
Supplementary Notes for Friday, 4 Oct.

Here is a full solution of Exercise 15.3.6, which we didn’t quite get finished in class. One wants
to compute the line integral

∫
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where C is the parametric curve

r(t) = (et cos t, et sin t, t), 0 ≤ t ≤ 2π.

We computed the velocity vector
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and hence, after some ugly computation, the speed
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Since z = t along the curve, the integral (1) becomes
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2e2t + 1 dt. (2)

After a change of variables u = et, (2) becomes
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2u2 + 1 du. (3)

The easiest way to evaluate this integral is to make another slight change of variables and
then use a formula in the formelblad on the course homepage (which you will also have at the
exam). Namely, set v =

√
2 u, so that (3) becomes

1√
2

∫ β

α

√

v2 + 1 dv, where α = 1√
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Now use the following formula from the formelblad:
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Here a = 1. So now we can evaluate (4). After some more messy computation, the final answer
is
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