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1 Introduction

A Markov chain is a random process {Xt}, where, in discrete time, t ∈ Z+ and in
continuous time, t ∈ R+ and the Xt’s take values in some state space S, such that
given the process up to time t, the distribution of the future of the process only
depends on Xt. When S is the symmetric group, i.e. the set of permutations of a
number of elements, we think of the Markov chain as a card shuffling chain.

In this course, all Markov chains will live on a finite state space S. By enu-
merating the states 1, 2, . . . , |S|, we may identify S with [|S|] = {1, 2, . . . , |S|}.

A Markov chain in discrete time, {X0, X1, X2, . . .} is governed by the starting
distribution P(X0 ∈ ·) and the transition matrix P = [pij]i,j∈S where the pij’s are
the transition probabilities

pij = P(Xt+1 = j|Xt = i).

In continuous time, we replace the transition matrix by the generatorQ = [qij]i,j∈S ,
where for i 6= j, qij is the intensity for a jump form i to j. More precisely, this
means that when the process is in state i, the time to the next jump is exponen-
tially distributed with intensity

∑

j 6=i qj and the next jump goes to j with proba-
bility qj/(

∑

j 6=i qj). As a convention qii = −∑j 6=i qj so that all row sums of the
generator are 0.
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In discrete time, a stationary distribution is a probability distribution π on S,
such that

πP = π.

In other words, a stationary distribution is a left eigenvector of P to the eigenvalue
1. In continuous time, the corresponding relation is

πQ = 0

and π is a left eigenvector of the eigenvalue 0. The following theorem is central
for any first course in Markov chains.

Theorem 1.1 Any irreducible and, in discrete time aperiodic, Markov chain {Xt}
has a unique stationary distribution π, such that P(Xt = i) → π(i) for all i.

The question in focus of this course is how large t needs to be for P(Xt ∈ ·) to
be close to π. Then we must first of all decide on what to mean by “close”. There
are several different criteria that are used for this. We will use only two of these.

Definition 1.1 Let µ and π be two probability measures on S and let p ∈ [1,∞).
Then the total variation distance between µ and π is given by the norm:

‖µ− π‖TV =
1

2

∑

i∈S

|µ(i) − π(i)| = max
A⊆S

(µ(A) − π(A)).

The Lp-norm of the finite signed measure ν with respect to π is given by

‖ν‖p = ‖ν‖Lp(π) =
(

∑

i∈S
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)1/p
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∣

p)1/p

.

Obviously ‖µ − π‖1 = 2‖µ − π‖TV . By the Cauchy-Schwarz inequality,
‖µ− π‖p ≤ ‖µ− π‖q when p ≤ q. Take it as an exercise to show this, as well as
to show that

‖µ− π‖2
2 =

∑

i

|µ(i) − π(i)|2
π(i)

=
∑

i

µ(i)2

π(i)
− 1.

The most common criterion for closeness to the stationary distribution, and the
one that will mainly focus on, is in terms of total variation distance. Later on, we
will also work in terms of the L2-norm. We define τmix and τ̂ as

τmix = inf{t : ‖P(Xt ∈ ·) − π‖TV ≤ 1

4
}.
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τ̂ = inf{t : ‖P(Xt ∈ ·) − π‖2 ≤
1

2
}.

By the above observation, τmix ≤ τ̂ , so convergence in L2 is stronger than in total
variation.

Usually when dealing with convergence rates problems, one lets |S| → ∞ in
some way. This means that one has MC:s {Xn

t } with stationary distributions πn.
This is all very natural for card shuffling, where the number of cards increases,
or for random walks on graphs such as Z

d
n, Z

n
2 , Kn etc, where n tends to infinity.

The results are almost always asymptotical in |S|, which means that we still cannot
give a precise answer for a particular case. However we will have reached another
level of confidence.

Definition 1.2 For the convergence time of {Xn
t }, we say that t = tn is

• upper bound, if lim supn ‖P(Xn
t ∈ ·) − πn‖ ≤ 1/4,

• lower bound, if lim infn ‖P(Xn
t ∈ ·) − πn‖ ≥ 1/4,

• threshold, if, for any a > 0, (1 − a)t and (1 + a)t are lower and upper
bounds respectively.

Thresholds are very strong objects, but they surprisingly often exist. A thresh-
old is of course on top of the wish-list. Second best is if we can find upper and
lower bounds of the same order. If this also cannot be done, then of course any
other information, such as e.g. only an upper bound, is also interesting.
On discrete versus continuous time. Since our primary focus is on card shuf-
fling, we will basically only be interested in discrete time MC:s. Sometimes it is
for technical reasons more convenient to work in continuous time. If one wants
to do that, one can always “continuize” a discrete time MC, by letting times be-
tween updates be exponential with intensity 1, instead of being deterministically
1. However, one should be aware the there is no general way to translate results
on mixing between corresponding discrete-time and continuous-time MC:s. In-
tuitively, the mixing time should be the same for both cases. This is often true,
but not always and sometimes only for some criteria for mixing. The main rea-
son for the discrepancy is that for continuous time, there is an extra randomness
in the number of moves that have actually taken place at a certain point. Often
this causes faster mixing for continuous time than for discrete time. An extreme
case is when the discrete-time version MC is periodic and hence never mixes,
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but the continuous version does. Sometimes however, for fast-mixing chains, the
situation can be the opposite.

On the other hand, there is one general situation where the discrete versus
continuous time problem vanishes, namely if the discrete-time MC is lazy, i.e. if
there is a constant a > 0 independent of |S| such that pii ≥ a for every i. In this
case the same kind of randomness in the number of actual moves is present also
in the discrete setting.

From now on, it is assumed that time is discrete until further notice.
Deosn’t the second eigenvalue say all we need to know? Let P be the transition
matrix and suppose that P has n = |S| distinct eigenvalues. Let 1 = λ1 >
|λ2| > . . . > |λn| where the λ’s are the eigenvalues of P , and write φi for the
corresponding left eigenvectors (so that φ1 = π). Write the starting distribution in
eigenvector base:

P(X0 ∈ ·) =
∑

i

ciφi.

Then (since c1 must be 1)

P(Xt ∈ ·) = P(X0 ∈ ·)P t = π +
n
∑

i=2

ciφiP
t = π +

n
∑

i=2

ciλ
t
iφi.

Hence

‖P(Xt ∈ ·) − π‖TV = ‖
n
∑

i=2

ciλ
t
iφi‖TV

which behaves like |λ2|t for large t. Thus it would seem that one only needs to
know λ2 in order to know the convergence rate. However, this is incorrect for sev-
eral reasons. For example, the set of eigenvalues may be to dense for this approx-
imation to work in the interesting range of t. The perhaps most serious problem,
however, is that in general the transition is much to large and complicated to leave
us any hope of determining the second eigenvalue.

In situations where the second eigenvalue can be calculated, this can some-
times indeed be made use of, in particular when the MC under study is reversible.
Recall that a MC is said to be reversible if it satisfies the so called detailed balance
equations:

π(i)pij = π(j)pji

for all i and j. In continuous time one replaces pij with qij . For a reversible MC,
all eigenvalues are real, since the symmetric matrix

A = [
√

π(i)/π(j)pij]i,j∈S

4



has the same eigenvalues as P with eigenvectors [
√

π(i)φ(i)]i∈S when φ is a
(right) eigenvector of P . The same goes for Q in the continuous time case, just
replacing pij with qij .

Definition 1.3 The relaxation time, τ2, for a reversible MC is given by τ2 =
1/(1 − λ2) in discrete time, and τ2 = 1/λ2 in continuous time. In the contin-
uous time case, λ2 is the second smallest eigenvalue of −Q.

Later on, we shall among other things, see that

‖P(Xt ∈ ·) − π‖2 ≤
1

π∗
e−t/τ2

where π∗ = mini π(i).

2 Coupling, strong stationary times and ad-hoc lower
bounds

2.1 Techniques for lower bounds

Until very recently, there was no sophisticated general technique for finding lower
bounds on τmix; one had, and usually still has, to use an argument that works for
the special case under study. The most common way to do this, is to find an event
A = An such that for t = tn one has

P(Xn
t ∈ A) → 1

and
πn(A) → 0

as n→ ∞. Then t is a lower bound for τmix.
There are also other ideas. See e.g. Aldous and Fill [3], chapter 4. For ex-

ample, it is a general fact that τmix ≥ τ2. One can than e.g. determine τ2 for the
movement of a single card (in the case of card shuffling), thereby getting a lower
bound for the whole MC.

Wilson’s technique is a clever development of this fact. Section 3 is devoted
to his techique. In this section, however, we will settle for ad-hoc lower bounds
of the “classical” kind.
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2.2 Techniques for upper bounds

The most basic and useful techniques for upper bounds are coupling and strong
stationary times. Other, more advanced, techniques that we will see more of later
on, are Nash inequalities, log-Sobolev inequalities and relative entropy technique.
Another method uses so called evolving sets, see Morris and Peres [16]
Coupling. Let {Yt} be a MC with the same transition matrix (generator) as {Xt},
but starting from stationarity, i.e. P(Y0 ∈ ·) = π. Suppose also that the updates of
the two MC’s are synchronized in such a way that whenever t < t′ and Xt = Yt,
then Xt′ = Yt′ . (Obviously, such a synchronization can alway be implemented
without tampering with the marginal distributions of the two chains.) Let

T = inf{t : Xt = Yt}.
The stopping time T is called the coupling time. The following important inequal-
ity is called the coupling inequality:

‖P(Xt ∈ ·) − π‖TV ≤ P(T > t).

Proof. For any A ⊆ S,

P(Xt ∈ A) − π(A) = P(Xt ∈ A) − P(Yt ∈ A)

= P(Xt ∈ A, T ≤ t) − P(Yt ∈ A, T ≤ t)

+ P(Xt ∈ A, T > t) − P(Yt ∈ A, T > t)

≤ P(T > t)

where the inequality follows from that the events of the first two terms are the
same. 2

Strong stationary times. Assume that T is a stopping time such that P(XT ∈
·) = π and XT is independent of T . Then T is called a strong stationary time.
Again, the coupling inequality holds:

‖P(Xt ∈ ·) − π‖TV ≤ P(T > t).

Proof. In the discrete time case

P(Xt ∈ A) =
t
∑

s=1

P(Xt ∈ A|T = s)P(T = s) + P(Xt ∈ A, T > t)

= π(A)P(T ≤ t) + P(Xt ∈ A, T > t)

≤ π(A) + P(T > t).
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In the continuous time case, replace the sum with an integral from 0 to t. 2

The independence assumption is important. It is easy to construct examples
of uniform, but useless, stopping times. Consider e.g. simple random walk on the
triangle K3 and let T = 1 with probability 1/3 and T = 2 with probability 2/3.
Clearly XT is uniform, but equally clearly, the coupling inequality is not satisfied.
Random walks on groups. Suppose that the state space S is a group. The MC
{Xt} is then called a random walk on S if there is a probability measure ν on S
such that

pij = ν(i−1j).

Then all column sums of P are 1 and hence π = U , the uniform distribution.
Most card shuffling chains we shall encounter are random walks on the symmetric
group, but in some cases, we will study card shuffling MC’s, where the updating
permutation has a distribution that depends on the state the MC is in.

A useful general observation for random walks on groups is that the time-
reversed MC, {X̂t}, converges to uniformity exactly as quickly as the {Xt} itself.
This follows from the simple fact that the updating measure ν̂ of the time-reversed
process is given by ν̂(g) = ν(g−1), so that P(X̂t ∈ A) = P(Xt ∈ A−1).

We are now ready to attack some card shuffling chains. Always when working
with such MC’s, it is assumed that X0 = id = (1 2 3 . . . n).

2.3 The top-to-random shuffle

For each step of the shuffle, take the top card and insert it at a uniformly chosen
random position. Formally, this is a random walk on Sn (assuming that there are
n cards) and the updating measure ν is given by

ν(k k − 1 k − 2 . . . 1)) =
1

n
, k = 1, 2, . . . , n.

The following result was proved by Aldous and Diaconis [2]:

Theorem 2.1 A threshold for the top-to-random shuffle is given by

t = n log n.

Proof. Let T0 = 0 and let T1 be the first time that the top card gets inserted
into position n. Then inductively define T2, T3, . . . , Tn by letting Tk be the first
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time after Tk−1 that the top card gets inserted into either position n, n− 1, . . ., or
n− k + 1.

Then T = Tn is obviously a strong stationary time. To estimate P(T > t),
write T =

∑n
i=1 Vi, where Vi = Ti − Ti−1. The Vi’s are independent and Vi

is geometrically distributed with parameter i/n. Thus EVi = n/i and VarVi =
(n−i)/n2 ≤ n2/i2. Hence ET = n

∑n
i=1

1
i

= (1+o(1))n log n and VarT ≤ Cn2,
where C =

∑

i i−2 <∞. Now, for any a > 0, by Chebyshev’s inequality,

P(T > (1 + a)n log n) ≤ P(|T − ET | > an log n) → 0.

Hence by the coupling inequality, (1 + a)n log n is an upper bound for τmix.
For a lower bound, let A be the event that card n is among the bottom n/ log n

cards (assuming for simplicity of notation that n/ log n is an integer). Then
π(A) = 1/ log n→ 0. However

P(Xt ∈ A) ≥ P(Tn/ log n > t)

and since Tn/ log n has expectation (1+o(1))n(log n−log log n) = (1+o(1))n log n
and variance bounded by Cn2, we get by an analogous use of Chebyshev’s in-
equality that P(Xt ∈ A) → 1 when t = (1 − a)n log n. This shows that
(1 − a)n log n is a lower bound for τmix. 2

2.4 The random transpositions shuffle

Here, the right and left hand independently each pick a uniformly chosen card.
Then, unless both hands have chosen the same card, the two cards are inter-
changed. Formally, this means that the updating measure given by ν(id) = 1/n
and ν(i j) = 2/n2 for i 6= j. The following sharp result was proven by Matthews
[12]:

Theorem 2.2 A threshold for the random transpositions shuffle is given by

t =
1

2
n log n.

Proof. Let us start with a lower bound (1 − a) 1
2
n log n. For this, let A be

the event that at least log n cards are in their starting positions. Since the expected
number of such cards at stationarity is 1, it follows from Markov’s inequality that
π(A) → 0.
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However, P(Xt ∈ A) is bounded from below by the probability that at least
log n cards are untouched by time t. Since at most two cards are touched at each
step, it follows by mimiking the arguments for the top-to-random shuffle, that at
time t = (1 − a) 1

2
n log n, P(Xt ∈ A) → 1.

For an upper bound (1+ a) 1
2
n log n, we define a strong stationary time via the

following marking procedure. Start with all cards unmarked and then mark cards
according to the two rules:

(1) If both cards chosen are unmarked, then mark the card chosen by the left
hand. This also applies when both hands chose the same unmarked card.

(2) If only one of the hands chose an unmarked card, then mark this card.

Then, letting T be the first time that all cards are marked, we have that T is a
strong stationary time. This is proved by induction, noting that at each time a new
card is marked, that card is in a uniform position among the cards that are marked
so far.

Since each step invloves two randomly chosen cards, one for the left hand and
one for the right hand, the now familiar Chebyshev argument shows that

P (T > (1 + a)n log n) → 0.

2

Our next shuffle is much slower than two we have seen so far.

2.5 The transposing neighbors shuffle

At each step, do nothing with probability 1/2 and with probability 1/2 pick a
position uniformly at random from {1, 2, . . . , n−1} and swith the card there with
the card next to and below it. I.e.

ν(id) =
1

2
, ν(i, i+ 1) =

1

2(n− 1)
, i = 1, . . . , n− 1.

Theorem 2.3 (Aldous [1]) There is a constant K < ∞ (independent of n) such
that τmix ≤ Kn3 log n. There is also a c > 0 such that τmix ≥ cn3.

Proof. A coupling will be used for the upper bound. Let {Xt} be the ordinary
deck and let {Yt} be another deck wih the same transition rules, started from
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uniformity. Say that a card i is coupled at time t if Xt(i) = Yt(i), i.e. if i is in the
same position in the two decks at time t.

One way of describing the shuffling rules, is to say that one makes two uni-
formly random choices, the first being a position in {1, . . . , n− 1} and the second
whether or not to swith the card at the chosen position with its neighbor.

Couple the transitions of the two decks by using the same first choice, i, for
the Y -process as for the X-process. Then, if either the card at position i or the
card at position i+ 1 is coupled, make the same second choice for the two decks.
If not, make the opposite second choices for the Y -process as for the X-process.

Now clearly the marginal updating distributions are correct, and a given card
in one deck cannot pass its copy in the other deck without being coupled. Hence,
if T is the first time that every card has visited position 1 in both decks, then the
two decks are coupled at time T and ‖P(Xt ∈ ·) − π‖TV ≤ P(T > t).

Fix a card i and let Zt = Xt(i) be i’s position at time t. Then {Zt} is a random
walk, reflected in 1 and n, whose steps are −1 or 1 with probability 1/2(n − 1)
each and 0 with probability 1 − 1/(n − 1). By Donsker’s Theorem (see Durrett
[9], p. 365),

{ 1

n
Zsn3}s≥0 → {Bs}s≥0

where Bs is standard Brownian motion, reflected at 0 and 1, and convergence is in
distribution. It is a well known result (see Durrett [9] again) that the probability
that {Bs} has not been reflected at 0 before time t is bounded by Ce−αt, where
C < ∞ and α > 0. Letting Ti be the first time that card i has visited 1 in both
decks, this entails that

P(Ti > b(n)n3) ≤ 2Ce−αb(n)

where the factor 2 refers to that we are considering two decks. With K = 2/α
and b(n) = K log n, the rhs is bounded by 2Cn−2. Finally, since T = maxi Ti,

P(T > Kn3 log n) ≤ nP(Ti > Kn3 log n) ≤ 2C

n
.

For the lower bound, note that after time cn3, the position of card i has variance
(1+o(1))cn2, so for c small enough, this is far from the uniform distribution which
has variance (1 + o(1))n2/12. We omit some details here, since this lower bound
will be improved upon in the next section. 2
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2.6 The overhand shuffle

This is our first model of a ”real” shuffle, in the sense that people actually use it
to mix a deck of cards.

The model has a probability parameter p ∈ (0, 1). Given p, each of the n − 1
slots between successive cards is marked with probability p, independently of
other slots. Then, given the marks, each pack of cards between two successive
marks, is reversed. (To be true, a step of the shuffle described gives the reversed
deck of what one gets from an actual overhand shuffle. Of course, every second
time, one gets back the ”real” deck. It is equally obvious that the convergence rate
is not affected.)
Example. 123|45|6|789 results in 321546987. 2

The following result was established by Pemantle [17].

Theorem 2.4 There exists a constant C = C(p) <∞ such that for the overhand
shuffle, τmix ≤ Cn2 log n. On the other hand, τmix is at least of order n2.

Proof. The lower bound part will only be sketched, since it will be improved
upon later on. Here we simply note that each card makes a random walk which is
very close to symmetric with step size variance of order 1. (Only very close since
the boundaries of the deck have a slight repelling effect.) Hence, disregarding the
fact that the random walk is not perfectly symmetric, the CLT entails that mixing
time of a single card is of order n2.

For the upper bound, we use a coupling. Let Xt and Yt be the original and
the stationary deck respectively, as usual. For simplicity, let us consider a circular
deck, i.e. we get an extra slot between positions 1 and n and cards may “come
around the corner”. (This means that a single cards makes a perfectly summet-
ric random walk on Zn and so the lower bound argument above is compete as it
stands.) Now we couple the decks by using the same nearest marked slots around
each coupled card. More precisely, this means that when we flip coins for deter-
mining the status of a slot, we start with the slots closest to coupled cards.

After having found the nearest marked slots, the status of the rest of slots are
determined independently for the two decks.

Now consider a single card, i, and let {Vt} and {Wt} denote its random walk
in the the two decks respectively. Let us again simplify a bit, by assuming that
p = 1/2, letting general p be an exercise for the reader. Then the step size dis-
tribution of these random walks is that the step size is j (mod n) with probability

11



1
3
(1

2
)|j|, j ∈ Z. Hence the step size distribution has step size variance of order 1.

From this one can show that there is a constant c, such that within time cn2 − 1,
the distance between Vt and Wt, will at least once be at most 1. (Proving this
properly is more complicated than one would think, since the two random walks
are slightly dependent and this dependence is non-negligible when they are close
to each other.) Now, given that the distance between card i’s position in the two
decks is 1 at some time, then the probability that i gets coupled in the next step
is at least (1/2)6. This entails that the probability that i is coupled at time cn2 is
at least (1/2)7. This means that there is a constant C such that at time Cn2 log n,
card i is coupled with probability at least 1 − 1/n2, and thus

P(T > Cn2 log n) ≤ 1

n
.

2

2.7 The riffle shuffle

This is a model for the most commonly used shuffle, when people shuffle a real
deck of cards, where the deck is divided in two packs of roughly n/2 cards each,
and then these two packs are interleafed. Bayer and Diaconis [5] showed that for
this shuffle, 3

2
log2 n is a theshold and, via a detailed analysis, that for n = 52, 7

shuffles is sufficient to bring ‖P(Xt ∈ ·) − π‖TV down to about 0.3. This result
was considered of such common interest, that it made it to the front page of the
New York Times!

Here we shall only make the immediate observation that log2 n is a lower
bound and give the surprisingly simple argument of Aldous and Diaconis [2], that
2 log2 n is an upper bound.

First we describe the model. Each step of the shuffle is a function of a sequence
ξ1, ξ2, . . . , ξn of iid random variables where P(ξi = 0) = P(ξi = 1) = 1/2. Such
a sequence is interpreted in the following way. The number of 0’s of the sequence
tells us how many cards that goes in the top pack when the deck is divided in two.
Then the order of the 0’s and 1’s tells us in what order the cards fall during the
interleafing part, where, of course, a 0 corresponds to a card from the top pack
and a 1 to a card from the bottom pack.
Example. If the n = 10 cards are in the order

abcdefghij
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and the random sequence is 0110111010, then the order of the cards after this step
of the shuffle is

aefbghicjd.

2

Since there are at most 2n (in fact exactly 2n − n − 1) possible outcomes of
each step of the shuffle and n! > nn/e2n = 2(1+o(1))n log2 n by Stirling’s formula,
we get that τmix ≥ (1 + o(1)) log2 n.

For the upper bound, we will use the fact that the time-reversed MC has the
same mixing time as the original MC. One step of the time-reversed chain “un-
does” the riffle shuffle, i.e. for the given sequence of 0’s and 1’s, it takes the cards
at positions corresponding to a 0 and puts them on top of the other cards, without
changing their relative order.
Example. The sequence 0011010001 takes abcdefghij to abeghicdfj. 2

Let us say that a card in a position corresponding to a 0 is marked with a 0 in
that step, and similarly with a 1. Then in each step of the suffle, each card gets
a new mark, so after k shuffles, each card has an iid sequence of k marks. Now
make a coupling with a stationary deck by always letting each card get the same
mark in the two decks.

Let T be the coupling time and let T̂ be the fist time that all cards have distinct
sequences of marks. When all cards have distinct mark sequences, the positions
of the cards can be read off from the marks. This is so, since when comparing two
cards, we have that the card which has a 0-mark at the latest time that the marks
differ, is higher up in the deck. Hence T ≤ T̂ . Now, since there are

(

n
2

)

pairs of
cards and since the probability that two given cards have the same mark sequences
after k shuffles is (1/2)k,

P(T̂ > k) ≤
(

n

2

)

2−k <
n2

2
2−k

which is less than 1/4 when k = 2 log2 n+ 1.
Remarks. The model for the riffle shuffle is fairly realistic, but it deviates from
how people really shuffle in the following significant aspect. Since the 0/1-
sequence that models a step is iid, it follows that for each stage of the interleafing
part of the shuffle that, if there are kr cards left in the right hand and kl cards in
the left hand, then the probability that the next card is dropped from the right hand
is kr/(kr + kl), no matter which hand dropped the card before.
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In practice, people have a slight tendency to drop the next card from the other
hand. Thus the 0/1-sequence which on average changes from 0 to 1 or vice versa
n/2 times, should, in order to be more realistic, be replaced by a dependent se-
quence that changes, say, 3n/4 times. To analyse such a model is a difficult open
problem. Note that the coupling above breaks down in this case.

The Thorp shuffle, to which a later section is devoted, is another variant of a
finer riffle shuffle.

3 Wilson’s technique for lower bounds

Wilson’s technique is the first systematic technique for finding test functions that
provide tight lower bounds on the mixing time. The tecnique tends to work well
in situations where the motion of a single card is easily analyzed and when cards
move firly independently. Sometimes one can alternatively use some other sim-
ple MC’s embedded in the MC under study. The metod was introduced in [19]
and [20]. The presentation here is based on those papers and on the extensions
presented in [11] and [10].

3.1 The basic setup

Let as usual {Xt}∞t=0 denote the (irreducible aperiodic) MC under study. The test
function used in basic Wilson technique is a (right) eigenvector, φ, of the transition
matrix, i.e. a function on the state space S such that

E[φ(Xt+1)|Xt] = λφ(Xt)

almost surely. For simplicity, we will start with assuming that φ corresponds to a
real eigenvalue λ = 1 − γ, so that φ itself is also real-valued. (This holds auto-
matically e.g. when {Xt} is reversible.) We also make the very mild assumption
that 0 < γ < 1/2. Let

R = max
s∈S

E[(φ(Xt+1) − φ(Xt))
2|Xt = s]

and assume that φ(X0) > 0. Fix a > 0 and let

T =
log φ(X0) − 1

2
log 4R

γa

− log(1 − γ)
.

The following result is the key to Wilson’s technique.
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Theorem 3.1 (Key Theorem) For all t ≤ T ,

‖P(Xt ∈ ·) − π‖TV ≥ 1 − a.

Usually when applying the key theorem, one takes a to be some specific value
of at most 3/4, e.g. a = 1/2 so that the ratio in the second term of the numerator
of T becomes 8R/γ. In almost all cases we will have γ = γ(n) = o(1), so that,
with a = 1/2,

T = (1 + o(1))γ−1(log φ(X0) −
1

2
log(8R/γ).

Proof. Let X be a random variable on S distributed according to π. By
induction

Eφ(Xt) = (1 − γ)tφ(X0).

Hence, letting t→ ∞, we have Eφ(X) = 0.
Write ∆φ = φ(Xt+1) − φ(Xt). Since φ(Xt+1)

2 = φ(Xt)
2 + 2φ(Xt)∆φ +

(∆φ)2 and E[∆φ|Xt] = −γφ(Xt),

E[φ(Xt+1)
2|Xt] ≤ (1 − 2γ)φ(Xt)

2 +R.

Using this inductively, utilizing the assumption that γ < 1/2, it follows that for
all t,

E[φ(Xt)
2] ≤ (1 − 2γ)tφ(X0)

2 +
R

2γ
.

This entails

Varφ(Xt) = E[φ(Xt)
2] − (Eφ(Xt))

2

≤
(

(1 − 2γ)t − (1 − γ)2t
)

φ(X0)
2 +

R

2γ

≤ R

2γ
.

Hence, by Chebyshev’s inequality

P

(

|φ(Xt) − Eφ(Xt)| ≥
√

R

γa

)

≤ a

2
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and by letting t→ ∞ and keeping in mind that Eφ(X) = 0,

P(|φ(X)| ≥
√

R

γa
) ≤ a

2
.

This implies that if t is such that Eφ(Xt) ≥
√

4R
γa

, then

‖P(Xt ∈ ·) − π‖TV ≥ 1 − a.

Finally we observe that

T = − log1−γ

φ(X0)
√

(4R)/(γa)

and since Eφ(Xt) = (1 − γ)tφ(X0), it follows that this holds for all t ≤ T . 2

Example. Transposing neighbors, continued. Let us go back to the transposing
neighbors shuffle, for which we established above that τmix is at least of order n3

and at most of order n3 log n. We will now establish that n3 log n is the correct
order of τmix, following the analysis in [20]. For convenience we will make a
slight adjustment of the shuffle and use the circular deck convention and skip the
holding probability of 1/2. Thus the updating measure is now given by

ν(id) = ν(1 2) = ν(2 3) = . . . = ν(n− 1n) = ν(n 1) =
1

n+ 1
.

Let Zt = Z i
t be the position of card i at time t. Then

E[cos
2πZt+1

n
|Xt] = (1 − 2

n+ 1
) cos

2πZt

n
+

1

n+ 1
cos

2π(Zt + 1)

n

+
1

n+ 1
cos

2π(Zt − 1)

n

= (1 − 2

n+ 1
) cos

2πZt

n
+

2

n+ 1
cos

2πZt

n
cos

2π

n

= (1 − γ) cos
2πZt

n

where γ = 2(1 − cos(2π/n))/(n + 1) = (1 + o(1))4π2/n3. Hence cos(2πZt/n)
is an eigenvector of the eigenvalue 1 − γ. By linearity of expectation, this also
holds for

φ(Xt) =
m
∑

i=1

cos
2πZ i

t

n

16



where m = bn/2c.
Let us now apply the key theorem. Since the starting order of the deck is

irrelevent for the mixing time, we can start with the cards in an order that max-
imizes φ(X0). Then φ(X0) =

∑m
i=1 sin 2πi

n
= Cn where C = (1 + o(1))1/π.

Since φ(Xt+1) and φ(Xt) differ only if step t+1 consists of a transposition of one
of the cards 1, . . . ,m and one of the other cards,

R ≤
(

cos(
π

2
− 2π

n
)
)2

≤
(2π

n

)2

.

Plugging all this into the key theorem (with a = 1/2), we get

τmix ≥ T =
n3

4π2

(

log(Cn) − 1

2
log

32π2/n2

4π2/n3

)

= (1 + o(1))
1

8π2
n3 log n.

2

Remark. It is not an essential problem to remove the circular deck assumption.
When doing so, the given (1−γ, φ) is not an eigenvalue/eigenvector pair, but only
very close. Quantifying the error term in the conditional expectation, one can then
use the extension of the key theorem in [11]. Alternatively one can use Newton’s
method to find a true eigenvalue/eigenvector pair close to (1 − γ, φ).

Example. Random transpositions. We already know that the threshold for
random transpositions is 1

2
n log n, but let us for illustration derive a lower bound

via Wilson’s technique.
Let again Zt = Z i

t denote the position of card i at time t. Then, if n is even,

E[(−1)Zt+1 |Xt] = (1 − 2

n
)(−1)Zt +

1

n
(−1)Zt − 1

n
(−1)Zt

= (1 − 2

n
)(−1)Zt

where the terms in the first equality correpond to the card i not being touched,
card i touched and moved an even number of steps and card i touched and moved
an odd number of steps, respectively. If n is odd, this equality is not exact, but the
error is of order n−2 and will hence vanish in the limit.

Now, with m = bn/2c, let

φ(Xt) =
m
∑

i=1

(−1)Zi
t .

17



Then E[φ(Xt+1)|Xt] = (1 − 2/n)φ(Xt), so we may apply the key theorem with
γ = 2/n. Starting with cards 1, . . . ,m in even positions, we have φ(X0) = m and
since at most two crads move at a given step, R ≤ 22 = 4. Hence

τmix ≤ T = (1 + o(1)
n

2

(

logm− 1

2
log(16n)

)

= (1 + o(1))
1

4
n log n.

2

Remark. Note that for random transpositions, Wilson’s technique gave a lower
bound which deviates from the true threshold by a factor 2. For transposing neigh-
bors, it is also believed that the true mixing time is twice as large as the one we got
from Wilson’s technique and this deviation by a factor two seems to very common
when applying Wilson. It would be interesting if one could find a general expla-
nation for this fact and a remedy for it.

Example. The overhand shuffle, continued. We know from above that for
the overhand shuffle, τmix is at most of order n2 log n. Here we will via Wilson’s
technique, following [11], establish a lower bound of the same order.

Assume to begin with, that a slot is marked with probability 1/2. Use also
the circular deck convention. (This can be removed along the lines indicated in a
remark above, see [11].) As we observed in the previous section, each card makes
a symmetric random walk on Zn, where the probability of moving j steps equals
(1/2)|j|/3, j ∈ Z. Thus

E[cos
2πZt+1

n
|Xt] =

1

3
cos

2πZt

n

+
1

3

∞
∑

j=1

1

2j

(

cos
2π(Zt + j)

n
+ cos

2π(Zt − j)

n

)

=
1

3
cos

2πZt

n

(

1 + 2
∞
∑

j=1

cos(2πj/n)

2j

)

= (1 − γ) cos
2πZt

n

where γ = (1 + o(1))8π2/n2; the value of γ follows from Taylor’s formula:

cos
2πj

n
= 1 − 2π2j2

n2
+O((j/n)4)
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and that
∑∞

j=1 j
2/2j = 6. Letting, with m = bn/2c,

φ(Xt) =
m
∑

i=1

cos
2πZ i

t

n

we have that φ is a eigenvector corresponding to 1 − γ. Starting with the cards in
a suitable order, we have, as for transposing neighbors, φ(X0) = Cn.

Now we must bound R. Let

Yi = cos
2πZ i

t+1

n
− cos

2πZ i
t

n
.

Then (φ(Xt+1) − φ(Xt))
2 = (

∑m
i=1 Yi)

2. Hence

E[(φ(Xt+1) − φ(Xt))
2|Xt] =

∑

i

∑

j

E[YiYj|Xt].

Consider a given (i, j). Let Y ′
i and Y ′

j be distributed as Yi and Yj but independent.
Then we can make a coupling such that (Yi, Yj) = (Y ′

i , Y
′
j ) on the event, A, that

there are at least two marked slots between cards i and j for update t + 1 of the
shuffle. If the distance between card i and card j at time t is at least, say, 10 log n,
then P(A) = 1 − o(1/n5) and hence

E[YiYj|Xt] = E[Y ′
i |Xt]E[Y ′

j |Xt] + o(n−5) = O(n−4).

For other i and j,

E[YiYj|Xt] ≤ max
s∈S

E[Y 2
i |Xt = s] =

2

3

∞
∑

j=1

1

2j

(

sin
2πj

n

)j

< 50n−2.

Hence
∑

i

∑

j

E[YiYj|Xt] < m2O(n−4) + 20n log n · 50n−2

= O(n−2) + 1000n−1 log n.

Thus, we may use R = (1+o(1))1000n−1 log n in the key theorem, together with
φ(X0) = Cn and γ = (1 + o(1))8π2/n2 and get

τmix ≥ (1 + o(1))
1

16π2
n2 log n.
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In the more general case where slots are marked with probability p (we just
did the case p = 1/2), the step size distribution for the random walk described
by single card is that one moves distance j with probability p(1 − p)|j|/(2 − p),
j ∈ Z. Recalculating the above with this step size distribution gives

γ = (1 + o(1))4π2 1 − p2

p2(2 − p)
n−2

which in the end leads to

τmix ≥ p2(2 − p)

8π2(1 − p2)
n2 log n.

2

3.2 The move-to-front rule and the first extension

The basic setup for Wilson’s technique has some restrictions that we now set out
to relieve. One restriction is the assumption that eigenvalues be real. For a non-
reversible MC, this is usually not the case, and the right order of mixing is con-
nected to how close eigenvalues are to 1 in absolute value, rather than the distance
in the complex plane between the eigenvalues and the point 1. Thus we would like
a modification of the setup that enables us to confirm this. We will come back to
this in the next subsection.

Another restriction is that in the basic setup, only one eigenvalue is used. In
some situations, e.g. when different cards have different behavior, one may have
to use a combination of different eigenvector/eigenvalue pairs. This is the issue
that will now be addressed.

The first extension. Suppose that φ1, φ2, . . . , φk are eigenvectors of the transition
matrix corresponding to the eigenvalues γ1, γ2, . . . , γk. Assume that

Cov(φi(Xt), φj(Xt)) ≤ 0, i 6= j

and that for all i,

max
s∈S

E[(φi(Xt+1) − φi(Xt))
2|Xt = s] ≤ γi.

(In fact, the last condition is just a mattar of scaling, since an eigenvector can be
scaled as one likes. What will be crucial is the relation between γi and φ(X0) after
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the scaling.) Now, plug in φi in the beginning of the proof of the key theorem to
get

Varφi(Xt) ≤
1

2
.

Let αi, i = 1, . . . , k, be positive numbers (or weights) such that
∑

i α
2
i = 1 and

let
φ(Xt) =

∑

i

αiφi(Xt).

Then, by the negative correlation condition,

Varφ(Xt) ≤
1

2
.

Now, plugging in φ in the second part of the proof of the key theorem yields that
‖P(Xt ∈ ·) − π‖TV ≥ 1 − a as long as Eφ(Xt) ≥

√

4/a. Since

Eφ(Xt) =
∑

i

αi(1 − γi)
tφi(X0)

this holds e.g. when, for all i,

αi(1 − γi)
tφi(X0) ≥ α2

i

√

4/a,

i.e. when (1 − γi)
tφi(X0) ≥ αi

√

4/a. This gives us

τmix ≥ min
i

log φi(X0) − 1
2
log(4α2

i /a)

− log(1 − γi)
.

Typically γi = o(1), αi = o(1) and φi(Xo) = O(1) for all i, and then we get

τmix ≥ (1 + o(1)) min
i
γ−1

i logα−1
i .

When using this result, the idea is of course to use weights αi such that the ratios
in the minimum are equal or approximately equal.
Example. The move-to-front rule. This is a random-to-top shuffle, where
different cards have different probabilities of being picked. More precisely, to
each card, i, a probability pi is associated. At each step of the shuffle, a card is
chosen at random according to these probabiltites and the chosen card is moved
from its present position to the top of the deck. (The standard metaphor for the
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items is “books” rather than “cards”, but in practice, the “books” are usually data
files.)

Note that this is not a random walk on Sn in the above sense, since the proba-
bility for a given updating permutation depends on the present order of the cards.
Hence the stationary distribution is not necessarily uniform. Inded, the stationary
distribution is given by

π((c1 c2 c3 . . . cn)−1) =
n
∏

k=1

pck

1 −
∑k−1

i=1 pi

,

see e.g. [18].
Without loss of generality, we assume that p1 ≤ p2 ≤ . . . ≤ pn. For this

shuffle, the mixing time may depend on the starting state. In such cases one
is usually interested in the slowest possible mixing. Not surprisingly, a starting
order which turns out to achieve the highest possible order of mixing, is to start,
as we do, with the cards in the order 123 . . . n.

To apply the extension of the key theorem, let, for each odd i,

φi(Xt) =

{

pi+1

pi+pi+1
, Z i

t < Z i+1
t

− pi

pi+pi+1
, Z i

t > Z i+1
t

Then it is readily checked, considering the two cases Z i
t < Z i+1

t and Z i
t > Z i+1

t

separately, that E[φi(Xt+1)|Xt] = (1 − pi − pi+1)φ(Xt). Hence γi = pi + pi+1.
Since |φi(Xt+1) − φi(Xt)| ≤ 1 and the probability that φi changes at all in one
step is bounded by pi+1,

E[(φi(Xt+1) − φi(Xt))
2|Xt] ≤ pi+1 ≤ γi.

We must also check that φi and φj , i 6= j, are not positively correlated. However,
given that card k or card k + 1 has at least once been touched by time t, the
expectation of φk(Xt) is 0. Hence

Eφk(Xt) = (1 − γk)
tφk(X0)

and similarly

E[φi(Xt)φj(Xt)] = (1 − γi − γj)
tφi(X0)φj(X0)

from which the required negative correlation is immediate. Now let

φ(Xt) =
∑

i

αiφi(Xt)
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where the sum is over odd i′s and
∑

i α
2
i = 1. Apply the extension of the key

theorem with a = 1/2 using that φ(X0) ≥ 1/2 to get

τmix ≥ min
i

1
2
log(α−2

i /8) − log 2

− log(1 − γi)
.

When γi = o(1) and αi = o(1), this becomes, as remarked above,

τmix ≥ (1 + o(1)) min
i
γ−1

i logα−1
i .

In order to optimize, we would like all γ−1
i logα−1

i to be equal. This means to let
αi be proportional to e−γi . However, in the special case, it is easier to pick the
αi’s only approximately optimal, via inspection of the pi’s. We will now study
four special cases.

Case A. Ordinary random-to-top, i.e. pi = 1/n for all i. Then γi = 2/n and
we can take αi = (2/n)1/2. This gives

τmix ≥ (1 + o(1))
1

4
n log n.

Case B. Letm = bn/2c and let pi = 2/n(n+1) for i ≤ m and pi = 2/(n+1)
for i > m. Then the corresponding γi’s are (1 + o(1))4/n2 and (1 + o(1))4/n
respectively. The important cards are the firstm cards, since these are most seldom
touched. Taking αi = (1 + o(1))2n−1/2, i ≤ m and αi = 0 otherwise, we get

τmix ≥ 1

8
n2 log n.

Case C. Let pi = (n+1− i)−1/(
∑n

j=1 j
−1) = (1+ o(1))(n+1− i)−1/ log n.

This gives γi = (1 + o(1))2/(n+ 1− i) log n. Taking αi = 2n−1/2 for i ≤ m and
αi = 0 otherwise gives

τmix ≥ 1

8
n(log n)2.

Case D. Let pi = 2i/n(n+ 1). Here we need only put weight on the first few
cards, e.g. α1 = α3 = . . . = α127 = 1/8. This gives

τmix ≥ γ−1
128(

1

2
log 8 − log 2) = Cn2

for a constant C. This turns out to be the correct order of mixing.
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We would now like to match these lower bounds with good upper bounds.
We do this via coupling. As usual {Xt} denotes the MC under study and {Yt} a
stationary copy of it. The coupling is very simple: always move the same card in
the two decks. With T for the coupling time, we have that T must have occured as
soon as all but one card has been touched, in particular when all cards 2, 3, . . . , n
have been touched. Hence

P(T ≥ t) ≤
n
∑

i=2

(1 − pi)
t.

Letting

τu = min{t :
n
∑

i=1

(1 − pi)
t ≤ 1

4

we get τmix ≤ τu. (One can also show that τmix ≥ τu/25, see [10].) Let us now
estimate τu for the above special cases.

Case A.
∑n

i=2(1 − pi)
t = (n − 1)(1 − 1/n)t which is less than 1/4 when

t ≥ log(4(n− 1))/ log(n/(n− 1)) = (1 + o(1))n log n. Thus

τmix ≤ n log n.

Case B. Here
n
∑

i=2

(1 − pi)
t = (1 + o(1))

n

2

(

(1 − 2

n
)t + (1 − 2

n2
)t
)

which is less than 1/4 for t ≥ (1 + o(1)) 1
2
n2 log n. Hence

τmix ≤ (1 + o(1))
1

2
n2 log n.

Case C. In this case, with t = cn(log n)2,

n
∑

i=2

(1 − pi)
t = (1 + o(1))

n−1
∑

i=1

(

1 − 1

i log n

)cn(log n)2

which clearly tends to 0 for c > 1 (and tends to 1 for c > 1, you may take it as an
exercise to show this). Hence

τmix ≤ n(log n)2.
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Case D. Taking t = cn2, we get
n
∑

i=2

(1 − pi)
t = (1 + o(1))

n
∑

i=2

(

1 − 2i

n2

)cn2

= (1 + o(1))
n
∑

i=2

e−2ci

= (1 + o(1))
e−4c

1 − e−2c

which is less than 1/4 when c > 1
2
log(8/(

√
17 − 1)). Hence

τmix < 0.471n2.

2

3.3 GR-shuffles and the second extension

Similar in spirit to the move-to-front rule are the shuffles where one instead of
moving card i to the top with probability pi, one moves the card in position i to the
top with probability pi. We will call such shuffles Generalized Rudvalis shuffles
or, in short GR-shuffles, since they are generaization of the so called Rudvalis
shuffle, where pn−1 = pn = 1/2. They are also generalizations of the random-to-
top shuffle (the time-reversal of top-to-random) for which pi = 1/n for all i.

Unlike the move-to-front rule, the GR-shuffles are random walks on the sym-
metric group. The updating measure ν is given by ν(1 2 . . . i) = pi, i = 1, 2, . . . , n.
Thus the stationary distribution is uniform. They are however non-reversible, so
when using Wilson’s technique for lower bounds, we face the problem of deal-
ing with complex eigenvalues/eigenvectors. Wilson [19] deals with this via an
extension of the state space. Here we will take a slightly different route.

The second extension. Suppose that φ is an eigenvector of the transition matrix
of the MC {Xt}, that corresponds to the eigenvalue (1−γ)eiθ, where γ ∈ (0, 1/2)
and θ ∈ [0, π]. Let

R ≥ max
s∈S

E[|e−iθφ(Xt+1) − φ(Xt)|2|Xt = s].
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Then τmix ≥ 1 − a for t ≤ T , where

T =
log |φ(X0)| − 1

2
log(4R/γa)

− log(1 − γ)
.

Proof. This is a fairly starightforward modification of the proof for the basic
setup.

Let X ∈ Sn be uniform. Then Eφ(Xt) = (1− γ)teitθφ(X0) and consequently
Eφ(X) = 0. Now let ψt = e−itθφ. Then Eψt(Xt) = (1 − γ)tφ(X0). Moreover,

E[|ψt+1(Xt+1) − ψt(Xt)|2|Xt] = |e−itθ|E[|e−iθφ(Xt+1) − φ(Xt)|2|Xt] ≤ R.

by assumption.
Now mimik the proof for the basic setup, replacing φ(Xt)

2 with |ψt(Xt)|2
and keeping in mind that for a complex-valued random variable, Y , VarY =
E[|Y − EY |2] = E[|Y |2] − |EY |2. 2

When it comes to upper bounds for GR-shuffles, we will rely on coupling.
It will turn out, for upper as well as lower bounds, that we will achieve useful
results only in some simple special cases. The only case where we will be able to
determine the precise order of τmix is the bottom-to-top shuffle, presented below.

Lower bounds. As in many of the examples above, we will use the movement
of a single card to find eigenvalue/eigenvector pairs to use. Even so, it turns out
that even in the simplest special cases, it is virtually impossible to determine these
exactly. Then the following approximation lemma is very useful.

Lemma 3.1 (Approximation Lemma) Let D be the closed unit disc in the complex
plane. Assume that f : D → C is analytic (e.g. a polynomial), f(0) = 1 and
|f ′(z)| ≥ 1 for all z. Then there exists z0 ∈ D such that f(z0) = 0.

The real-valued analog of the approximation lemma is obvious. A proof of
the lemma can be found in [10]. It requires, however, a background in complex
analysis that is not contained in this course.

The way the approximation lemmma will be used, is to draw the conclusion
that if f(z1) = a and |f ′(z)| ≥ b in a sufficiently large neighborhood of z1, then
f has a root within distance a/b of z1.

Writing P (1) for the transition matrix of the MC described by a single card,
writing the eigenvalue/eigenvector relation P (1)ξ = λξ coordinatewise and letting
mk =

∑

j<k pj and Mk =
∑

j>k pj yields

λξ(k) = pkξ(1) +mkξ(k) +Mkξ(k + 1),
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k = 1, 2, . . . , n. For general pi’s, this system of equations is intractable. We will
consider two special cases: the bottom-to-top shuffle and the overlapping cycles
shuffle.

Example. The bottom-to-top shuffle. This shuffle is given by p n−k+1 =
pn−k+2 = . . . = pn = 1/k for some fixed k = k(n). The eigenvalue/eigenvector
equations then simplify to ξ(1) = 1 (assumed without loss of generality),

λξ(j) = ξ(j + 1),

j = 1, . . . , n− k and

λξ(n− k + j) =
1

k
+
j − 1

k
ξ(n− k + j) +

k − j

k
ξ(n− k + j + 1),

j = 1, . . . , k.
The first n− k equations imply that ξ(n− k+ 1) = λn−k. Solving for ξ(n) in

the last equation yields
ξ(n) =

1

kλ− k + 1)

(or λ = (k − 1)/k which is not a useful eigenvalue for our purposes). Inserting
into equation n− 1 and solving for ξ(n− 1), then leads to

ξ(n− 1) =
1 + ξ(n)

λ− k + 2
=

1

kλ− k + 1
= ξ(n).

Insert this into equation n− 2 and solve for ξ(n− 2) to get

ξ(n− 2) =
1 + 2ξ(n)

λ− k + 3
=

1

kλ− k + 1
= ξ(n).

Carrying on like throughout the last k equations yields

ξ(n) = φ(n− 1) = . . . = ξ(n− k + 1) =
1

kλ− k + 1
.

Equating the two expressions for ξ(n−k+1) gives us the following characteristic
equation for λ:

g(λ) := λn−k+1 − k − 1

k
λn−k − 1

k
= 0.

Assume now for a while that k = o(n). Let w = 2π/n. We will now true
to “guess” a root of g(λ), estimate the error and the derivative of g and use the
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approximation lemma. We will be slightly sketchy about this, referring to [10] for
more details.

It is easy to see, using Taylor’s formula for the sine and cosine functions, that
taking λ = eiw gives an =g(λ) = O(k3n−3) and <g(λ) = O(k2n−2). The worst
of these errors is the one for the real part, so in order to adjust for this, our next
guess is

λ0 = (1 − γ0)e
iw

for a small order real γ0. Inserting this we get

<g(λ0) ≈ (1 − nγ0)(1 − (k − 1)2w2

2
) − k − 1

k
(1 − nγ0)(1 − k2w2

2
) − 1

k

≈ −n
k
γ0 +

k − 1

2
w2

which vanishes if γ0 = k(k − 1)w2/(2n). Since γ0 is of order k2n−3 it readily
seen, using one more term in Taylor’s formula for sine and cosine, that =g(λ0) =
O(k2n−3) and <g(λ0) = O(k3n−4). Hence

g(λ0) = O(k2n−3).

Since

g′(λ) = (n− k + 1)λn−k +
k − 1

k
(n− k)λn−k−1 = (1 + o(1))

n

k

within distance, say, γ0/2 of λ0, the approximation lemma entails that g has a
root within distance O(k3n−4) of λ0, in particular, there is an eigenvalue λ =
(1 − γ)eiθ, where γ = (1 + o(1))k(k − 1)w2/(2n) and θ = (1 + o(1))w.

Now we apply the second extension. As usual, Z i
t denotes the position of card

i at time t. Let φi(Xt) = ξ(Z i
t) and let

φ =
m
∑

i=1

φi,

where m = bn/2c. Then (λ, φ) is an eigenvalue/eigenvector pair. Since |ξ(i)| =
1 +O(k2n−2) for all i, starting with the cards in order gives |φ(X0)| = Cn. Next
we must control the quadratic change of φ for one step of the shuffle. By the
triangle inequality

|e−iθφ(Xt+1) − φ(Xt)| ≤
∑

i

|e−iθξ(Z i
t+1) − ξ(Z i

t)|.
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For the at most m ≤ n− k cards in a position r among the top n− k positions,

|e−iθξ(Z i
t+1) − ξ(Z i

t)| ≤ |λ|rγ ≤ γ = O(k2n−3).

For the card taken to the top, e−iθξ(Z i
t+1) and ξ(Z i

t) differ by |1 − e−iθλn−k| =
O(kn−1). For the k cards in the bottom of the deck, the worst case is when k − 1
of them stay put and for such a card

|e−iθξ(Z i
t+1) − ξ(Z i

t)| = |λn−k(1 − e−iθ)| = O(n−1).

Summing up

|e−iθφ(Xt+1) − φ(Xt)| ≤ mO(k2n−3) +O(kn−1) + (k − 1)O(n−1)

= O(kn−1).

Hence we can take R = O(k2n−2). Taking a = 1/2 in the second extension and
recalling that w = 2π/n now gives

τmix ≥ (1 + o(1))γ−1(log(Cn) − 1

2
log(8R/γ))

= (1 + o(1))
1

4π2k(k − 1)
n3 log n.

Note that a special case is the Rudvalis shuffle for which we get the lower bound
(1/(8π2))n3 log n, the same lower bound as Wilson found in [19] via a state space
extension. The result deserves to be stated as a theorem.

Theorem 3.2 For the bottom-to-top shuffle taking a card from the bottom k =
o(n) positions,

τmix ≥ 1

4π2k(k − 1)
n3 log n.

2

Example. The overlapping cycles shuffle. Here k = k(n) is again a prede-
termined fixed number and pn−k = pn = 1/2. To avoid periodicity, we must
stipulate that k be odd. The name “overlapping cycles shuffle” was proposed by
Angel, Peres and Wilson in [4], where a detailed analysis of the eigenvalues for
the single card MC is carried out; it turns out that these describe two overlapping
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cycles in the unit disc of the complex plane. The equations for (λ, ξ) for the single
card chain now become

λξ(j) = ξ(j + 1),

j = 1, 2, . . . , n− k − 1,

λξ(n− k) =
1

2
ξ(1) +

1

2
ξ(n− k + 1),

λξ(j) =
1

2
ξ(j) +

1

2
ξ(j + 1),

j = n− k + 1, . . . , n− 1 and

λξ(n) =
1

2
ξ(1) +

1

2
ξ(n).

Here we will be very sketchy, referring to [10] and [4] for all details.
Solving forward and backward to get two expressions for ξ(n − k) gives the

characteristic equation

(2λ− 1)k(2λn−k − 1) − 1 = 0.

Some guessing work leads to the eigenvalue candidate λ0 = (1−γ0)e
i2π/n, where

γ0 ≤ 2π2k(k + 1)/n3. Estimating the error and the derivative of the character-
istic polynomial and using the approximation lemma, tells us that there is a true
eigenvalue λ = (1 − γ)eiθ where γ = (1 + o(1))γ0 and θ = (1 + o(1))2π/n.

An analogous use of the second extension to that for the bottom-to-top shuffle,
then yields

τmix ≥ 1

4π2k(k + 1)
n3 log n.

We conjecture that for k = O(1), this is the true order of mixing.
For other k however, this is probably not the case. The case k = n/2 was

treated in [10], where is was shown that τmix is at least of order n2. This was done
via a “classical” argument, i.e. by finding an event which is highly probable for
the actual chain but highly unlikely for the uniform deck.

Angel, Peres and Wilson [4] found (which I failed to do in [10]) that when k is
of the same order as n, there are actually eigenvalues that confirm this. E.g. when
k = n/3, there is an eigenvalue very close to (1 − 3π2/n2)ei3π/n. Hence

τmix ≥ τ2 ≥ τ
(1)
2 = (1 + o(1))

2

3π2
n2,

where τ (1)
2 is the relaxation time for the single card chain.

What Angel, Peres and Wilson found, was the following surprising result.
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Theorem 3.3 Let k = bαne, α ∈ (0, 1). For almost every α, τ (1)
2 is of order n3/2.

However, when α = p/q, where p and q are two relatively prime integers, then

τ
(1)
2 =

{

(1 + o(1)) 2
π2pq

n2, p and q both odd
(1 + o(1)) 8

π2pq
n2, otherwise

Unfortunately, due to the strong dependence between cards, Wilson’s tech-
nique cannot increase this result by the usual log n-factor for the whole deck. It is
still a wide open question, what the mixing time of the whole deck is.

However, the ideas of [4] can be used to make a slight improvement (but still
probably not tight) of the lower bounds when k is of larger order than n2/3 and
lower order than n. Assume e.g. that 2k|n− k. (This corresponds to p and q odd
in the above result.) Then, using the approximation lemma, one can check that
there is an eigenvalue of the single card chain,

λ = (1 − γ)eiθ

where γ = (1 + o(1))π2/(2nk) and θ = (1 + o(1))π/k. The second extension
then gives

τmix ≥ (1 + o(1))
1

π2
nk log

n

k
.

Assuming instead that n− k is divisible by k but not 2k (corresponding to p or q
even), gives γ = (1 + o(1))2π2/(nk) and θ = (1 + o(1))2π/k and in the end the
lower bound

τmix ≥ (1 + o(1))
1

4π2
nk log

n

k
.

All of this works fine for all k = o(n), but gives no improvement over earlier
results for k = O(n2/3).

In analogy with the above theorem, we conjecture that for most k = o(n) (i.e.
where n− k is not divisible by k), the relaxation time for the single card chain is
of order 1/(n

√
k). 2

Upper bounds. This will only be done for the bottom-to-top shuffle. We assume
k = o(n), leaving k = Θ(n) to the reader.

Let {Yt} denote a stationary copy of the MC under study. Let At and be the
set of cards, that at time t are in one of the bottom k positions in the {Xt}-process
and let Bt be the corresponding set for {Yt}. Couple {Yt} to {Xt} by, for the
t + 1’th step for each t, when a card in At ∩ Bt is moved to the top on one deck,
letting the same card be moved to the top in the other deck too. When the card
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moved to the top for {Xt} is in At \ Bt, then pick a uniformly chosen card from
Bt \ At for {Yt}. Note about this coupling that

• A card, c, can never pass its copy in the other deck unless c ∈ At ∩Bt.

• If c ∈ At ∩Bt, it will be coupled as soon as it is moved to the top.

Consequently, the decks will be coupled as soon as every card c has been in At ∩
Bt and, after the first time this happens, all cards that are at that time in one of
the bottom k positions, have been moved to the top. Let T as usual denote the
coupling time, let

T0(c) = min{t : c ∈ At ∩Bt}
and let T0 = maxc T0(c). Since T −T0 is bounded by the time taken to pick to the
top, every card in At, E[(T − T0)

+] ≤ k log k be the cuopon collector’s problem.
Hence

P(T − T0 ≥ f(n)k log k) = o(1)

for any f(n) → ∞. It remains to analyze T0.
For this, it will be more convenient to denote the positions 0, 1, . . . , n − 1

rather than 1, 2, . . . , n and consider a transformation of the decks:

X ′
t = (n− 1 n− 2 . . . 1 0)t ◦Xt

Y ′
t = (n− 1 n− 2 . . . 1 0)t ◦ Yt.

In words, the shuffle acting on the transformed decks behaves in the following
way. An “active layer” of k cards starts from the bottom of the deck. At each step
of the shuffle, a uniformly chosen card in the active layer is moved to the bottom
of the layer, mod n. Then the active layer is moved one step up the deck mod n.

Fix a card c. Let τj be the j’th time c leaves At and let νj be the j’th time it
leaves Bt, j = 1, 2, . . .. Let J be the smallest J such that τj = νj or τj = νj+1.
Then τJ = T0(c). We now want to estimate J .

Let τj − τj−1 be called the j’ the cycle for c in {Xt}. During a cycle, c
moves k−G steps down the transformed deck mod n, where G is geometric with
parameter 1/k. Also, up to cycle J , c moves independently in the two decks.
Hence, letting

Uj = X ′
τj

(c) − Y ′
νj

(c),

{Uj} is a simple random walk on Zn with step size mean 0 and step size variance
2k(k − 1), starting from somewhere in (0, n− 1) and not passing 0 until cycle J .
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Thus, for estimating J , we can equally well identify {Uj} with a SRW, {Vj}, on Z

starting from somewhere in(0, n). Then J coincides with the first time this SRW
leaves (0, n) and is thus dominated by the first time it leaves (−n/2, n/2) under
the assumption V0 = 0. Let

Wj =
1

√

2k(k − 1)
Vj.

Then Wj has step size variance 1 and leaves (−n/(2(2k(k − 1)1/2), n/(2(2k(k −
1)1/2) when Vj leaves (−n/2, n/2). By Donsker’s Theorem, M−1WMs converges
in distribution to a standard Brownian motion Bs as M → ∞. Taking

M =
n

2
√

2k(k − 1)

we get

P

(

∀s ≤ s0 : VM2s ∈ (−n
2
,
n

2
)
)

= (1 + o(1))P
(

∀s ≤ s0 : |Bs| < 1
)

≤ (1 + o(1))
4

π
e−π2s0/8

where the last inequality can be found in [9, Section 7.8] (and was used for the
coupling of the transposing neighbors shuffle in an earlier section). Letting s0 =
(8/π2) logn + log log n, the right hand side is o(1). Hence, with probability 1 −
o(1), T0(c) does not exceed (1 + o(1))(8/π2)M2 log n = (1 + o(1))(n2/π2k(k −
1)) log n cycles.

Since cycle times are independent and distributed like n − k + G, it follows
from Chernoff bounds for binomial random variables, that the time taken for these
C(n2/k2) log n cycles exceeds (1 + a)C(n3/k2) log n is o(1) for any a > 0.

Maximizing over c and adding T − T0 noting that f(n)k log k is of smaller
order than (n3/k2) log n for suitable f(n) and taking n large enough gives

P

(

T > (1 + o(1))
n3

π2k(k − 1)
log n)

)

= o(1).

Comining this with the lower bound above gives the following theorem.

Theorem 3.4 For bottom-to-top shuffling with k = o(n),

(1 + o(1))
n3

4π2k(k − 1)
log n) ≤ τmix ≤ (1 + o(1))

n3

π2k(k − 1)
log n).
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4 Advanced L2-techniques

In this section we will go through the L2-theory that provides the background for
Nash and log-Sobolev technique, and leads up to the comparison technique of
Diaconis and Saloff-Coste [6]. The L2-theory is by far most useful for reversible
Markov chains. Hence it will throughout this section be assumed that MC’s under
study are reversible, unless otherwise stated.

4.1 The basics

We take this from [3, Chapter 8].
Recall that the relaxation time τ2 for a continuous time Markov chain {Xt}

with generator Q and stationary distribution π, is given by τ2 = 1/λ2. Here λ2 is
the second smallest eigenvalue of −Q. (The smallest eigenvalue is of course 0.)
In discrete time τ2 = 1/(1 − λ2) where λ2 is the second largest eigenvalue of the
transition matrix.

Recall also the definition

τ̂ = inf{t : ‖P(Xt ∈ ·) − π‖2 ≤
1

2
}

and the basic fact that τmix ≤ τ̂ . The p-norm or, more correctly, the norm in Lp(π)
of a signed measure ν on S, the state space of the MC, was earlier defined by

‖ν‖p
p =

∑

i∈S

∣

∣

∣

ν(i)

π(i)

∣

∣

∣

p

π(i).

For a function, g on S, we define the p-norm differently:

‖g‖p
p =

∑

i∈S

|g(i)|pπ(i) = Eπ[|g(X0)|p].

(Equivalently, one could define the p-norm of the signed measure ν as the p-norm
of the function g given by g(i) = ν(i)/π(i).) The Dirichlet form, E(g, g), of a
function g on S is given by

E(g, g) = −
∑

i

∑

j

π(i)qi,jg(i)g(j)

in continuous time and

E(g, g) =
∑

i

∑

j

π(i)pijg(i)(g(i) − g(j))
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in discrete time. In probabilistic terms, this can be written as

E(g, g) = lim
t↓0

1

t
Eπ[g(X0)(g(X0) − g(Xt))] =

1

2
lim
t↓0

1

t
Eπ[(g(X0) − g(Xt))

2],

where the second inequality uses reversibility. The discrete-time versions are

E(g, g) = Eπ[g(X0)(g(X0) − g(X1))] =
1

2
Eπ[(g(X0) − g(X1))

2].

The following lemma is known as the extremal characterization of relaxation
time.

Lemma 4.1 The relaxation time satisfies

τ2 = sup
{ ‖g‖2

2

E(g, g)
: g 6≡ 0,Eπg(X0) = 0

}

.

Proof. We start with continuous time. We first need the extremal charac-
terization of eigenvalues. Let A be a symmetric n × n-matrix. Then A has the
real eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn and corresponding pairwise orthogonal
eigenvectors, v1, v2, . . . , vn. Then

A = V DV T

or, equivalently,
D = V TAV

where V = [v1 v2 . . . vn] and D = diag(λ1, λ2, . . . , λn). For a unit vector x,
write y = P Tx. Then y is also a unit vector and

∑

i

∑

j

xiaijxj = xTAx = yTDy =
∑

i

λiy
2
i .

The right hand side is minimized over y when y = e1, and then takes on the value
λ1. Since y = e1 is equivalent to x = v1, we have that

λ1 = min
{

∑

i

∑

j x(i)aijx(j)
∑

i x(i)
2

: x 6= 0
}

and that a vector x for which the minimum is attained is an eigenvector to λ1.
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Now repeat the procedure, but now only minimizing the quadratic form over
x’s that are orthogonal to v1. Then the minimum is λ2, which is attained for
x = v2, i.e.

λ2 = min
{

∑

i

∑

j x(i)aijx(j)
∑

i x(i)
2

: x 6= 0,
∑

i

x(i)v1(i) = 0
}

and a vector x for which the minimum is attained is an eigenvector to λ2.
Next, we apply this to the symmetric matrix −A, where

A =
[

√

π(i)

π(j)
qij

]

i,j∈S
.

Then −A and −Q have the same eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn, and if
x = (x(1), x(2), . . . , x(n))T is an eigenvector of Q, then

(
√

π(1)x(1),
√

π(2)x(2), . . . ,
√

π(n))T

is the corresponding eigenvector of A. Since the first eigenvector of −Q is the
constant vector, a first eigenvector of A is [

√

π(i)]i∈S . Hence

λ2 =
1

τ2
= inf{

∑

i

∑

j x(i)(−
√

π(i)/π(j)qij)x(j)
∑

i x(i)
2

:
∑

i

x(i)
√

π(i) = 0}.

Substituting x(i) =
√

π(i)g(i), the right hand side becomes

inf
{−∑i

∑

j π(i)qijg(i)g(j)
∑

i πig(i)2
:
∑

i

π(i)g(i) = 0
}

which equals

inf
{E(g, g)

‖g‖2
2

: Eπg(X0) = 0
}

.

Inverting this now finishes the proof.
The discrete time proof is analogous, with Q replaced by P − 1. 2

Note that an alternative way to express the extremal characterization is:

τ2 = sup
{

Varπf(X0)

E(f, f)
: f 6= 0

}

.

From now on, we assume until further notice that time is continuous.
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Lemma 4.2 For each t, let

ft(j) =
P(Xt = j)

π(j)
.

Then
d

dt
‖P(Xt ∈ ·) − π‖2

2 = −2E(ft, ft).

Proof. By the forward equations (which are essentially the definition of the
qij’s, using the convention that −qjj is the intensity for jumping away from j),

d

dt
P(Xt = j) =

∑

i

P(Xt = i)qij.

Therefore, by the chain rule,

d

dt
‖P(Xt ∈ ·) − π‖2

2 =
d

dt

(

∑

j

P(Xt = j)2

π(j)
− 1
)

=
∑

j

∑

i

2

π(j)
P(Xt = j)P(Xt = i)qij

= 2
∑

j

∑

i

πiqijft(i)ft(j) = −2E(ft, ft).

2

The next result is the L2-contraction Lemma.

Lemma 4.3 For all t,

‖P(Xt ∈ ·) − π‖2 ≤ e−t/τ2‖P(X0 ∈ ·) − π‖2.

Proof. Let ft be as in Lemma 4.2 and let h(t) = ‖P(Xt ∈ ·) − π‖2
2. By

Lemma 4.2 and the third expression for the Dirichlet form,

d

dt
h(t) = −2E(ft, ft) = −2E(ft − 1, ft − 1).

Since Eπft(X0) = 1, the extremal characterization of τ2 entails that the right hand
side is bounded above by −2‖ft − 1‖2

2/τ2, which in turn equals

− 2

τ2

∑

i

πi

(

P(Xt = i)

πi

− 1
)2

= − 2

τ2
‖P(Xt ∈ ·) − π‖2

2 = − 2

τ2
h(t).
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Integrating, using integrating factor, now gives

h(t) ≤ e−2/τ2h(0).

Taking square roots now gives the result. 2

Operator norms. Let A be an n× n-matrix. Pick q1, q2 ∈ [1,∞]. One may think
of A as a linear operator from Lq1(π) to Lq2(π) defined by A(f) = Af . One can
then define the following operator norm for A:

‖A‖q1→q2
= sup{‖Af‖q2

: ‖f‖q1
= 1}.

When A = P , a transition matrix for a reversible MC with stationary distribution
π, one can use the symmetry of the matrix [

√

π(i)/π(j)pij]i,j∈S to show that

‖P‖q1→q2
= sup{‖νP‖q2

: ‖ν‖q1
= 1}

where the supremum is now over signed measures ν on S. This also holds for the
difference of such matrices, such as e.g. Ps −Pt, where Pt is the transition matrix
for t units of time of a continuous time reversible MC. All our applications will
be on transition matrices or differences of the above kind, so we do not have to
distinguish between the two expressions for the operator norm.

We will be mostly concerned with the special cases ‖P‖2→2 and ‖P‖2→∞. For
‖ · ‖∞ we use the usual conventions

‖f‖∞ = max
i

|f(i)|

for functions f and
‖ν‖∞ = max

i

∣

∣

∣

ν(i)

π(i)

∣

∣

∣

for signed measures ν.
For continuous time MC’s, we will use the notation

N(s) = ‖Ps‖2→∞.

Then it is readily seen that N(0) = ‖I‖2→∞ = π
−1/2
∗ , where π∗ = mini π(i). It is

also evident from Lemma 4.6 below that N(s) → 1 as s→ ∞.
By definition,

‖BA‖q1→q3
≤ ‖A‖q1→q2

‖B‖q2→q3

for any A, B, q1, q2 and q3.
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Lemma 4.4 For any time t and any function f on S, the following holds.

(a)
d

dt
‖Ptf‖2

2 = −2E(Ptf, Ptf) ≤ − 2

τ2
VarπPtf(X0),

(b)
‖Pt − P∞‖2→2 ≤ e−t/τ2 ,

where P∞ = limt→∞ Pt is the transition matrix for which every row equals
π.

Proof. The inequality in (a) follows immediately from the extremal charac-
terization of τ2. For the equality, use the backwards equations to get

d

dt
pik(t) =

∑

j

qijpjk(t).

This entails that
d

dt
Ptf(i) =

d

dt

∑

k

pik(t)f(k) =
∑

k

∑

j

qijpjk(t)f(k)

=
∑

j

qijPtf(j).

Hence
d

dt
‖Ptf‖2

2 =
d

dt

∑

i

πi(Ptf(i))2

= 2
∑

i

∑

j

πiqijPtf(i)Ptf(j)

= −2E(Ptf, Ptf).

For part (b), note that for any f , P∞f(i) = EπPtf(X0) for all i and t. Hence

‖Pt(f − P∞f)‖2
2 = VarπPtf(X0).

Therefore, by (a),
d

dt
‖(Pt − P∞)f‖2

2 =
d

dt
‖Pt(f − P∞f)‖2

2

≤ − 2

τ2
‖Pt(f − P∞f)‖2

2

= − 2

τ2
‖(Pt − P∞)f‖2

2.
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Integrating then gives

‖(Pt − P∞)f‖2
2 ≤ e−2t/τ2‖(P0 − P∞)f‖2

2 = e−2t/τ2Varπf(X0)

≤ e−2t/τ2‖f‖2
2.

Taking square roots and using the definition of ‖ · ‖2→2 now completes the proof.
2

By definition of ‖ · ‖2→2 and Lemma 4.4(b),

‖P(Xs+t ∈ ·) − π‖2 ≤ ‖P(Xs ∈ ·)‖2‖Pt − P∞‖2→2

≤ ‖P(Xs ∈ ·)‖2e
−t/τ2 .

Taking e.g. s = 0, one gets

‖P(Xt ∈ ·) − π‖2 ≤ ‖P(X0 ∈ ·)‖2e
−t/τ2 ≤ 1

π∗
e−t/τ2 .

However, we will not apply this result here. Our main result of this section will
be the following.

Lemma 4.5 For any s and t,

‖P(Xs+t ∈ ·) − π‖2 ≤ ‖Ps+t − P∞‖2→∞

≤ ‖Ps‖2→∞‖Pt − P∞‖2→2

≤ ‖Ps‖2→∞e
−t/τ2 .

Proof. The last inequality is Lemma 4.4(b). The second inequality follows
from

‖Ps+t − P∞‖2→∞ = ‖Ps(Pt − P∞)‖2→∞ ≤ ‖Pt − P∞‖2→2‖Ps‖2→∞.

For the first inequality, define the function f as

f(j) =
P(Xu = j)

π(j)
− 1.

Then
‖f‖2

2 =
∑

j

π(j)
(

P(Xu = j)

π(j)
− 1
)2

= ‖P(Xu ∈ ·) − π‖2
2.
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On the other hand

‖f‖2 = max{|Eπ[fg]| : ‖g‖2 = 1}
= max{|

∑

j

f(j)g(j)π(j)| : ‖g‖2 = 1}

= max{|
∑

j

(P(Xu = j) − π(j))g(j)| : ‖g‖2 = 1}

≤ max{max
i

|(Pu − P∞)g(i)| : ‖g‖2 = 1}
= max{‖(Pu − P∞)g‖∞ : ‖g‖2 = 1}
= ‖Pu − P∞‖2→∞,

where the inequality follows on conditioning on X0. Now take u = s+ t to finish
the proof. 2

Taking s = 0 in Lemma 4.5 again leads to the inequality preceeding the
lemma. However, for MC’s on large state spaces, such as card shuffling chains,
taking s = 0 will not produce sharp results. The essence of Nash- and log-Sobolev
technique is to make a better choice of s in Lemma 4.5. For this, we need some
more information about N(s) = ‖Ps‖2→∞. Let gi(j) = pij(s)/π(j). Then

max
i

√

√

√

√

∑

j

pij(s)2

π(j)
= max

i
‖gi‖2

2

= max
i

(

max{|
∑

j

pij(s)f(j)| : ‖f‖2 = 1}
)

= max{max
i

|Psf(i)| : ‖f‖2 = 1}
= max{‖Psf‖∞ : ‖f‖2 = 1} = N(s).

On the other hand, by reversibility,
∑

j

pij(s)
2

π(j)
=
∑

j

pij(s)pji(s)

π(i)
=
pii(2s)

π(i)
.

We have shown
Lemma 4.6 The function N(s) satisfies

N(s) = max
i

√

pii(2s)

π(i)
.
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Example. Let {Xt} be a continuous time random walk on Z2, i.e. from any of
the two states, 0 and 1, one jumps to the other state with intensity 1. Equivalently,
at the times of a Poisson process with intensity 2, a fair coin is flipped to decide
whether to move or not. Thus

p00(s) = p11(s) = e−2s +
1

2
(1 − e−2s) =

1

2
(1 − e−2s)

and hence
N(s) =

√
1 + e−4s.

2

Let us now use the result of this example to bound τ̂ for a random walk on the
hypercube Z

d
2 for large d.

Note first the following general fact. Let Xt = (X1
t , X

2
t ), where {X1

t } and
{X2

t } are two independent MC’s. Then by Lemma 4.6, in the obvious notation,

N(s) = N 1(s)N 2(s).

Example. Random walk on Z
d
2. This is the product MC

{Xt} = {(X1
t , X

2
t , . . . , X

d
t )},

where the coordinate processes are random walks on Z2, with jump intensity 1/d
(so that the total jump intensity is 1). This means that

Nk(s) =
√

1 + e−4s/d

and hence
N(s) = (1 + e−4s/d)d/2.

Since the intensity for “stationarization” for the coordinate processes is 2/d, the
natural coupling will, via a cuopon-collector analysis, lead to

τmix ≤ 1

2
d log d.

We will now see that Lemma 4.5 with s = 1
4
d log d leads to an improvement by a

factor 2 (apart from the fact that convergence in L2 is stronger than in total varia-
tion). This in fact gives the right mixing time. Intuitively this is seen the following

42



way. At stationarity, the coordinates of the walker are iid fifty/fifty Bernoulli ran-
dom variables. By the CLT, this will typically mean that the number of 1’s will de-
viate from n/2 by order n1/2. To achive this, starting from (0, 0, . . . , 0), it suffices
to stationarize all but cn1/2 coordinates (but not less). By the cuopon-collector
analysis, this takes time (1 + o(1)) 1

4
d log d.

Now, let’s get back to work. Recall first that if Q is the generator of a contin-
uous time MC and (λ, f) is an eigenvalue/eigenvector pair of Q, this is equivalent
to

lim
t↓0

1

t
E[f(Xt) − f(X0)|X0 = i] = λf(i)

for all i ∈ S. From this, it is readily checked that the eigenvalues of a product MC
are the sums of eigenvalues of the coordinate chains and the eigenvectors are the
corresponding products of coordinate eigenvectors.

For a random walk on Z2 with jump intensity 1/d, the eigenvalues of the
generator are 0 and −2/d. Thus, for the random walk on Z

d
2, the second smallest

eigenvalue of −Q is 0+0+. . .+0+2/d = 2/d, i.e. τ2 = d/2. Taking s = 1
4
d log d,

we have N(s) = (1 + o(1))e1/2, so by Lemma 4.5,

‖P(Xs+t ∈ ·) − π‖2 ≤ (1 + o(1))e1/2−2t/d

which is bounded by (1 + o(1))e−1 < 1/2 (for large d) as soon as t ≥ 3d/4.
Hence

τ̂ ≤ 1

4
d log d+

3

4
d = (1 + o(1))

1

4
d log d.

2

4.2 The comparison technique

The comparison technique was introduced by Diaconis and Saloff-Coste in [6]
for symmetric random walks on a group, G, i.e. for random walks generated by
a symmetric probability measure ν on G, (i.e. such that ν(x) = ν(x−1) for every
x ∈ G). This was later generalized by the same authors to general reversible
Markov chains, see [7].

In this presentation, we stick to the simpler original setting with random walks
on groups. Hence, let G be a finite group and let ν be a symmetric probability
measure on G. Let n = |G|. For discrete time let 1 = κ1 ≥ κ2 ≥ . . . ≥ κn ≥ −1
be the eigenvalues of the transition matrix P = [ν(x−1y)]x,y∈G and 0 = λ1 ≤
λ2 ≤ . . . be the eigenvalues of −Q for the corresponding continuous time random
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walk. Note that since qxy = pxy for x 6= y, we have λi = 1 − κi. Let π be the
stationary distribution, i.e. the uniform distribution on G.

Lemma 4.7 Let {Xt} be a discrete time random walk on G generated by ν and
let {Yt} be its continuous time version. Then

‖P(Xt ∈ ·) − π‖2
2 =

n
∑

i=2

κ2t
i .

and

‖P(Yt ∈ ·) − π‖2
2 =

n
∑

i=2

e−2λit.

Proof. Assume discrete time. Since the stationary distribution is uniform, P
is symmetric and hence has orthonormal left eigenvectors φ1, . . . , φn, where φ1

is the uniform vector n−1/2
1. Since X0 = id, it is easy to see that P(X0 ∈ ·) =

n−1/2
∑n

i=1 φi. Hence

‖P(Xt ∈ ·) − π‖2
2 = ‖

n
∑

i=2

1√
n
κt

iφi‖2
2 =

n
∑

i=2

κ2t
i .

The continuous time case is analogous. 2

From Lemma 4.7 we see that negative eigenvalues are important in discrete
time, whereas the play an insignificant role in continuous time. This is due to the
possible parity problems that a discrete time MC may have, but which vanish in
continuous time. Because of this, it is considerably easier to transfer results from
discrete time to continuous time than vice versa. Here are two general results for
transfering.

Lemma 4.8 Let {Xt} and {Yt} be the discrete and continuous time version re-
spectively of a random walk on G generated by ν. Then

‖P(Xt ∈ ·) − π‖2
2 ≤ nκ2t

n + ‖P(Yt ∈ ·) − π‖2
2

and
‖P(Y2t ∈ ·) − π‖2

2 ≤ ne−2t + ‖P(Xt ∈ ·) − π‖2
2.
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Proof. Since κi = 1 − λi and 1 − x ≤ e−x, we have for every i that
κ2t

i ≤ e−2λit. Use this together with Lemma 4.7 to get

‖P(Xt ∈ ·) − π‖2
2 ≤ nκ2t

n +
∑

i:κi>0

κ2t
i ≤ nκ2t

n +
∑

i:λi<1

e−2λit

≤ κ2t
n +

n
∑

i=2

e−2λit = κ2t
n + ‖P(Yt ∈ ·) − π‖2

2.

The second case is similar; since e−2x ≤ 1− x for x ≤ 1/2, we have e−4λit ≤ κ2t
i

for λi ≤ 1/2 and so

‖P(Y2t ∈ ·) − π‖2
2 =

n
∑

i=2

e−4λit ≤ ne−2n +
∑

i:λi<1/2

κ2t
i

= ne−2n + ‖P(Xt ∈ ·) − π‖2
2.

2

The idea of the comparison technique is to bound mixing time in L2 of a
difficult random walk by comparing it with another random walk for which the
L2-mixing time is known. The theory of this comparison goes via a comparison
of the eigenvalues of the two MC’s, which in turn goes via a comparison of the
Dirichlet forms.

Recall from above the extremal characterization of eigenvalues (in the proof
of the extremal characterization of relaxation time). One way of rephrasing that is
the following.

λi = max
W

min
g∈W

E(g, g)

‖g‖2
2

,

where the maximum is taken over linear subspaces of R
G of dimension n+ 1− i.

Now let µ be another symmetric measure onG and consider the random walks (i.e.
discrete time and continuous time) generated by µ. Denote these {X b

t } and {Y b
t }

respectively (where “b” stands for “benchmark”; these are the MC’s we want to
compare with). Let κb

i and λb
i denote the corresponding eigenvalues and E b the

corresponding Dirichlet form. Then an immediate consequnce of the extremal
characterization of eigenvalues is the following lemma.

Lemma 4.9 Assume that A is a constant such that E b(g, g) ≤ AE(g, g) for every
g. Then, for every i ∈ [n],

λi ≥ λb
i/A.
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Equivalently

κi ≤ 1 − 1 − κb
i

A
.

Next we introduce a new quadratic form:

F(g, g) =
∑

x,y∈G

π(x)p(x, y)g(x)(g(x) + g(y))

= Eπ[g(X0)(g(X0) + g(X1))]

=
1

2
Eπ[(g(X0) − g(X1)

2],

where the last equality uses reversibility. Then the extremal characterization ap-
plied to I + P under the condition F b ≤ AF gives 1 + κi ≥ (1 + κb

i)/A, i.e.

Lemma 4.10 If F b ≤ AF , then

κi ≥
1 + κb

i

A
− 1.

Combining the results so far will now give the first key result of this section.

Lemma 4.11 If E b ≤ AE , then

‖P(Xt ∈ ·) − π‖2
2 ≤ nκ2t

n + ‖P(Y b
t ∈ ·) − π‖2

2

≤ nκ2t
n + ne−t/A + ‖P(Xb

bt/2Ac ∈ ·) − π‖2
2

and
‖P(Yt ∈ ·) − π‖2

2 ≤ ‖P(Y b
t/A ∈ ·) − π‖2

2.

If also F b ≤ AF , then

‖P(Xt ∈ ·) − π‖2
2 ≤ ne−t/A + ‖P(Xb

bt/2Ac ∈ ·) − π‖2
2.

Proof. The second inequality of the first statement is the second part of
Lemma 4.8. The first part follows from mimicking the proof Lemma 4.8 with the
extra ingredient of using that κi = 1 − λi ≤ 1 − λb

i/A ≤ e−λb
i/A for i’s such that

κi > 0. The second statement follows from Lemma 4.7 and the first statement
of Lemma 4.9. For the third statement, note that Lemma 4.9 and Lemma 4.10
together imply that 1 − |κi| ≥ (1 − |κb

i |)/A. Use the inequality x ≤ e−(1−x),
x > 0, to see that κ2t

i ≤ e−2t(1−|κi|) ≤ e−2t(1−|κb
i |)/A which is bounded by e−t/A
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for those κb
i which are less than 1/2 in absolute value. For the other κb

i ’s, use that
e−2(1−x) ≤ x for 1/2 ≤ x ≤ 1 to get an upper bound of |κb

i |t/A. Now Lemma 4.7
implies

‖P(Xt ∈ ·) − π‖2
2 ≤ ne−t/A +

∑

i:|κb
i |≥1/2

|κb
i |t/A ≤ ‖P(Xb

bt/2Ac ∈ ·) − π‖2
2.

2

The next step is now to find useful ways to relate E to E b and F to F b. This can
be done via path counting. Let E be a symmetric set of generators of G contained
in the support of ν. For each y ∈ G, pick a representation y = x1x2 . . . xk,
xj ∈ E. Write |y| = k. For each x ∈ E, let N(x, y) be the number of times that
x appears in the chosen representation of y.

Lemma 4.12 Let

A = max
x∈E

1

ν(x)

∑

y∈G

|y|N(x, y)µ(y).

Then E b ≤ AE .

Proof. Pick g ∈ R
G and z, y ∈ G and let y = x1 . . . xk be the representation

of y chosen above. Write

g(z) − g(zy) = (g(z) − g(zx1)) + (g(zx1) − g(zx2)) + . . .

+(g(zx1 . . . xk−1 − g(zx1 . . . xk)).

Square both sides and use the inequality (
∑k

j=1 ak)
2 ≤ k

∑k
j=1 a

2
k (by Cauchy-

Schwarz) to bound the right hand side. This gives

(g(z) − g(zy))2 ≤ |y|
k
∑

j=1

(g(zx1 . . . xj−1) − g(zx1 . . . xj))
2.

Every term in the sum on the right hand side can be written as (g(z ′)− g(z′xj) on
setting z′ = zx1 . . . xj−1 ∈ G. Summing over z′ ∈ G, each term appears at most
N(xj, y) times. Hence

∑

z∈G

(g(z) − g(zy))2 ≤ |y|
∑

z∈G

∑

x∈E

(g(z) − g(zx))2N(x, y).

47



Now multiply both sides with µ(y) and sum over y ∈ G. Then the left hand side
becomes nE b(g, g). The right hand side becomes
∑

z∈G

∑

x∈E

(g(z) − g(zx))2
∑

y∈G

|y|N(x, y)µ(y) ≤ A
∑

z∈E

∑

x∈E

(g(z) − g(zx))2ν(z)

≤ AnE(g, g).

2

To get a similar result for the realtion between F and F b, the constant A needs
only the slight modification that we demand all presentations y = x1 . . . xk of
elements y ∈ G to have odd length. This redefines the |y|’s and the N(x, y)’s and
thereby A. Then the result of Lemma 4.12 holds with E replaced by F . The only
difference from the proof of Lemma 4.12 is in how one writes g(z) + g(zy) as a
telescoping sum. (This works only when all |y|’s are odd.) We leave this as an
exercise to the reader.

Now, before we can use of any of this, we need some benchmark card shuffle
to compare with. Unfortunately, bounds in L2 for random walks on Sn are difficult
to find. Luckily, Diaconis and Shashahani [8] managed to do this for the random
transpositions shuffle, µ(id) = 1/n, µ(i j) = 2/n2 for i 6= j). via Fourier anal-
ysis on Sn. Their result is very sharp and states that there is a universal constant
β such that at time (1/2)n(log n+ c), the square of the L2-distance to stationarity
is bounded by βe−2c. In particular τ̂ ≤ (1 + o(1))(1/2)n log n for the random
transpositions shuffle.
Example. Transposing neighbors. Consider the transposing neighbors shuffle
generated by ν(i i+1) = ν(id) = 1/n, i = 1, . . . , n−1. This is slightly different
from the version studied earlier, which had a holding probability of 1/2 in order
for the disigned coupling there to work out. We compare this with the random
tranpositions shuffle. We have E = {(i i + 1) : i = 1, . . . , n − 1} ∪ {id}. Let
y = (i j), i > j, be an arbitrary transposition. Then write

y = (i i+ 1)(i+ 1 i+ 2) . . . (j − 1 j)(j − 2 j − 1) . . . (i i+ 1).

From this it follows that |y| ≤ 2n and N(x, y) ≤ 2 for every x and y. Hence
A ≤ 2n2. Now we only need an estimate for κn!, the smallest eigenvalue of the
transposing neighbors shuffle. The following lemma is useful.

Lemma 4.13 For a discrete time random walk on G generated by ν,

κ|G| ≥ −1 + 2ν(id).
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Proof. The result is trivial when ν(id) = 0, so assume ν(id) > 0. Consider
then the random walk generated by the measure ν ′ where ν ′(x) = ν(x)/(1 −
ν(id)), x 6= id and ν ′(id) = 0. This random walk has the eigenvalues κ′

i =
(κi − ν(id))/(1 − ν(id)). Since κ′

|G| ≥ −1, the result follows. 2

By Lemma 4.13, κn! ≥ −1 + 1/n. By Lemma 4.12 and Lemma 4.11,

‖P(Xt ∈ ·) − π‖2
2 ≤

(

1 − 1

n

)2t

+ n!e−t/(2n2) + ‖P(Xb
t/(4n2) ∈ ·) − π‖2

2.

This gives τ̂ ≤ (1 + o(1))2n3 log n, the same order as for total variation. 2

Example. Distorted random transpositions. Consider random transposi-
tions where a few particular transpositions are not allowed. For concreteness,
consider the shuffle generated by ν(id) = 1/(n − 1), ν(i j) = 2/(n(n − 1)),
|i − j| 6= 1 mod n, i.e. random transpositions with neighbor transpositions (in-
cluding (1 n)) forbidden. Again compare with ordinary random transpositions.
Writing (i i+1) = (i i+3)(i+1 i+3)(i i+3), it follows that |y| = 3 for every
neighbor transposition y. Of course, |y| = 1 for all other y. For all non-neighbor
transpositions x, we have N(x, y) ≤ 2 and N(x, y) = 0 for all but three diffrent
y’s This gives A ≤ 9. Hence the comparison gives τ̂ ≤ (1 + o(1))9n log n. 2

Example. The symmetrized Rudvalis shuffle. Recall that the Rudvalis shuffle
is generated by the measure giving probability 1/2 to each of the two generators
dn−1 = (n−1 n−2 . . . 1) and dn = (n n−1 . . . , 1). This set of generators is not
symmetric, so let us instead consider the additive symmetrization of the Rudvalis
shuffle, i.e. the shuffle generated by ν(dn) = ν(dn−1) = ν(un) = ν(un−1) = 1/4,
where uj = d−1

j . This shuffle has holding probability 0, so there is no easy bound
on κn!. The easiest way out is to see to that all |y| are odd and then use the third
statement of Lemma 4.11.

Again compare with random transpositions. How to choose odd represen-
tations depends on whether n is even or odd. We assume here that n is even
and leave the other case to the reader. First note that for all earler examples,
we implicitly used the obvious empty representation of y = id. However, since
that representation has length 0, this does not work now. Use instead the rep-
resentation id = dn−1

n−1. Now asume that y = (i j) with i < j. Then we may
write |y| as un−j

n uj−i−1
n−1 unu

n+i−j−1
n−1 dn−j

n . This representation has the odd length
3n − 2j − 1 < 3n. Using also the trivial bound N(x, y) ≤ |y| gives A ≤ 36n2.
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Now the third statement of Lemma 4.11 gives

τ̂ ≤ (1 + o(1))36n3 log n.

This is also the same order as for total variation. 2

Example. The symmetrized overlapping cycles shuffle. The overlapping cy-
cles shuffle gives probability 1/2 to each of un and um = (1 2 . . . m) for some
m > n. This turned out to be a difficult shuffle to handle. Above, some effort
was paid to the case m = n/2, n even, m odd. It was shown that the relaxation
time for a single card is Θ(n2). Here we compare its symmetrized version with
the random transpositions shuffle to give an upper bound in L2 of order n3 log n.
Let ν(un) = ν(dn) = ν(um) = ν(dm) = 1/4. We have id = um

m an odd-length
representation of length n/2. No take y = (i j), i < j. Write x = dm

n umu
m−1
n um.

Then |x| = n + 1 which is odd and x = (1 n). If j ≤ m, then y = vxv−1 where
v = um−j+1

m dnu
j−i+1
m . Hence |y| = 2n+ 5 which is odd. If j > m, add a prefix to

v in order to bring i and j to the upper half of deck. This takes a length of at most
m + 1 giving |y| ≤ 3n + 7 < 4n and still odd. Mimicking the above example
gives A ≤ 64n2 and

τ̂ ≤ (1 + o(1))64n3 log n.

2

Example. Random walk on Zn. Let a ≤ √
n and consider the random walk on

Zn generated by ν(j) = 1/(2a + 1), j = −a, . . . , a, i.e. steps are uniform over
{−a, . . . , a}. Compare with the trivial random walk that gets uniform over Zn in
a single step. Identify each element y ∈ Zn with y ∈ [n] and represent k as

y = 0 + a+ 1 + (a− 1) + 2 + (a− 2) + . . .+ a+ 0 + (a− 1) + 1 + . . .+ b.

Here b = y − aby/ac. Then |y| ≤ 2y/a + 1 ≤ 2n/a + 1 < 3n/a and for each
x ∈ {−a, . . . , a}, N(x, y) ≤ 4y/a2 + 1 < 6n/a2. Hence

A < (2a+ 1)
3n

a

6n

a2
<

54n2

a2
.

Since κb
2 = 0, Lemma 4.9 reveals that κ2 ≤ 1 − a2/(54n2), so that the relaxation

time O(a2/n2). This is the correct order. Since κn ≥ −1 + 2/(2a+ 1) by Lemma
4.13, it follows from Lemma 4.11 that τ̂ = O((n2/a2) log n). 2
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5 The Thorp shuffle

The Thorp shuffle, proposed by E. Thorp in 1973, is known as the longest standing
open problem in card shuffling, having resisted numerous attacks from prominent
mathematicians for over three decades. The Thorp shuffle is a very fine riffle
shuffle on a deck of an even number of cards: cut the deck in two equal sized
packs, one in each hand. Now drop the two bottom cards in an order determined
by a fair coin flip. Then repeat this for the two new bottom cards (i.e those two
cards that were second to bottom to begin with). Keep on repeating this until the
packs are empty.

The conjecture is that the mixing time should be of order log n, or, in the very
least, O((log n)2). However, until very recently, the best known upper bound was
of order n. The first upper bound polynomial in log n, was given by Morris [15],
2005, and was of order O((log n)44), under the condition that n = 2d for integer
d. Montenegro and Tetali [13] were able to build on this to improve the bound to
O((log n)29), under the same condition. Then in 2008, representing the present
state of the art, Morris [14] made significant progress and were able to remove the
n = 2d condition and took the upper bound down to O((log n)4). In this section,
we will follow the latter paper.

Write n = 2h for the number of cards. Formally, the Thorp shuffle can be
described by first, for each of the pairs (1, h + 1), (2, h + 2), . . . , (h, 2h), make
a transposition of the two cards in the pair with probability 1/2, independently
of other pairs, and second, composing with the permutation moving the card in
position i to position 2i − 1 and the card in position h + i to position 2i, i =
1, . . . , h.

Morris makes use of an advanced entropy technique. For this, we first need
some theoretical background.

Definition 5.1 Let ν and π be two probability measures on the finite space S. The
relative entropy of ν with respect to π is given by

ENT(ν‖π) =
∑

x∈S

ν(x) log
ν(x)

π(x)
.

In the special case when π is the uniform distribution on S, one simply speaks
of the relative entropy of ν, denoted ENT(ν). When X is a random variable on S
distributed according to ν, one also writes ENT(X) for ENT(ν). We have

ENT(ν) =
∑

x∈S

ν(x) log(|S|ν(x)).
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Here are a few observations:

• ENT(ν‖π) ≥ 0, with equality if and only if ν = π.

• ENT(ν) = log |S| − H(ν), where H(ν) = −∑x∈S ν(X) log ν(X) is the
usual absolute entropy.

• ENT(ν‖π) = Eν [log
ν(X)
π(X)

].

The two last observations are immediate. The first one follows from the last, using
Jensen’s inequality on the convex function − log(π(X)/ν(X)). The following
lemma relates total variation distance to relative entropy.

Lemma 5.1 Let π be the uniform measure. Then

‖ν − π‖TV ≤
√

1

2
ENT(ν).

Proof. By Schwarz’ inequality,

‖ν − π‖TV =
∑

i

1

2

∣

∣

∣
ν(i) − 1

|S|
∣

∣

∣
≤
√

1

4
|S|
∑

i

∣

∣

∣
ν(i) − 1

|S|
∣

∣

∣

2

.

Hence it suffices to show that
1

2
|S|
∑

i

∣

∣

∣
ν(i) − 1

|S|
∣

∣

∣

2

−
∑

i

ν(i) log(|S|νi) ≤ 0.

This is a standard optimization problem over the ν(i)’s, that can e.g. be solved
using a Lagrange multiplier or setting ν(|S|) = 1 − ν(1) − . . .− ν(|S| − 1). 2

The conditional entropy of a random variable X given Y = y, denoted

ENT(X|Y = y)

is of course the entropy of the distribution of X given Y = y. By ENT(X|Y ) one
means the corresponding random variable (a function of Y ). Now let µ and ν be
two probability measures on S × S. Think of these as distributions of a pair of
random variables. Write

µ1(i) =
∑

j∈S

µ(i, j), µ2(j) =
∑

i∈S

µ(i, j)
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for the marginal distributions with respect to µ, and correspondingly for ν. Write
also

µ2|1(j|i) =
µ(i, j)

µ1(i)

as usual for the conditional distribution, and correspondingly for ν. Then we have
the following chain rule for relative entropies:

ENT(µ ‖ν) = ENT(µ1‖ν1) +
∑

i

∑

j

µ(i, j) log
µ2|1(j|i)
ν2|1(j|i)

.

This follows from a straightforward manipulation of the right hand side according
to the definitions of the involved quantities. In the special case when ν is uniform
on S × S, we have that µ1 and µ2|1 are both uniform on S, and the chain rule
becomes

ENT(µ) = ENT(µ1) +
∑

i

∑

j

µ(i, j) log(|S|µ2|1(j|i))

= ENT(µ1) +
∑

i

µ1(i)
∑

j

µ2|1(j|i) log(|S|µ2|1(j|i)).

If (X,Y ) is distributed according to µ, then this in turn becomes

ENT(X,Y ) = ENT(X) + E[ENT(Y |X)]

= ENT(X) + E[ENT(X,Y |X)].

An inductive generalization to higher dimensions leads to that, for any i ∈ [n],

ENT(X1, X2, . . . , Xn) = E[ENT(X1, X2, . . . , Xn|Xi, Xi+1, . . . , Xn)]

+
n
∑

k=i

E[ENT(Xk|Xk+1, Xk+2, . . . , Xn)].

(Note that the last term in the sum is ENT(Xn).) The situation in which the chain
rule will be used here, is of course for random permutations. Let ν be a random
permutation in Sn, let Fj = σ(ν−1(j), ν−1(j + 1), . . . , ν−1(n)), the σ-algebra
generated by the identities of the cards in positions j, j + 1, . . . , n, and let

Ej = E[ENT(ν−1(j)|Fj+1)],
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j = 1, 2, . . . , n. Then the chain rule takes on the form

ENT(ν) = E[ENT(ν|Fi)] +
n
∑

k=i

Ek.

In order to bound relative entropies, we need to introduce yet another concept of
“distance” between probability measures. Let d be a function on pairs of nonneg-
ative numbers given by

d(x, y) =
1

2
x log x+

1

2
y log y − x+ y

2
log

x+ y

2
.

Since the function x → x log x is strictly convex, Jensen’s inequality (applied to
a random variable taking on the values x and y with probability 1/2 each) entails
that d(x, y) ≥ 0 with equality if and only if x = y. Also, regarding d as a function
of only one of its arguments and differentiating twice, shows that

Lemma 5.2 The functions d(x, ·) and d(·, y) are convex for all x and y.

Definition 5.2 Let µ and ν be two probability measures on S. Then

d(µ, ν) =
∑

i∈S

d(µ(i), ν(i)).

It should be noted that this notion of distance is not a proper metric, since it does
not satisfy the triangle inequality.

An alternative and sometimes more convenient expression for d is

d(x, y) =
x+ y

2
f(
x− y

x+ y
),

where f(u) = 1
2
(1 + u) log(1 + u) + 1

2
(1 − u) log(1 − u). The function f is well

defined on (−1, 1) and by differentiating twice, it follows that f is convex. The
following lemma reveals that lumping decreases d.

Lemma 5.3 Let X and Y be distributed according to µ and ν respectively. Let
g : S → R and let M and N be the distributions of g(X) and g(Y ) respectively.
Then

d(M,N) ≤ d(µ, ν).
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Proof. Partition S by letting Si = {x ∈ S : g(x) = i}, i ∈ g(S). Then

d(µ, ν) =
∑

i

∑

x∈Si

d(µ(x), ν(x)) =
∑

i

∑

x∈Si

µ(x) + ν(x)

2
f
(µ(x) − ν(x)

µ(x) + ν(x)

)

=
∑

i

M(i) +N(i)

2

∑

x∈Si

µ(x) + ν(x)

2

2

M(i) +N(i)
f
(µ(x) − ν(x)

µ(x) + ν(x)

)

=
∑

i

M(i) +N(i)

2
Ef(Zi),

where Zi is a random variable that takes on the value (µ(x)−ν(x))/(µ(x)+ν(x))
with probability (µ(x)+ν(x))/(M(i)+N(i)), x ∈ Si. By the convexity of f and
Jensen’s inequality,

Ef(Zi) ≥ f(EZi) = f
(M(i) −N(i)

M(i) +N(i)

)

.

Inserting into the above gives

d(µ, ν) ≥
∑

i

M(i) +N(i)

2
f
(M(i) −N(i)

M(i) +N(i)

)

= d(M,N).

2

Here is the result that captures how d relates to relative entropy.

Lemma 5.4 There is a constant c, independent of µ and S, such that

ENT(µ) ≤ c log |S|d(µ, π),

where π is uniform on S.

Proof. Let n = |S| and let g(x) = x log x− x+ 1. Then

ENT(µ) =
1

n

∑

i

nµ(i) log(nµ(i)) =
1

n

∑

i

g(nµ(i))

where the second equality follows from the fact that
∑

i(−nµ(i) + 1) = 0. Since
d(ax, ay) = ad(x, y),

d(µ, π) =
∑

i

d(µ(i),
1

n
) =

1

n

∑

i

d(nµ(i), 1)

=
1

n

∑

i

nµ(i) + 1

2
f
(nµ(i) − 1

nµ(i) + 1

)

.

55



Hence it suffices to show that for each i,

g(nµ(i)) ≤ c log n
nµ(i) + 1

2
f
(nµ(i) − 1

nµ(i) + 1

)

.

Letting

R(x) =
g(x)

x+1
2
f
(

x−1
x+1

) ,

this amounts to showing that R(x) ≤ c log n for x ∈ [0, n]. Using Taylor’s for-
mula, one can show that limx→1R(x) exists. Hence R extends to a continuous
function. As a consequence, supx∈[0,2]R(x) <∞. Writing

f
(x− 1

x+ 1

)

= log
( 2x

x+ 1

)

− 1

x+ 1
log x,

we see that the denominator of R(x) is increasing on [2, n], so that on [2, n], the
denominator exceeds 1

2
xf(1/3). Since g(x) < x log x ≤ x log n, we have that on

[2, n],
R(x) <

2

f(1
3
)
log n.

2

Let µ ∈ Sn be a random permutation. Then, if ν is a fixed permutation, clearly

ENT(µν) = ENT(µ),

since the effect of composing with ν is just to rename the elements of Sn.

Remark. Here one should beware of the risk of possible confusion; earlier we
used greek letters for probability measures and capitals X , Y etc, for the cor-
responding random variables. From now on, greek letters will denote random
permutations, i.e. random variables in Sn, and, when needed, the probability mea-
sure corresponding to µ, say, will be denoted L(µ). Recall then that we identify
ENT(µ) with ENT(L(µ)).

Lemma 5.5 If µ and ν are two random permutations, then

ENT(µν) ≤ ENT(µ).
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Proof. Recall the general form of the chain rule for relative entropies:

ENT(M‖N) = ENT(M1‖N1) +
∑

i∈S

∑

j∈S

M(i, j) log
(M2|1(j|i)
N2|1(j|i)

)

,

where M and N are two probability measures on S × S, S finite. Note that the
second term is

−EM log
N2|1(j|i)
M2|1(j|i)

≥ − log EM

N2|1(j|i)
M2|1(j|i)

= − log
∑

i

∑

j

M(i, j)
N(i, j)/N1(i)

M(i, j)/M1(i)

= − log 1 = 0,

where the inequality is Jensen’s inequality and the equalities are easy algebraic
manipulation. Hence ENT(M‖N) ≥ ENT(Mi‖Ni), i = 1, 2. Now apply this
with M = L(µ, µν) and N = L(φ, πν), where π is a uniform random permuta-
tion. Then clearlyN1 andN2 are both uniform on Sn. SinceM2|1(j|i) = N2|1(j|i)
for all (i, j), the second term in the chain rule vanishes and we have that

ENT(M‖N) = ENT(M1‖N1) = ENT(µ).

On the other hand
ENT(M‖N) ≥ ENT(M2‖N2).

The result follows. 2

We are now ready to state the key theorem of this section. Let a, b ∈ [n] and
let c(a, b) denote the random permutation that equals id with probability 1/2 and
(a b) with probability 1/2; we will call such a random permutation a collision of
the positions a and b.

Let ν be a random permutation and suppose that ν is written on the form

ν = θc(a1, b1)c(a2, b2) . . . c(ak, bk)

where θ is a random or fixed permutation, the ai’s and bi’s are all distinct and
the collisions are mutually independent given θ. Let ν1, ν2, . . . be iid copies of ν.
Write

ν(t) = ν1ν2 . . . νt.
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Say that the cards x and y collide at time t if ν−1
(t) (i) = x, ν−1

(t) (j) = y for some
positions i and j, and νt contains the collision c(i, j).

Fix t and let T ∈ [t] be a random variable independent of the νi:s. For each
card x, let b(x) be the first card that x collides with in the time interval [T, t], with
b(x) = x if no such card exists. Let

m(x) = b(x)

if b(b(x)) = x, with m(x) = x otherwise. (I.e. m(x) = y and m(y) = x if x and
y collide in the time interval [T, t] and none of x and y collide with any other card
earlier in that time interval.) For each x, let Ax be the largest number such that
P(m(x) = y) ≥ Ax/x for all y ≤ x.

Theorem 5.1 Let µ be a random permutation independent of ν(t). Then, with the
above notation,

ENT(µν(t)) − ENT(µ) ≤ − C

log n

n
∑

k=1

AkEk

where the constant C is independent of n, µ, t, T and the νi:s and

Ek = E[ENT(µ−1(k)|Fk+1)]

as usual.

Proof. Let M = (m(1),m(2), . . . ,m(n)) and let ρ be the random permuta-
tion

ρ =
∏

i:m(i)≤i

c(i,m(i)),

independent of µ and ν(t), given M. Then ρν(t) and ν(t) have the same distribution.
Hence

ENT(µν(t)) − ENT(µ) = ENT(µρν(t)) − ENT(ν).

Observe that

ENT(µρν(t)|M, ν(t)) = ENT(µρ|M, ν(t)) = ENT(µρ|M).

Now let
ρk =

∏

i:m(i)≤i≤k

c(i,m(i)),
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k = 0, 1, 2, . . . , n, and note that ρ0 = id and ρn = ρ. Since µ is independent of
M, ENT(µ|M) = ENT(µ) a.s. so

ENT(µρν(t)|M, ν(t)) − ENT(µ) = ENT(µρ|M) − ENT(µ|M)

= ENT(µρn|M) − ENT(µρ0|M)

=
n
∑

k=1

(

ENT(µρk|M) − ENT(µρk−1|M)
)

.

By Lemma 5.5, ENT(µρν(t)|M, ν(t)) ≥ ENT(µρν(t)), so we will be done if we
can show that for each k,

E[ENT(µρk|M) − ENT(µρk−1|M)] ≤ − C

log n
AkEk.

On the event {m(k) > k} we have that ρk = ρk−1 and so on this event

ENT(µρk|M) − ENT(µρk−1|M) = 0.

On {m(k) ≤ k},

L(µρk) =
1

2
L(µρk−1) +

1

2
L(µρk−1(k m(k))).

Fix i ≤ k, let λ = µρk−1 and ξ = λ (i k). The difference between the per-
mutations λ and ξ is thus that λ−1(i) = ξ−1(k) and vice versa. Note also that
λ−1(j) = ξ−1(j) = µ−1(j) for all j ≥ k + 1. Let Gj = σ(Fj,M), j ∈ [n]. Since
ENT(λ|Gk+1) = ENT(ξ|Gk+1), we have that

ENT(λc(i, k)|Gk+1) − ENT(λ|Gk+1)

= ENT
(1

2
L(λ|Gk+1) +

1

2
L(ξ|Gk+1)

)

− 1

2
ENT(λ|Gk+1) −

1

2
ENT(ξ|Gk+1)

= −d(L(λ|Gk+1),L(ξ|Gk+1))

by the definitions of relative entropy and d. By Lemma 5.3,

d(L(λ|Gk+1),L(ξ|Gk+1)) ≥ d(L(λ−1(k)|Gk+1),L(ξ−1(k)|Gk+1))

= d(L(λ−1(k)|Gk+1),L(λ−1(i)|Gk+1)).
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Applying this with i = m(k) on {m(k) ≤ k} yields

ENT(µρk|Gk+1) − ENT(µρk−1|Gk+1)

= ENT(λc(k,m(k))|Gk+1) − ENT(λ|Gk+1)

≤ −d(L(λ−1(k)|Gk+1),L(λ−1(m(k))|Gk+1))

= −
k
∑

i=1

1{m(k)=i}d(L(µ−1(k)|Gk+1),L(µ−1(i)|Gk+1))

= −
k
∑

i=1

1{m(k)=i}d(L(µ−1(k)|Fk+1),L(µ−1(i)|Fk+1))

where the second last equality follows from the fact that λ = µρk−1 does not have
the collision c(k,m(k)) and the last equality follows from that µ is independent
of M. Taking expectations now gives

E

[

ENT(µρk|Gk+1) − ENT(µρk−1|Gk+1)
]

≤ −
k
∑

i=1

P(m(k) = i)E
[

d(L(µ−1(i)|Fk+1),L(µ−1(k)|Fk+1))
]

≤ −Ak

k

k
∑

i=1

E

[

d(L(µ−1(i)|Fk+1),L(µ−1(k)|Fk+1))
]

≤ −AkE

[

d
(1

k

k
∑

i=1

L(µ−1(i)|Fk+1),L(µ−1(k)|Fk+1)
)]

= −AkE

[

d(U,L(µ−1(k)|Fk+1))
]

,

where U is the uniform distribution on [n]\{µ−1(k+1), µ−1(k+2), . . . , µ−1(n)}.
Here the second inequality follows from the assumption P(m(k) = i) ≥ Ak/k
and the third inequality from the convexity of d(·, y). By Lemma 5.4,

d(U,L(µ−1(k)|Fk+1)) ≥
C

log(n− k)
ENT(µ−1(k)|Fk+1)

=
CEk

log(n− k)
≥ CEk

log n
.

Inserting into the above yields

E

[

ENT(µρk|Gk+1) − ENT(µρk−1|Gk+1)
]

≤ −CAkEk

log n
.
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This result differs from what we want to prove only in that the conditioning is on
Gk+1 and not on M as desired. However, by the chain rule, for any i ≤ k,

ENT(µρi|M) = E[ENT(µρi|Gk+1)|M] +
n
∑

j=k+1

E[ENT((µρi)
−1(j)|Gj+1)|M]

and the last sum of this expression is independent of i, since (µρi)
−1(j) = µ−1(j)

for all j’s of the sum. Hence, applying this for i = k− 1 and i = k and taking the
difference gives

E

[

ENT(µρk|Gk+1) − ENT(µρk−1|Gk+1)
]

= E

[

ENT(µρk|M) − ENT(µρk−1|M)
]

.

2

Next we attack the Thorp shuffle. We will use that the inverse shuffle has the
same mixing time as the shuffle itself. For convenience, denote the positions in the
deck 0, 1, 2, . . . , n− 1. Then one step of the inverse Thorp shuffle can be written
as

ν = θc(0, h)c(1, h+ 1) . . . c(h− 1, 2h− 1)

where h = n/2 and θ is the fixed permutation taking the card in position 2i to
position i and the card in position 2i+ 1 to position h+ i, i = 0, 1, . . . , h− 1.

Partition the set of positions into intervals such that I0 = {0} and

Im = {2m−1, 2m−1 + 1, . . . , 2m − 1} ∩ [n− 1],

m = 1, 2, . . . , dlog2 ne. Fix such an m arbitrarily. We will now show that the
conditions of Theorem 5.1 are satisfied with t = dlog2 ne, the random variable T
having distribution P(T = 0) = 1/2m and

P(T = r) =
1

2m+1−r
,

r = 1, 2, . . . ,m (i.e. m+ 1 − T is geometric with parameter 1/2, truncated at m)
and Ai = 1/8 for i ∈ Im. This means to show that

P(m(i) = j) ≥ 1

8i
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for all i ∈ Im and j = 0, 1, 2 . . . , i− 1. Fix such i and j.
Let f(t) = bt/2c and let Xs(j) be the position of card j at time s. Then

Xs(j) = f(Xs−1(j)) + Zs(j)

where the Zs(j)’s, s = 1, 2, . . ., j = 0, 1, 2, . . . , n − 1, are independent random
varibles taking on the value 0 or h, each with probability 1/2. An elementary
observation about the function f is that for x > y,

f(x) − f(y) ≤ x− y

2
+

1

2

with equality if and only if x is even and y is odd. Hence

dlog2(f(x) − f(y))e ≤ dx− ye − 1

unless x is even and y = x− 1 in which case the left hand side and the right hand
side both equal 1. Write (uniquely)

h = 2kl

where l is odd.

Lemma 5.6 With the above notation,

P(Xm(j) is even) ≥ 1

2
.

Proof. Since j < i < 2m, fm(j) = 0. HenceXm(j) is completely determined
by Z1(j), Z2(j), . . . , Zm(j). If m ≤ k, we simply have that

Xm(j) =
k−1
∑

r=0

2−rZm−r(j).

Since every Zr(j) is either 0 or 2kl, every term of the sum is either 0 or 2k−rl
which is even since r < k ≤ m. Hence Xm(j) is deterministically even if m ≤ k.

Now consider the case m > k. For s = m−k,m−k+1, . . . ,m, let X ′
s(j) be

the position that card j would have had at time s, had Zm−k been different. Then
obviously X ′

s(j) and Xs(j) have the same distribution. We have that

|Xs(j) −X ′
s(j)| = 2m−sl, s = m− k,m− k + 1, . . . ,m
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and, in particular, |Xm(j) − X ′
m(j)| = l, which is odd. Hence exactly one of

Xm(j) and X ′
m(j) is even, and so

P(Xm(j) is even) =
1

2
.

2

Now, let y0 = i = X0(i) and recursively define

ys = f(ys−1) +Xs(j),

i.e. let ys be the position that card i would have had at time s, had Zs(i) equalled
Zs(j) for every s. Let τ be the first time s that |ys−Xs(j)| = 1 andXs(j) is even.

Since |i − j| < 2m and j < i, there is an s ≤ m such that ys − Xs(j) = 1.
By the elementary observations about f above, yu − Xu(j) = 1 for all u =
s, s + 1, . . . , τ , since Xu(j) is odd for all these u. Since Lemma 5.6 tells us that
Xm(j) is even with probability at least 1/2, we get

P(τ ≤ m) ≥ 1

2
.

Clearly

P(X0(i) = y0, X1(i) = y1, . . . , Xr(i) = yr|τ = r) =
1

2r
.

Since P(T = r) ≥ 1/2m+1−r and T is independent of τ and all Zs(j)’s, this
entails that

P(m(i) = j) ≥
m
∑

r=0

P(T = r, τ = r,X0(i) = y0, X1(i) = y1, . . . , Xr(i) = yr)

≥
m
∑

r=0

2−(m+1−r)2−r
P(τ = r)

= 2−(m+1)
P(τ ≤ m)

≥ 1

2m+2
≥ 1

8i

where the last inequality follows from that i ≥ 2m−1.
We can now use the key theorem with the given t, T and Ak. Doing so will

finally lead to the following result for the Thorp shuffle.
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Theorem 5.2 For the Thorp shuffle,

τmix = O((log n)4).

Proof. Continue with the same notation as above. By the chain rule,
n
∑

i=1

Ei =
∑

m

∑

i∈Im

Ei = ENT(µ)

Since the are at most log2 n+ 2 < C log n intervals Im, we must have
∑

i∈Im∗

Ei ≥
1

C log n
ENT(µ),

where m∗ is the index that maximizes the inner sum. Therefore, by the key theo-
rem and the above with m = m∗,

ENT(µν(t)) ≤ ENT(µ) − C ′

log n

n
∑

k=1

AkEk

≤ ENT(µ) − C ′

log n

∑

i∈Im∗

AiEi

≤
(

1 − C ′

8C(log n)2

)

ENT(µ).

Now iterate this result with µ = ν(Bt(log n)3), B = 0, 1, 2, . . ., and get

ENT(ν(Bt(log n)3)) ≤
(

1 − c

(log n)2

)B(log n)3

ENT(id)

≤ n−Bc log(n!)

≤ n1−Bc log n ≤ 1

8

for large n as soon as, say, B ≥ 2/c. By Lemma 5.1, for such B and n,

‖P(ν(Bt(log n)3) ∈ ·) − π‖ ≤
√

1

2
ENT(ν(Bt(log n)3)) ≤

1

4
.

Since t = (1 + o(1)) log2 n = O(log n), this means that

τmix = O((log n)4).

2
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