
Supplementary Problem Solutions, Oct. 13

Exercise 14.6.5. We use cylindrical coordinates,

x = r cos θ, y = r sin θ, z = z. (1)

Integrating over z first, we’ll then be left with a double integral

∫ ∫

R

(2a − r) r dr dθ. (2)

The region R in the xy-plane is bounded by the curve

x2 + y2 = 2ay. (3)

After completing squares, we can write this equation as x2 + (y − a)2 = a2, from which we
see that R is a disc of radius a centred at (0, a). The important thing to get right now is the
integration limits, i.e.: the description of R in terms of polar coordinates. To do this, we write
(3) in terms of the coordinates in (1), and it becomes

r2 = 2ar sin θ ⇒ r = 2a sin θ. (4)

Since r must be positive, (4) implies that θ must lie in [0, π]. Hence, (2) becomes

∫

π

0

dθ

∫

2a sin θ

0

(2a − r)r dr. (5)

After integrating over r, we’ll be left with the following integral over θ:

4a3

3

∫

π

0

(3 sin2 θ − 2 sin3 θ) dθ. (6)

To evaluate this integral, one can make use of the trigonometric identities

sin2 θ =
1

2
(1 − cos 2θ), (7)

sin3 θ =
1

4
(3 sin θ − sin 3θ). (8)

Then it’s just a matter of plugging these in and integrating, which I will leave you to do.
Answer: a3

(

2π −
32

9

)

.

Exercise 15.5.17. We saw in the redovisning how to solve this problem using the formula
on the top half of page 874. An alternative solution involves observing that

e2z = e2u = [(eu cos v)2 + (eu sin v)2] = x2 + y2,

hence that

z =
1

2
ln(x2 + y2). (9)



Since the surface is thus given explicitly as the graph z = g(x, y) of a function, we can instead
use the formula at the bottom of page 874. Note that

δ =
√

1 + e2u =
√

1 + (x2 + y2). (10)

Furthermore, since 0 ≤ u ≤ 1 and u = z, plugging this into (9) we find that 1 ≤ x2 + y2 ≤

e2. This describes an annulus of inner radius 1 and outer radius e. However, we also have
0 ≤ v ≤ π, so we are only integrating over the upper half of this annulus. In terms of polar
coordinates, the region is thus

1 ≤ r ≤ e, 0 ≤ θ ≤ π. (11)

From (9), (10) and the formula on page 874, we obtain the surface integral

∫ ∫

√

1 + (x2 + y2)

√

1 +

(

x

x2 + y2

)2

+

(

y

x2 + y2

)2

dx dy =

∫ ∫

1 + (x2 + y2)
√

x2 + y2
dx dy.

We switch to polar coordinates and obtain, by (11), the integral

∫

π

0

dθ

∫

e

1

(1 + r2) dr = · · · =
π

3
(3e + e3

− 4).


