geq \frac{1}{2}|\mathcal{F}|$.

A weaker conjecture : If \mathcal{F} is UC then $a(\mathcal{F}) \geq \frac{1}{2} \log_2 |\mathcal{F}|$.

A conjecture for lattices: Let L be a lattice with n elements. There exists a join-irreducible x of L such that the principal dual order ideal $V_x = \{y \in L : y \geq x\}$ has at most n/2 elements.

4. Intersecting families

Definition: \mathcal{F} is intersecting if $A \cap B \neq \phi$ for all $A, B \in \mathcal{F}$.

Easy question : If $\mathcal{F}\subseteq 2^{[n]}$ is intersecting, what is $\max |\mathcal{F}|$?

Answer: $|\mathcal{F}| \leq 2^{n-1}$.

Not so easy question : If $\mathcal{F}\subseteq \binom{[n]}{k}$ is intersecting, with $k\leq n/2$, what is $\max |\mathcal{F}|$?

Answer (Erdós-Ko-Rado theorem) : $|\mathcal{F}| \leq \binom{n-1}{k-1}$.

Generalisations of these results start from the following definition :

Definition: The family $\mathcal F$ is said to be s-wise t-intersecting if $|A_1\cap\ldots\cap A_s|\geq t$ for all $A_1,\ldots,A_s\in\mathcal F.$

5. Ideals

Definition: \mathcal{F} is called a *(lower) ideal* if, whenever $A \in \mathcal{F}$ and $B \subseteq A$, then $B \in \mathcal{F}$.

Kleitman's theorem : If $\mathcal{F}, \mathcal{G} \subseteq 2^{[n]}$ are ideals, then

$$|\mathcal{F}\cap\mathcal{G}|\geq rac{|\mathcal{F}||\mathcal{G}|}{2^n}.$$

Notation:

$$\nabla(\mathcal{F},\mathcal{G}) := \{ (A,B) : A \in \mathcal{F}, B \in \mathcal{G}, A \cap B = \emptyset \}.$$

Theorem : If $\mathcal F$ and $\mathcal G$ are ideals, then

$$|\nabla(\mathcal{F},\mathcal{G})| \geq (|\mathcal{F}||\mathcal{G}|)^{\frac{1}{2}\log_2 3}$$
.

This result follows from another theorem

Theorem (Seymour and Hajela 1985): Let $\mathcal{F}, \mathcal{G} \subseteq \{0,1\}^n$. Then

$$|\mathcal{F} + \mathcal{G}| \ge (|\mathcal{F}||\mathcal{G}|)^{\frac{1}{2}\log_2 3}$$

where

$$\mathcal{F} + \mathcal{G} = \{ f + g : f \in \mathcal{F}, g \in \mathcal{G} \}.$$

The most outstanding open problem on ideals is

Chvátal's conjecture : If \mathcal{I} is an ideal and $\mathcal{F} \subseteq \mathcal{I}$ is intersecting, then $|\mathcal{F}| \leq \Delta(\mathcal{I})$.

There are some half-decent partial results on this conjecture (so it's perhaps not 'hopeless'!). For example

Theorem (Berge 1975): Any ideal \mathcal{I} is the disjoint union of pairs of disjoint sets, together with \emptyset if $|\mathcal{I}|$ is odd. In particular, if $\mathcal{F}\subseteq\mathcal{I}$ is intersecting, then $|\mathcal{F}|\leq \lfloor\frac{1}{2}|\mathcal{I}|\rfloor$.

Theorem (Miklós 1984) : Chvátal's conjecture holds if \mathcal{I} contains an intersecting subfamily of size $\lfloor \frac{1}{2} |\mathcal{I}| \rfloor$.

6. Isoperimetric problems

Definition 1: Let $\mathcal{F}\subseteq \binom{X}{k}$. For any l< k, the l-shadow of \mathcal{F} , denoted $\sigma_l(\mathcal{F})$, is defined by

$$\sigma_l(\mathcal{F}) = \left\{ B \in \left(\begin{array}{c} X \\ l \end{array} \right) : \ \exists \ A \in \mathcal{F} \ \text{with} \ B \subset A \right\}.$$

Kruskal-Katona-Schützenberger theorem (1963, 1966, 1959):

$$|\sigma_l(\mathcal{F})| \ge |\sigma_l(\mathcal{L}(|\mathcal{F}|, k))|.$$

Definition 2: The boundary $\partial(\mathcal{F})$ of a family $\mathcal{F} \subset 2^{[n]}$ is defined by

$$\partial(\mathcal{F}) = \{ B \subseteq [n] : B \notin \mathcal{F}, \exists A \in \mathcal{F} \text{ with } |A \triangle B| = 1 \}.$$

Definition 2(a): Let $A \subseteq [n]$, r > 0. The ball centered at X and of radius r, denoted $\mathcal{B}(X,r)$, is defined by

$$\mathcal{B}(X,r) = \{ A \subseteq [n] : |A\Delta X| \le r \}.$$

A family $\mathcal{F} \subseteq 2^{[n]}$ is called a *generalised ball* if there exists some X, r such that $\mathcal{B}(X, r) \subseteq \mathcal{F} \subset \mathcal{B}(X, r+1)$.

Discrete isoperimetric theorem

(Harper 1966) : Given $|\mathcal{F}|$, $|\partial(\mathcal{F})|$ is minimised by some generalised ball.

Definition 3: Let $\mathcal{F}\subseteq \binom{[n]}{k}$. The k-boundary of \mathcal{F} , denoted $\kappa(\mathcal{F})$, is defined by

$$\kappa(\mathcal{F}) = \begin{cases} B \in \binom{[n]}{k} : B \not\in \mathcal{F}, \ \exists \ A \in \mathcal{F} \text{with } |A \Delta B| = 2 \end{cases}.$$

Open Problem (no conjectures!): Given $k, |\mathcal{F}|$, how should one minimise $|\kappa(\mathcal{F})|$?

We want to state one last result

Definition 4: For $\mathcal{F} \subseteq 2^{[n]}$ we define

$$\mathcal{P}(\mathcal{F}) := \{ (A, B) : A \in \mathcal{F}, B \in \partial(\mathcal{F}), |A \triangle B| = 1 \}.$$

Theorem: Given $|\mathcal{F}|$, $|\mathcal{P}(\mathcal{F})| \ge |\mathcal{P}(\mathcal{L}(|\mathcal{F}|))|$.

6(a). A general technique - 'shifting'

General shift

Let $\mathcal{F} \subseteq 2^{[n]}$. Pick U, V disjoint subsets of [n]. The (U, V)-shift S_{UV} is defined by

$$S_{UV}(\mathcal{F}) = \{S_{UV}(A) : A \in \mathcal{F}\}$$
 where

$$S_{UV}(A) = \left\{ \begin{array}{ll} A - U + V =: \bar{A}, & \text{if } U \subseteq A, \\ V \cap A = \emptyset \\ \text{and } \bar{A} \not\in \mathcal{F}, \\ A, & \text{otherwise.} \end{array} \right.$$

Down shifting

$$D_i(\mathcal{F}) = \{D_i(A) : A \in \mathcal{F}\}$$
 where

$$D_i(A) = \begin{cases} A - \{i\}, & \text{if } i \in A \text{ and } A - \{i\} \not\in \mathcal{F}, \\ A, & \text{otherwise.} \end{cases}$$

• Sideways shifting

$$S_{ij}(\mathcal{F}) = \{S_{ij}(A) : A \in \mathcal{F}\} \text{ where}$$

$$S_{ij}(A) = \begin{cases} A - \{j\} + \{i\} =: \bar{A}, & \text{if } j \in A, i \not\in A \\ & \text{and } \bar{A} \not\in \mathcal{F}, \\ A, & \text{otherwise.} \end{cases}$$