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Abstract

Suppose that Z is a random closed subset of the hyperbolic plane
H

2, whose law is invariant under isometries of H
2. We prove that if

the probability that Z contains a fixed ball of radius 1 is larger than
some universal constant p0 < 1, then there is positive probability that Z
contains (bi-infinite) lines.

We then consider a family of random sets in H
2 that satisfy some

additional natural assumptions. An example of such a set is the covered
region in the Poisson Boolean model. Let f(r) be the probability that a
line segment of length r is contained in such a set Z. We show that if f(r)
decays fast enough, then there are a.s. no lines in Z. We also show that if
the decay of f(r) is not too fast, then there are a.s. lines in Z. In the case
of the Poisson Boolean model with balls of fixed radius R we characterize
the critical intensity for the a.s. existence of lines in the covered region by
an integral equation.

We also determine when there are lines in the complement of a Poisson
process on the Grassmannian of lines in H

2.

Keywords and phrases: continuum percolation, phase transitions, hyperbolic
geometry
Subject classification: 82B21, 82B43

1 Introduction and main results

In this paper, we are interested in the existence of hyperbolic half-lines and lines
(that is, infinite geodesic rays and bi-infinite geodesics respectively) contained
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in unbounded connected components of some continuum percolation models in
the hyperbolic plane. Our first result is quite general:

Theorem 1.1. Let Z be a random closed subset of H
2, whose law is invariant

under isometries of H
2, and let B denote some fixed ball of radius 1 in H

2.
There is a universal constant po < 1 such that if P

[

B ⊂ Z
]

> po, then with
positive probability Z contains hyperbolic lines.

Of course, there is nothing special with taking B to be of radius 1 in 1.1; for
any radius r there is a universal constant po(r) < 1 with the claimed property.
The first result of this type was proven by O. Häggström [6] for regular trees
of degree at least 3. That paper shows that for automorphism invariant site
percolation on such trees, when the probability that a site is open is sufficiently
close to 1, there are infinite open clusters with positive probability. This was
subsequently generalized to transitive nonamenable graphs [2]. The proof of
Theorem 1.1 is not too difficult, and is based on a reduction to the tree case.

We conjecture that Theorem 1.1 may be strengthened by taking Z to be
open and replacing the assumption P

[

B ⊂ Z
]

> po with E
[

length(B \ Z)
]

< δ;
see Conjecture 7.1 and the discussion which follows. Here length(A) stands for
the length of the boundary of the set A.

We also obtain more refined results for random sets that satisfy a number
of additional conditions. One example of such a set is the following. Consider a
Poisson point process with intensity λ on a manifold M . In the Poisson Boolean
model of continuum percolation with parameters λ and R, balls of radius R
are centered around the points of the Poisson process. One then studies the
geometry of the connected components of the union of balls, or the connected
components of the complement. In particular, one asks for which values of the
parameters there are unbounded connected components or a unique unbounded
component.

In the setting of the Poisson Boolean model in the hyperbolic plane, Ka-
hane [10, 11] showed that if λ < 1/(2 sinhR), then the set of rays from a fixed
point o ∈ H

2 that are contained in the complement of the balls is non-empty with
positive probability, while if λ ≥ 1/(2 sinhR) this set is empty a.s. Lyons [13]
generalized the result of Kahane to d-dimensional complete simply-connected
manifolds of negative curvature, and in the case of constant negative curvature
also found the exact value of the critical intensity for the a.s. existence of rays.

In this note, we find not only rays but lines in the union of balls and/or its
complement. We work mostly in the hyperbolic plane, but raise questions for
other spaces as well. Our proofs cover the results of Kahane as well, but are
also valid for a larger class of random sets. We remark that it is easy to see that
in R

n, there can never be rays in the union of balls or in the complement.
Other aspects of the Poisson Boolean model in H

2 have previously been
studied in [17]. For further studies of percolation in the hyperbolic plane, the
reader may consult the papers [3, 12]. In [5], an introduction to hyperbolic
geometry is found, and for an introduction to the theory of percolation on
infinite graphs see, for example, [4, 14, 7].
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Let X = Xλ be the set of points in a Poisson process of intensity λ in H
2.

Let
B :=

⋃

x∈X

B(x,R)

denote the occupied set, where B(x, r) denotes the open ball of radius r centered
at x. The closure of the complement

W := H2 \ B

will be reffered to as the vacant set.
Let λgc = λgc(R) denote the supremum of the set of λ ≥ 0 such that for the

parameter values (R, λ) a.s. B does not contain a hyperbolic line (”gc” stands
for geodesic covered). Let λ̄gc denote the supremum of the set of λ ≥ 0 such
that the probability that a fixed point x ∈ H

2 belongs to a half-line contained
in B is 0. Similarly let λgv = λgv(R) denote the infimum of the set of λ ≥ 0
such that for the parameter values (R, λ) a.s. W does not contain a hyperbolic
line (”gv” stands for geodesic vacant). Finally, let λ̄gv denote the infimum of
the set of λ ≥ 0 such that the probability that a fixed point x ∈ H

2 belongs to a
half-line contained in W is 0. Later, we shall see that λgv = λ̄gv and λgc = λ̄gc.
Clearly, if λ > λgv, there are a.s. no hyperbolic lines in W and if λ < λgc there
are a.s. no hyperbolic lines in B. Let f(r) = fR,λ(r) denote the probability that
a fixed line segment of length r in H

2 is contained in B.

Theorem 1.2. For every R > 0, we have 0 < λgc(R) = λ̄gc(R) < ∞, and the
following statements hold at λgc(R).

1. A.s. there are no hyperbolic lines within B.

2. Moreover, B a.s. does not contain any hyperbolic ray (half-line).

3. There is a constant c = cR > 0, depending only on R, such that

c e−r ≤ f(r) ≤ e−r, ∀r > 0 . (1.1)

Furthermore, the analogous statements hold with W in place of B (with pos-
sibly a different critical intensity).

An equation characterizing λgc follows from our results (i.e., (4.1) with α =
1).

The key geometric property allowing for geodesic percolation to occur for
some λ is the exponential divergence of geodesics. This does not hold in Eu-
clidean space. It is of interest to determine which homogeneous spaces admit a
regime of intensities with geodesics percolating.

With regards to higher dimensions, we show that in hyperbolic space of
any dimension d ≥ 3 and for any (R, λ) ∈ (0,∞)2, there can never be planes
contained in the covered or vacant region of the Poisson Boolean model.

We also consider a Poisson process Y on the Grassmannian of lines on H
2.

We show that if the intensity of Y is sufficiently small, then there are lines in
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Figure 2.1: A tree embedded in the hyperbolic plane, in the Poincaré disk model.
On the right appears the tree together with some of its lines of symmetry.

the complement of Y (when Y is viewed as a subset of H
2), which means that

Y is not connected. On the other hand, if the intensity is large enough, then
the complement of Y contains no lines, which means that Y is connected. At
the critical intensity, Y is connected.

Our paper ends with a list of open problems.

2 Lines appearing when the marginal is large

The proof of Theorem 1.1 is based on a reduction to the tree case. We will
need the following construction of a tree embedded in H

2, which is illustrated
in Figure 2.1. (This construction should be rather obvious to the readers who
are proficient in hyperbolic geometry.) Consider the hyperbolic plane in the
Poincaré disk model. Let o ∈ H

2 correspond to the center of the disk. Let A0

be an arc on the unit circle of length smaller than 2π/3. Let Aj denote the
rotation of A0 by 2π j/3; that is Aj := e2πj/3A0, j = 1, 2. Let Lj , j = 0, 1, 2,
denote the hyperbolic line whose endpoints on the ideal boundary ∂H

2 are
the endpoints of Aj . Let Γ denote the group of hyperbolic isometries that is
generated by the reflections γ0, γ1 and γ2 in the lines L0, L1 and L2, respectively.
If w = (w1, w2, . . . , wn) ∈ {0, 1, 2}n, then let γw denote the composition γw1

◦
γw2

◦ · · · ◦γwn
. We will say that w is reduced if wj+1 6= wj for j = 1, 2, . . . , n−1.

A simple induction on n then shows that γw(o) is separated from o by Lw1
when

w is reduced and n > 0. In particular, for reduced w 6= (), we have γw(o) 6= o
and γw 6= γ(). Clearly, every γw where w has wj = wj+1 for some j is equal to
γw′ where w′ has these two consecutive elements of w dropped. It follows that
Γ acts simply and transitively on the orbit Γo. (“Simply” means that γv = v
where γ ∈ Γ and v ∈ Γo implies that γ is the identity.) Now define a graph T
on the vertex set Γo by letting each γ(o) be connected by edges to the three
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points γ ◦ γj(o), j = 0, 1, 2. Then T is just the 3-regular tree embedded in the
hyperbolic plane. In fact, this is a Cayley graph of the group Γ, since we may
identify Γ with the orbit Γo. (One easily verifies that Γ is isomorphic to the free
product Z2 ∗ Z2 ∗ Z2.)

We will need a few simple properties of this embedding of the 3-regular tree
in H

2. It is easy to see that every simple path v0, v1, . . . in T has a unique limit
point on the ideal boundary ∂H

2. (Figure 2.1 does not lie.) Moreover, if v0 = o
and v1 = γj(o), then the limit point will be in the arc Aj . If (vj : j ∈ Z) is a
bi-infinite simple path in T with v0 = o, then its two limit points on the ideal
boundary will be in two different arcs Aj . Hence, the distance from o to the line
in H

2 with the same pair of limit points on ∂H
2 is bounded by some constant

R, which does not depend on the path (vj : j ∈ Z). Invariance under the group
Γ now shows that for every bi-infinite simple path β in T , the hyperbolic line
Lβ joining its limit points passes within distance R from each of the vertices of
β. It follows that there is some constant R′ > 0 such that Lβ is contained in
the R′-neighborhood of the set of vertices of β.

We are now ready to prove our first theorem.

Proof of Theorem 1.1. We use the above construction of T , Γ and the
constant R′. Given Z, let ω ⊂ V (T ) denote the set of vertices v ∈ V (T ) such
that the ball B(v,R′) is contained in Z. Then ω is a (generally dependent) site
percolation on T and its law is invariant under Γ. Set q := P

[

o ∈ ω
]

. By [2],
there is some p0 ∈ (0, 1) such that if q ≥ p0, then ω has infinite connected
components with positive probability. (We need to use [2], rather than [6],
since the group Γ is not the full automorphism group of T .) Let N be the
number of balls of radius 1 that are sufficient to cover B(o,R′). Now suppose
that P

[

B(o, 1) ⊂ Z
]

> 1 − (1 − p0)/(2N). Then a sum bound implies that
q > (p0 + 1)/2. Therefore, if we intersect ω with an independent Bernoulli site
percolation with marginal p > (p0+1)/2, the resulting percolation will still have
infinite components with positive probability, by the same argument as above.
Thus, we conclude that with positive probability ω has infinite components
with more than one end and therefore also bi-infinite simple paths. The line
determined by the endpoints on ∂H

2 of such a path will be contained in Z, by
the definition of R′. The proof is thus complete.

3 Lines in well-behaved percolation

The proofs of the statements in Theorem 1.2 concerning B are essentially the
same as the proofs concerning W. We therefore find it worthwhile to employ an
axiomatic approach, which will cover both cases.

Definition 3.1. In the following, we fix a closed disk B ⊂ H
2 of radius 1. A

well-behaved percolation on H
2 is a random closed subset Z ⊂ H

2 satisfying the
following assumptions.

1. The law of Z is invariant under isometries of H
2.
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2. The set Z satisfies positive correlations; that is, for every pair g and h of
bounded increasing measurable functions of Z, we have

E
[

g(Z)h(Z)
]

≥ E
[

g(Z)
]

E
[

h(Z)
]

.

3. There is some R0 <∞ such that Z satisfies independence at distance R0,
namely, for every pair of closed subsets A,A′ ⊂ H

2 satisfying inf{d(a, a′) :
a ∈ A, a′ ∈ A′} ≥ R0, the intersections Z ∩A and Z ∩A′ are independent.

4. The expected number m of connected components of B \ Z is finite.

5. The expected length ` of B ∩ ∂Z is finite.

6. p0 := P
[

B ⊂ Z
]

> 0.

Invariance under isometries implies that m, ` and p0 do not depend on the
position of B. We say that Z is Λ-well behaved, if it is well-behaved and
p0,m

−1, `−1, R−1
0 > Λ. Many of our estimates below can be made to depend

only on Λ. In the following, we assume that Z is Λ-well behaved, where Λ > 0,
and use O(g) to denote any quantity bounded by c g, where c is an arbitrary
constant that may depend only on Λ. We remark that in condition 6 above it
is not of any importance that the radius of B is 1. If for some r > 0 we have
P
[

B(o, r) ⊂ Z
]

> 0, then by positive correlations we have P
[

B(o, r̃) ⊂ Z
]

> 0
for every r̃ > 0.

Measurability remark. It is not à priori obvious that the events mentioned in
Theorems 1.1 and 1.2, condition 1-6 above and elsewhere are measurable. (Al-
though all of these events are so natural in their formulation that the “should”
be measurable.) For the random set Z, most of the events are measurable ei-
ther by their formulation or follow from the definition of the Fell topology for
random closed sets in a fairly straightforward way. E.g. let L be a line segment
and let {ak} be a countable dense set of points of L. Then

{L ⊆ Z} = ∩k ∩n {Z ∩B(ak, 1/n) 6= ∅}.

However, conditions involving the length of ∂Z implicitly assume that the
boundary of Z a.s. has a well-defined length. For e.g. the covered region or
the closure of the vacant region of a Poisson process, this is obvious. Also, often
measurability, although not immediatley obvious, follows from the proofs in that
when is is shown that a set is contained in an (obviously measurable) event of
probability 0, then the set itself is also measurable, at least after a completion
of the probability space.

If x, y ∈ H
2, let [x, y]s denote the union of all line segments [x′, y′] where

d(x, x′) < s and d(y, y′) < s. Let A(x, y, s) be the event that there is some
connected component of Z ∩ [x, y]s that intersects B(x, s) as well as B(y, s),
and let Q(x, y, s) be the event that [x, y]s ⊂ Z. If d(x, y) is large, the set [x, y]s
becomes very thin, as is seen in the following lemma.
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Lemma 3.2. Let 0 < ε < ε0 < ∞ and 0 < t < ∞. Let γ : R → H
2 denote

a hyperbolic line parameterized by arclength. There is a constant c < ∞ which
depends only on ε0 such that for s ∈ (0, t) we have

d(γ(s), ∂[γ(0), γ(t)]ε) ≤ c ε e−s∧ (t−s). (3.1)

Proof. In this proof we use the Poincaré unit disc model of H
2. Suppose

s ∈ (0, t/2]. Without loss of generality we assume that γ runs along the real
line and that γ(s) = (0, 0), γ(0) = (x1, 0) and γ(t) = (x2, 0) where −1 < x1 < 0
and 0 < x2 < 1. Recall that hyperbolic balls are also Euclidean balls. Since
d(γ(0), (0, 0)) = s, the Euclidean radius of B(γ(0), ε) is given by

rε(γ(0)) =
kε(1 − tanh(s/2)2)

1 − k2
ε tanh(s/2)2

where kε = tanh(ε/2) and the Euclidean radius of B(γ(t), ε) is given by

rε(γ(t)) =
kε(1 − tanh((t− s)/2)2)

1 − k2
ε tanh((t− s)/2)2

.

Since tanh(x) increases to 1, tanh(x) ≤ x for x ≥ 0 and 1− tanh(x/2)2 ≤ 4 e−x

we get

rε(γ(0)) ≤
4 ε e−s

1 − k2
ε0

. (3.2)

Let L be a geodesic line segment with one endpoint in B(γ(0), ε) and the
other in B(γ(t), ε). In the Poincaré disc model, any such L belongs to a
circle C = C(L) which is perpendicular to the boundary of the unit disc.
Consequently, the Euclidean distance between L and the real line is at most
max(rε(γ(0)), rε(γ(t)). Since s ≤ t−s we have rε(γ(0)) ≥ rε(γ(t)) and therefore
the Euclidean distance between γ(s) and ∂[γ(0), γ(t)]ε is at most rε(γ(0)). Thus

d(γ(s), ∂[γ(0), γ(t)]ε) ≤ log
1 + rε(γ(0))

1 − rε(γ(0))
≤ C1rε(γ(0)) (3.3)

for some C1 = C1(ε0) ∈ (1,∞) where the first inequality comes from the
relation between Euclidean and hyperbolic distance from the origin and the sec-
ond inequality comes from the fact that ε ∈ (0, ε0]. Now (3.1) follows from (3.2)
and (3.3).

Lemma 3.3. There is a constant c = c(Λ) < ∞, which depends only on Λ,
such that for all x, y ∈ H

2 satisfying d(x, y) ≥ 4 and for all ε > 0

P
[

Q(x, y, ε)
]

> (1 − c ε)P
[

A(x, y, ε)
]

. (3.4)

Proof. Observe that the expected minimal number of disks of small radius ε
that are needed to cover ∂Z ∩B is O(`/ε). It follows by invariance that

P
[

B(x, ε) ∩ ∂Z 6= ∅
]

= O(ε) ` = O(ε) (3.5)
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holds for x ∈ H
2.

Let γ : R → H
2 denote a hyperbolic line parameterized by arclength, and

let Lt denote the hyperbolic line through γ(t) which is orthogonal to γ. Set

g(r, s) := P
[

A
(

γ(0), γ(r), s
)

\Q
(

γ(0), γ(r), s
)]

.

By invariance, we have P
[

A(x, y, s) \Q(x, y, s)
]

= g
(

d(x, y), s
)

.

Set B := B
(

γ(0), 1
)

. Fix some ε ∈ (0, 1/10). Let Sj denote the intersection
of B with the open strip between L2jε and L2(j+1)ε, where j ∈ J := N ∩
[0, ε−1/10]. Let xj and yj denote the two points in L(2j+1)ε ∩ ∂B. Let J1

denote the set of j ∈ J such that Sj is not contained in Z but there is a
connected component of Z ∩ Sj that joins the two connected components of
Sj ∩ ∂B. Observe that the number of connected components of B \ Z is at
least |J1| − 1. Hence E

[

|J1|
]

≤ m + 1. Let J2 denote the set of j ∈ J such
that A(xj , yj , ε) \Q(xj , yj , ε) holds. Note that if j ∈ J2 \ J1, then ∂Z is within
distance O(ε) from xj ∪ yj . Therefore, P

[

j ∈ J2 \ J1

]

= O(ε) ` holds for every
j ∈ J , by (3.5). Consequently,

E
[

|J2|
]

≤ E
[

|J2 \ J1|
]

+ E
[

|J1|
]

≤ O(ε) ` |J | +m+ 1 = O(1) .

Thus, there is at least one j = jε ∈ J satisfying

P
[

A(xj , yj , ε) \Q(xj , yj , ε)
]

= P
[

j ∈ J2

]

≤ O(1)/|J | = O(ε) .
(3.6)

Set rε := d(xjε
, yjε

), and note that rε ∈ (1, 2]. Now suppose that x, y ∈ H
2

satisfy d(x, y) = 2. Let x0 be the point in [x, y] at distance rε from y, and
let y0 be the point in [x, y] at distance rε from x. Observe that A(x, y, ε) ⊂
A(x0, y, ε) ∩ A(x, y0, ε). Moreover, since [x, y]ε ⊂ [x, y0]ε ∪ [x0, y]ε, we have
Q(x, y, ε) ⊃ Q(x, y0, ε) ∩Q(x0, y, ε). Thus,

A(x, y, ε) \Q(x, y, ε) ⊂
(

A(x0, y, ε) \Q(x0, y, ε)
)

∪
(

A(x, y0, ε) \Q(x, y0, ε)
)

and therefore (3.6) and invariance gives

g(2, ε) ≤ 2P
[

A(xjε
, yjε

, ε) \Q(xjε
, yjε

, ε)
]

= O(ε) . (3.7)

The same argument shows that

g(r′, ε) ≤ 2 g(r, ε), if 2 ≤ r < r′ ≤ 2 r . (3.8)

We will now get a bound on g(2 k, ε) for large k ∈ N. For j ∈ [k] := N∩ [0, k],
let rj be the distance from γ(2 j) to the complement of [γ(0), γ(2 k)]ε. Let
Aj := A

(

γ(2 j), γ(2 j + 2), rj ∨ rj+1

)

, Qj := Q
(

γ(2 j), γ(2 j + 2), rj ∨ rj+1

)

,

where j ∈ [k − 1]. Also set Ā := A
(

γ(0), γ(2 k), ε
)

. Then

Q
(

γ(0), γ(2 k), ε
)

⊃
k−1
⋂

j=0

Qj .
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Hence,

g(2 k, ε) ≤
k−1
∑

j=0

P
[

Ā \Qj

]

. (3.9)

We now claim that

P
[

Ā \Qj

]

= O(1)P
[

Ā
]

P
[

Aj \Qj

]

, (3.10)

where the implied constant depends only on p0 and R0. Let j′ := bj−R0/2−2c
and j′′ := dj + R0/2 + 3e. Suppose first that j ′ > 0 and j′′ < k. Let Ā′(j)
denote the event that Z ∩ [γ(0), γ(2 k)]ε contains a connected component that
intersects both B

(

γ(0), ε
)

and B
(

γ(2 j′), ε
)

, and let Ā′′(j) denote the event
that Z ∩ [γ(0), γ(2 k)]ε contains a connected component that intersects both
B
(

γ(2 j′′), ε
)

and B
(

γ(2 k), ε
)

. Then Ā ⊂ Ā′(j) ∩ Ā′′(j) ∩Aj . Independence at
distance R0 therefore gives

P
[

Ā \Qj

]

≤ P
[

Ā′(j) ∩ Ā′′(j)
]

P
[

Aj \Qj

]

.

Now note that |j′ − j′′| = O(1). Consequently, d(γ(2j ′), γ(2j′′)) < C where
C = O(1). Let Q be the event that the ball of radius C centered at γ(2j ′) is
contained in Z. Positive correlations and condition 6 imply that P

[

Q
]

≥ 1/O(1)
where O(1) depends only on p0. By positive correlations, we have

P [Ā′(j) ∩ Ā′′(j) ∩Q] ≥ P [Ā′(j) ∩ Ā′′(j)]P [Q].

Since Ā ⊃ Ā′(j) ∩ Ā′′(j) ∩Q, we get

P
[

Ā′(j) ∩ Ā′′(j)
]

≤ O(1)P
[

Ā
]

.

Thus, we get (3.10) in the case that j ′ > 0 and j′′ < k. The general case is easy
to obtain (one just needs to drop Ā′(j) or Ā′′(j) from consideration). Now, (3.9)
and (3.10) give

g(2 k, ε) ≤ O(1)P
[

Ā
]

k−1
∑

j=0

g(2, rj ∨ rj+1) . (3.11)

By Lemma 3.2, there is a universal constant a ∈ (0, 1) such that rj ≤
a|j|∧|k−j|O(ε). Hence, we get by (3.7) and (3.11) that g(2 k, ε) ≤ O(1)P

[

Ā
]

ε,
where the implied constant may depend on `,m,R0 and p0. This proves (3.4)
in the case where d(x, y) is divisible by 2. The general case follows using (3.8)
with r′ = d(x, y) and r = 2 br′/2c.

Let f(r) denote the probability that a fixed line segment of length r is
contained in Z. Clearly,

P
[

Q(x, y, s)
]

≤ f(length[x, y]) ≤ P
[

A(x, y, s)
]

,

and Lemma 3.3 shows that for s sufficiently small the upper and lower bounds
are comparable.
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Lemma 3.4. There is a unique α ≥ 0 (which depends on the law of Z) and
some c(Λ) > 0 (depending only on Λ) such that

c e−αr ≤ f(r) ≤ e−αr (3.12)

holds for every r ≥ 0.

Proof. Since the uniqueness statement is clear, we proceed to prove existence.
Positive correlations imply that

f(r1 + r2) ≥ f(r1) f(r2) , (3.13)

that is, f is supermultiplicative. Therefore, − log f(r) is subadditive, and
Fekete’s Lemma says that we must have

α := lim
r→∞

− log f(r)

r
= inf

r>0

− log f(r)

r
.

Since for every r we have α ≤ − log
(

f(r)
)

/r, the right inequality in (3.12)
follows.

On the other hand, if we fix some R > R0, then independence at distance
larger than R0 gives

f(r1) f(r2) ≥ f(r1 +R+ r2)
(3.13)

≥ f(r1 + r2) f(R) .

Dividing by f(R)2, we find that the function r 7→ f(r)/f(R) is submultiplicative.
Thus, by Fekete’s lemma again,

lim
r→∞

log
(

f(r)/f(R)
)

r
= inf

r>0

log
(

f(r)/f(R)
)

r
.

The left hand side is equal to −α, and we get for every r > 0

−α ≤
log
(

f(r)/f(R)
)

r
.

By positive correlations, there is some c = c(Λ) > 0 such that f(R) ≥ c, which
implies the left inequality in (3.12).

Lemma 3.5. If α ≥ 1 (where α is defined in Lemma 3.4), then a.s. there are
no half-lines contained in Z.

Proof. Fix a basepoint o ∈ H
2. Let s = (2c)−1, where c is the constant

in (3.4). Then

P
[

A(x, y, s)
]

/2 ≤ P
[

Q(x, y, s)
]

≤ f
(

d(x, y)
)

≤ e−d(x,y) (3.14)

holds for every x, y ∈ H
2 satisfying d(x, y) ≥ 4. For every integer r ≥ 4 let

V (r) be a minimal collection of points on the circle ∂B(o, r) such that the disks
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B(z, s) with z ∈ V cover that circle. Let Xr be the set of points z ∈ V (r) such
that A(o, z, s) holds. By (3.14)

E
[

|Xr|
]

≤ 2 |V (r)| f(r) = O(1) s−1 length
(

∂B(o, r)
)

e−r = O(1) , (3.15)

since we are treating s as a constant and the length of ∂B(o, r) is O(er).
The rest of the argument is quite standard, and so we will be brief. By (3.15)

and Fatou’s lemma, we have lim infr→∞ |Xr| < ∞ a.s. Now fix some large r
and let r′ ∈ N satisfy r′ > r+R0 + 2. Since Z \B(o, r+R0 + 1) is independent
from Z ∩B(o, r), positive correlations implies that

P
[

Xr′ = ∅
∣

∣ Z ∩B(o, r)
]

≥ p|Xr|, (3.16)

where p > 0 is a constant (which we allow to depend on the law of Z). Since
lim infr→∞ |Xr| < ∞ a.s., it follows by (3.16) that infr |Xr| = 0 a.s., which
means that max{r : Xr 6= ∅} < ∞ a.s. Therefore, a.s. there is no half-line that
intersects B(o, s). Since H

2 can be covered by a countable collection of balls of
radius s, the lemma follows.

Lemma 3.6. Suppose that α < 1. Then (i) a.s. Z contains hyperbolic lines, (ii)
for every fixed x ∈ H

2, there is a positive probability that Z contains a half-line
containing x, and (iii) for every fixed point x in the ideal boundary ∂H

2 there
is a.s. a geodesic line passing through x whose intersection with Z contains a
half-line.

Proof. We first prove (ii) using the second moment method. Fix some point
o ∈ H

2. Let A denote a closed half-plane with o ∈ ∂A, and let I := A∩∂B(o, 1).
For r > 1 and x ∈ ∂B(o, 1), let Lr(x) denote the line segment which contains
x, has length r and has o as an endpoint. Set Yr := {x ∈ I : Lr(x) ⊂ Z}, and
let yr denote the length of Yr. Then we have

E
[

yr

]

= length(I) f(r) .

The second moment is given by

E
[

y2
r

]

=

∫

I

∫

I

P
[

x, x′ ∈ Yr

]

dx dx′ .

Now note that if r2 > r1 > 0, then the distance from Lr2
(x′) \Lr1

(x′) to Lr2
(x)

is at least (d(x, x′) er1 ∧ r1)/O(1). Consequently, by independence on sets at
distance larger than R0, we have

P
[

x, x′ ∈ Yr

]

≤ f(r) f
(

(r + log d(x, x′) +O(1)) ∨ 0
)

.

Now applying the above and (3.12) gives

E
[

y2
r

]

E[yr]
2 ≤ O(1)

∫

I

∫

I

exp
(

−α log d(x, x′)
)

dx dx′

= O(1)

∫

I

∫

I

d(x, x′)−α dx dx′ = O(1) ,

11



since α < 1. Therefore, the second moment method implies that

inf
r>1

P
[

yr > 0
]

> 0 .

Since yr is monotone non-increasing, it follows that

P
[

∀r>1 yr > 0
]

> 0 .

By compactness, on the event that yr > 0 for all r > 1 we have
⋂

r>1 Yr 6= ∅. If
x ∈

⋂

Yr, then the half-line with endpoint o passing through x is contained in
Z ∩A. This proves (ii).

We now prove (i). Fix s = 1/(2 c), where c is given by Lemma 3.3. For
x ∈ ∂B(o, 1) let zr(x) denote the endpoint of Lr(x) that is different from o
and let Y ′

r be the set of points x ∈ I such that [z, zr(x)] ⊂ Z holds for every
z ∈ B(o, s). Let y′r denote the length of Y ′

r . Then Y ′
r ⊂ Yr and therefore

y′r ≤ yr. By the choice of s, we have E
[

y′r
]

≥ E
[

yr

]

/2. On the other hand,

E
[

(y′r)
2
]

≤ E
[

y2
r

]

= O(1)E
[

yr

]2
. As above, this implies that with positive

probability Y ′
∞ :=

⋂

r>1 Y
′
r 6= ∅. Suppose that x ∈ Y ′

∞. Let x̃ denote the
endpoint on the ideal boundary ∂H

2 of the half-line starting at o and passing
through x. Then for every z ∈ B(o, s) the half-line [z, x̃) is contained in Z. By
invariance and positive correlations, for every ε > 0 there is positive probability
that Y ′

∞ is within distance ε from each of the two points in ∂A∩ I. If x′ and x′′

are two points in Y ′
∞ that are sufficiently close to the two points in ∂A∩ I, then

the hyperbolic line joining the two endpoints at infinity of the corresponding
half-lines through o intersects B(o, s). In such a case, this line will be contained
in Z. Thus, we see that for every line L (in this case ∂A) for every point o ∈ L
and for every ε > 0, there is positive probability that Z contains a line passing
within distance ε of the two points in ∂B(o, 1)∩L. Now (i) follows by invariance
and by independence at a distance.

The proof of (iii) is similar to the above, and will be omitted.

Remark 3.7. Let o ∈ H
2. Let Y denote the set of points z in in the ideal

boundary ∂H
2 such that the half-line [o, z) is contained in Z. It can be concluded

from the first and second moments computed in the proof of Lemma 3.6 and
a standard Frostman measure argument that the essential supremum of the
Hausdorff dimension of Y is given by

‖dimH(Y )‖∞ = 1 − α .

We conjecture that dimH(Y ) = 1 − α a.s. on the event that Y 6= ∅.
A modification of the above arguments shows that there is positive probabil-

ity that Z contains a line through o if and only if α < 1/2. In case α < 1/2, the
essential supremum of the Hausdorff dimension of the set of lines in Z through
o is 1 − 2α.

We believe that the Hausdorff dimension of the union of the lines in Z is a.s.
3 − 2α when α ∈ [1/2, 1).

12



4 Boolean occupied and vacant percolation

Recall the definition of B and W. First, we show that B and W are well-behaved.

Proposition 4.1. Fix a compact interval I ⊂ (0,∞). Then there is some
Λ = Λ(I) > 0 such that if λ,R ∈ I, then B and W are Λ-well behaved.

Proof. It is well known that B and W satisfy positive correlations. For
W, m is bounded by the expected number of points in X that fall in the R-
neighborhood of B. Observe that each connected component of W∩B, with the
possible exception of one, has on its boundary an intersection point of two circles
of radius R centered at points in X. Since the second moment of the number
of points in X that fall inside the R-neighborhood of B is finite, it follows that
m is also bounded for B. The remaining conditions are easily verified and left
to the reader.

We are now ready to prove one of our main theorems.

Proof of Theorem 1.2. We start by considering B. Fix some R ∈ (0,∞). If
we let λ ↗ ∞, then f(1) ↗ 1 and by (3.12) α ↘ 0. Thus, Lemma 3.6 implies
that λgc < ∞. (We could alternatively prove this from Theorem 1.1.) It is
also clear that λgc > 0, since for λ sufficiently small a.s. B has no unbounded
connected component.

Since the constant c in Lemma 3.4 depends only on Λ, that lemma implies
that α is continuous in (λ,R) ∈ (0,∞)2. In particular, Lemmas 3.5 and 3.6
show that when λ = λgc(R), we have α = 1 and that there are a.s. no half-lines
in B. Also, we get (1.1) from (3.12). Finally, it follows from Lemma 3.5 and
Lemma 3.6 (ii) that λgc = λ̄gc. The proof for W is similar.

Next, we calculate α for B and W.

Lemma 4.2. The value of α for line percolation in W is given by

α = 2λ sinhR .

Proof. Consider a line γ : R → H
2, parameterized by arclength, and let r > 0.

A.s. the interval γ[0, r] is contained in W if and only if the R-neighborhood of
the interval does not contain any points of X. Let N denote this neighborhood,
and let A denote its area. Then f(r) = e−λA. For each point z ∈ H

2, let tz
denote the t minimizing the distance from z to γ(t). Then N = N0 ∪N1 ∪N2,
where N0 := {z ∈ H

2 : d(z, γ(tz)) < R, tz ∈ [0, r]}, N1 := {z ∈ B(γ(0), R) :
tz < 0} and N2 := {z ∈ B(γ(r), R) : tz > r}. Observe that N1 and N2 are
two half-disks of radius R, so that their areas are independent of r. We can
conveniently calculate the area of N0 explicitly in the upper half-plane model
for H

2, for which the hyperbolic length element is given by |ds|/y, where |ds|
is the Euclidean length element. We choose γ(t) = (0, et). Recall that the
intersection of the upper half-plane with the Euclidean circles orthogonal to the
real line are lines in this model. It is easy to see that for z = (ρ cos θ, ρ sin θ),
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we have γ(tz) = (0, ρ). Moreover, the distance from z to γ is

∣

∣

∣

∫ π/2

θ

ρ dψ

ρ sinψ

∣

∣

∣
=
∣

∣log tan(θ/2)
∣

∣.

Thus, if we choose θ ∈ (0, π/2) such that tan(θ/2) = e−R, then N0 consists of
the set

{

(ρ cosψ, ρ sinψ) : ρ ∈ [1, er], ψ ∈ (θ, π − θ)
}

. Thus,

area(N0) =

∫ π−θ

θ

∫ er

1

ρ dρ dψ

ρ2 sin2 ψ
= 2 r cot θ = r(cot θ

2
− tan θ

2
) = 2 r sinhR .

The result follows.

From Lemma 4.2 we see that for W we have α = 1 when λ = 1/(2 sinh(R)),
which means λgv(R) = 1/(2 sinh(R)).

Remark 4.3. Let λc(R) be the infimum of the set of intensities λ ≥ 0 such
that B contains unbounded components a.s. Proposition 4.7 in [17] says that
for R large, λc(R) ≤ Ke−2R for some constant K which means λgv(R) > λc(R)
for R large. Theorem 4.1 in [17], therefore implies that for R large, there are
intensities for which there are lines in W, but also infinitely many unbounded
components in both W and B. On the other hand, by Lemma 4.6 in [17] we
have λc(R) ≥ 1/(2π(cosh(2R) − 1)). Therefore, for R small enough, we have
λc(R) > λgv(R). So for R small, there are no intensities for which lines in
W coexist with unbounded components in B. Moreover, Theorem 4.2 in [17]
says that when there are no unbounded components in B, there is a unique
unbounded component in W. Therefore, for R small, there are intensities for
which there is a unique unbounded component in W, but still no lines in W.

Lemma 4.4. In the setting of line percolation in B, α is the unique solution of
the equation

1 =

∫ 2R

0

eαtH ′
R,λ(t) dt , (4.1)

where

HR,λ(t) := − exp

(

−4λ

∫ t/2

0

sinh

(

cosh−1

(

coshR

cosh s

))

ds

)

.

Proof. Consider a line γ : R → H
2, parameterized by arclength. Recall that X

is the underlying Poisson process. We now derive an integral equation satisfied
by

f(r) = P
[

γ[0, r] ⊂ B
]

.

For a point x in the R-neighborhood of γ, let u+(x) := sup{s : γ(s) ∈ B(x,R)}
and u−(x) := inf{s : γ(s) ∈ B(x,R)}. Let X0 := {x ∈ X : u−(x) < 0 < u+(x)}.
This is the set of x ∈ X such that γ(0) ∈ B(x,R). Also set

S :=

{

inf{u+(x) : x ∈ X0} X0 6= ∅,

−∞ X0 = ∅ .
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Assume that r ≥ 2R. A.s., if S = −∞, then γ[0, r] is not contained in B.
On the other hand, if we condition on S = s, where s ∈ (0, 2R) is fixed, then
γ[0, s) ⊂ B and the conditional distribution of γ[s, r] ∩ B is the same as the
unconditional distribution. (Of course, S = s has probability zero, and so this
conditioning should be understood as a limit.) Therefore, we get

P
[

γ[0, r] ⊂ B
∣

∣ S
]

= f(r − S), (4.2)

where, of course, f(∞) = 0.
Let G(t) := P

[

S ∈ (0, t)
]

. Shortly, we will show that G(t) = HR,λ(t) + 1.
But presently, we just assume that G′(t) is continuous and derive (4.1) with G
in place of H. Since the probability density for S in (0, 2R) is given by G′(t),
we get from (4.2)

f(r) =

∫ 2R

0

f(r − s)G′(s) ds . (4.3)

Suppose that β > 0 satisfies

1 =

∫ 2R

0

eβsG′(s) ds . (4.4)

Since
∫ 2R

0
G′(s) ds = P

[

S > 0
]

< 1, continuity implies that there is some such

β. Suppose that there is some r > 0 such that f(r) ≤ e−βr f(2R), then let r0 be
the infimum of all such r. Clearly, r0 ≥ 2R. By the definition of r0 and (4.3),
we get

f(r0) >

∫ 2R

0

e−β(r0−s) f(2R)G′(s) ds
(4.4)
= e−βr0 f(2R) .

Since f(r) is continuous on (0,∞), this contradicts the definition of r0. A similar
contradiction is obtained if one assumes that there is some r > 0 satisfying
f(r) ≥ e−β(r−2R). Hence e−βr f(2R) ≤ f(r) ≤ e−β(r−2R), which gives α = β.

It remains to prove that G(t) = HR,λ(t) + 1. Let Qt := B
(

γ(0), R
)

\

B
(

γ(t), R
)

. Observe that

G(t) = P
[

X ∩Qt 6= ∅
]

= 1 − P
[

X ∩Qt = ∅
]

= 1 − e−λ area(Qt). (4.5)

Hence, we want to calculate area(Qt). For z ∈ H
2 let u(z) denote the t ∈ R that

minimizes d
(

z, γ(t)
)

, and let φ(t, y) denote the point in H
2 satisfying u(z) = t

which is at distance y to the left of γ if y ≥ 0, or −y to the right of γ otherwise.
Observe that

{

z ∈ B
(

γ(0), R
)

: u(z) < −t/2
}

is isometric to (see Figure 4.1)

{

z ∈ B
(

γ(t), R
)

: u(z) < t/2
}

=
{

z ∈ B
(

γ(0), R
)

: u(z) < t/2
}

\Qt .

Therefore,

area(Qt) = area
{

z ∈ B
(

γ(0), R
)

: u(z) ∈ [−t/2, t/2]
}

. (4.6)

By the hyperbolic Pythagorian theorem, we have

cosh d
(

γ(0), φ(s, y)
)

= cosh s cosh y .
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γ(t)γ(0) γ

Figure 4.1: Calculating the area of Qt. The set Qt is the left ball minus the
right ball. The area is calculated by first exchanging the left cap by its “shift”.

Hence, the set on the right hand side of (4.6) is

{

φ(s, y) : s ∈ [−t/2, t/2], cosh y ≤ coshR/ cosh s
}

. (4.7)

At the end of the proof of Lemma 4.2, we saw that the area of a set of the form
{

φ(s, y) : s ∈ [0, r], |y| ≤ R
}

is 2 r sinhR. Hence, the area of (4.7) (and also the
area of Qt) is given by

∫ t/2

−t/2

2 sinh
(

cosh−1(coshR/ cosh s)
)

ds .

The result follows by (4.4) and (4.5), since α = β.

5 No planes in higher dimensions

It is natural to ask for high dimensional variants. Fix some d ∈ N, d > 2.
Let λ,R > 0. Let B :=

⋃

x∈X B(x,R), where X is a Poisson point process of

intensity λ in H
d. Let W be the closure of H

d\B. A 2-dimensional plane L ⊂ H
d

is a set which is isometric to H
2. The Grassmannian of planes in H

d is the space
of all planes in H

d. To the Grassmannian it is possible to assign an invariant
measure (a volume measure), which will be denoted by Φ. We assume that Φ is
normalized so that the set of planes that intersect B(o, 2) has Φ-measure 1. If L
is a plane that contains o, then the probability that L ∩B(o, r) is contained in
B (or W) decays much faster than the probability that a line segment of length
r is contained in B (or W). Therefore, it is reasonable to guess that every plane
intersects both B and W.

Proposition 5.1. For every d ∈ N ∩ [3,∞), λ,R > 0, a.s. there are no 2-
dimensional planes in H

d that are contained in B. Similarly, there are no 2-
dimensional planes in H

d that are contained in W.

Proof. Let Z be B. Fix some o ∈ H
d, and let r > 0 be large. Let Yr be the

set of planes L intersecting the ball B(o, 2) such that L ∩ B(o, r) is contained
in the 1-neighborhood of Z. Let Zr be the set of planes L intersecting B(o, 1)
such that L∩B(o, r) ⊂ Z. If L ∈ Zr, then Yr contains the set of planes L′ such
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that the Hausdorff distance between L ∩B(o, r) and L′ ∩B(o, r) is less than 1.
Consequently,

E[Φ(Yr)|Zr 6= ∅] ≥ exp
(

−O(r)
)

. (5.1)

Now fix a plane L that intersects B(o, 2). If the points x, y fulfill d(x, y) ≥
2R+ 4, the event that x belongs to the 1-neighborhood of Z is independent of
the corresponding event for y. Since there are order er points in L ∩ B(o, r)
such that the distance between any two is larger than 2R+ 4, we get that

P
[

L ∈ Yr

]

≤ exp(−c er)

for some constant c = c(d,R, λ) > 0. This means that

E[Φ(Yr)] ≤ exp(−c er). (5.2)

From (5.1) and (5.2) we see that P[Zr 6= ∅] → 0 as r → ∞. Since H
d can be

covered by a countable collection of balls of radius 1, it follows that a.s. there
are no planes contained in Z. The case Z = W is proved in the same way.

6 Connectivity of lines

In this section, we consider a somewhat different model using a Poisson process
on the Grassmannian G of lines in H

2. For this purpose, we first recall the form
of an isometry-invariant measure on G. Consider the upper half-plane model
for H

2. Let R̂ = R ∪ {∞} = ∂H
2 denote the boundary at infinity of H

2. To
each unoriented line L ⊂ H

2 we may associate the pair of points of L on the
boundary at infinity R̂. This defines a bijection between G and

M :=
{

{x, y} : x, y ∈ R̂, x 6= y
}

.

(Though we will not use this fact, M is an open Möbius band, or a punctured
projective plane.) In the following, we often identify M and G via this bijection,
and will not always be careful to distinguish between them.

The set M inherits a locally Euclidean metric coming from the 2 to 1 projec-
tion from R̂× R̂\diagonal. Let Φ be the measure on M whose density at a point
{x, y} ∈ M such that x, y 6= ∞ with respect to the Euclidean area measure is

dΦ =
dx dy

(x− y)2
,

and Φ
({

{x,∞} : x ∈ R
})

= 0. An isometry ψ : H
2 → H

2 induces a map G 7→ G.
In the upper half plane coordinate system, each such ψ is a transformation of
the form z 7→ (a z + b)/(c z + d), with a, b, c, d ∈ R and a d− b c 6= 0. Moreover,

ψ extends to a self-homeomorphism of R̂, and therefore there is an induced
map from M to M. It is easy to verify using the integration change of variables
formula that ψ preserves the measure Φ. Hence, Φ is an isometry-invariant
measure on G.
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Figure 6.1: A realization of a Poisson process on the Grassmannian of lines in
H

2 in the Poincaré disk model.

Let Y be a Poisson point process of intensity λ on G with respect to Φ. With
a slight abuse of notation, we will also write Y for the union of all lines in Y ,
when viewed as a subset of H

2. Let Z be the complement of Y . Observe that
a.s. Y is connected if and only if Z contains no lines.

Proposition 6.1. If λ ≥ 1 then Z contains no lines a.s. If λ < 1 then Z
contains lines a.s.

One motivation for this model comes from long range percolation on Z. Fix
some c < 1. For each pair x, y ∈ Z, let there be an edge between x and y with
probability c (independently for different pairs) if there is a line in Y with one
endpoint in [x, x+1] and the other in [y, y+1]. Then a calculation shows that if
λ = 1 (which is the critical value), the probability that there is an edge between
x and y is asymptotic to c/|x−y|2 as |x−y| → ∞, that is, we have recovered the
standard long range percolation model on Z with critical exponent 2 (see [1]).
The critical case of long range percolation is not well understood and it might
be of interest to further study the connection between it and the line process.

Observe that Z is not a well-behaved percolation (in the sense of our def-
inition 3.1), since there is no independence at any distance, and moreover, Z
is open. Therefore, several statements in Section 3 cannot be used directly to
prove Proposition 6.1. Nevertheless, it is possible to adapt the proofs without
much difficulty.

Proof. First, we calculate f(r). Let γ(t) = (0, et) ∈ H
2, where we think of H

2

in the upper half plane model. Let Ar be the set of lines that intersect γ[0, r].
Then it is easy to see that under the identification G = M,

Ar =
{

{x, y} : 1 ≤ −xy ≤ e2r
}

.
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An easy calculation shows that Φ(Ar) = r. Therefore, f(r) = e−λΦ(Ar) = e−λr.
It will now be convenient to use the Poincaré disk model. An unoriented

line in H
2 in the Poincaré disk model corresponds to an unordered pair of

distinct points on the unit circle, x, y ∈ ∂H
2. Thus, the measure we have on

the Grassmannian induces a measure on (∂H
2)2. By using an isometry between

the hyperbolic plane in the upper half plane model and the hyperbolic plane in
the Poincaré disk model it is easy to verify that the density of this measure is
again given locally by |x− y|−2 times the product of the length measure on the
circle with itself.

Suppose that 0 < λ < 1. For θ ∈ [0, 2π) and r > 0 let Lr(θ) denote the
geodesic ray of hyperbolic length r started from 0 whose continuation meets
∂H

2 at eiθ. Let Kr be the set of θ ∈ [0, 2π) such that Lr(θ) ⊂ Z. Then
P
[

θ ∈ Kr

]

= e−λr. To apply the second moment method, we need to estimate

P
[

θ, θ′ ∈ Kr

]

from above for θ, θ′ ∈ [0, 2π). Suppose first that θ′ = 0 and
θ ∈ [0, π]. Let L(θ) be the hyperbolic line L∞(θ) ∪ L∞(θ + π), which contains
Lr(θ). The set of pairs {x, y} ∈ (∂H

2)2 such that the line connecting them
intersects both L(θ) and L(θ′) is precisely that set of pairs that are separated
by these two lines. The measure of this set is

∫ θ

0

∫ π+θ

π

+

∫ π

θ

∫ 2π

π+θ

∣

∣eiα − eiβ
∣

∣

−2
dα dβ = −2 log

sin θ

2
.

The measure of the set of lines that intersect both Lr(θ) and Lr(0) is bounded
by the measure of the set of lines that intersect both L∞(0) and L∞(θ), which is
bounded by half the measure calculated above. The measure of the set of lines
that intersect Lr(θ) ∪ Lr(0) is the sum of the measures of the lines intersecting
each of these segments minus the measure of the set of lines intersecting both.
Thus, it is at least

2 r + log
sin θ

2
.

This gives

P
[

θ, θ′ ∈ Kr

]

≤
( 2

sin |θ − θ′|

)λ

e−2λr ,

and by symmetry this will also hold if we drop the assumptions that θ′ = 0 and
θ ∈ [0, π]. Since sin−λ θ is integrable when λ < 1, this facilitates the second
moment argument, which shows that infr>0 P

[

Kr 6= ∅
]

> 0. LetK :=
⋂

r>0Kr.

Then P
[

K 6= ∅
]

= infr>0 P
[

Kr 6= ∅
]

> 0, because Kr ⊃ Kr′ when r′ > r. Now

note that a.s. ∂Kr ∩ Kr′ = ∅ when r′ > r. (The set ∂Kr consists of points
in the intersection of Y with the circle of hyperbolic radius r about 0.) Hence
K ⊂ Kr holds a.s. for each r > 0. Thus, with positive probability there will be
some ray L∞(θ) that is contained in Z. Clearly, this implies that with positive
probability there are at least three rays corresponding to angles θ ∈ (0, π). Since
the interior of the convex hull of the union of such rays is in Z, it follows that
Z contains lines with positive probability. Since the Poisson line process Y is
ergodic (which is easy to verify), any event which is determined by Y and is
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invariant under Isom(H2) has probability 0 or 1. Consequently there are lines
in Z a.s. when λ < 1.

We now consider the case λ ≥ 1 and show that in this case there are a.s.
no lines contained in Z. In that case, we can follow the proof of Lemma 3.5
with only minor modifications. For x, y ∈ H

2 and s > 0 let Ā(x, y, s) be the
event that there is some line in Z which intersects both B(x, s) and B(y, s).
For x, y ∈ H

2 with d(x, y) ≥ 4 it is not hard to show that the set of lines that
separate the hyperbolic 1-ball around x from the hyperbolic 1-ball around y
has Φ-measure d(x, y) − O(1). Each such line will obviously intersect any line
meeting both these balls. Thus, the probability that there is a line in Z meeting
both these balls is e−d(x,y)+O(1). This means that for d(x, y) ≥ 4 we have

P[Ā(z, z′, 1)] = e−d(x,y)+O(1). (6.1)

Equation (6.1) is the analog of (3.14).
The next detail requiring modification is that in the proof of (3.16) inde-

pendence at a distance was mentioned. Let r be large and let x ∈ ∂B(o, r).
Let L(o, x) be the set of lines that pass through both B(o, 1) and B(x, 1). Let
r′ > r + 4. It is easy to see that set of lines that are disjoint from B(o, r) and
intersect every line in L(o, x) somewhere in B(o, r′) \B(o, r+ 1) has Φ-measure
bounded away from 0. The lines in Y that intersect B(o, r+1) are independent
of the set of lines in Y that do not intersect B(o, r + 1). Consequently, if Z
contains geodesic line segments that intersect both B(o, 1) and B(x, 1), there
is probability bounded away from 0 that none of these line segments can be
extended to a line segment which also reaches ∂B(o, r′) without hitting some
line in Y . From this, we can deduce that the analog of (3.16) holds in our
setting. With the analogs of (3.14) and (3.16) established, the argument is then
completed as in Lemma 3.5.

7 Further Problems

We first consider a generalization of Theorem 1.1.

Conjecture 7.1. Let B ⊂ H
2 be some fixed open ball of radius 1. There is

a constant δ > 0 such that if Z ⊂ H
2 is any open random set with isometry-

invariant law and E
[

length(B \ Z)
]

< δ, then with positive probability Z con-
tains a hyperbolic line.

It is easy to verify that the conjecture implies the theorem. Indeed, if
P
[

B ⊂ Z
]

is close to 1, then one can show that there is a union of unit cir-
cles whose law is isometry invariant, where the interiors cover the complement
of Z, and where the expected length of the intersection of the circles with B is
small.

Next, we consider quantitative aspects of Theorem 1.1.

Conjecture 7.2. Fix some o ∈ H
2. For every r > 0 let pr be the least p ∈ [0, 1]

such that for every random closed Z ⊂ H
2 with an isometry-invariant law and
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P
[

B(o, r) ⊂ Z
]

> p there is positive probability that Z contains a hyperbolic
line. Theorem 1.1 implies that pr < 1 for every r > 0. We conjecture that
lim supr↘0(1 − pr)/r <∞.

It is easy to see that lim infr↘0(1 − pr)/r > 0; for example, take a Pois-
son point process X ⊂ H

2 with intensity λ sufficiently large and let Z be the
complement of the ε-neighborhood of

⋃

x∈X ∂B(x, 1), where 0 < ε < r.

Problem 7.3. Does the limit limr↘0(1 − pr)/r exist? If it does, what is its
value?

The behavior of pr as r → ∞ seems to be an easier problem, though poten-
tially of some interest as well.

We now move on to problems related to Theorem 1.2 and its proof.

Question 7.4. For either W or B, is there some pair (λ,R) for which there is
with positive probability a percolating ray such that every other percolating ray
with the same endpoint at infinity is contained in it? (Note, such a ray must
be exceptional among the percolating rays.)

Question 7.5. Is it true that when B (or W) has a unique infinite connected
component, the union of the lines in B (or W) is connected as well? We believe
that there is some pair (λ,R) such that B contains a unique infinite component
but no lines (we know this for W, see Remark 4.3).

Question 7.6. For which homogenous spaces W or B a.s. contain infinite
geodesics for some parameters (λ,R)?

Note that since H
2×R contains H

2, it follows that for every R there is some
λ such that W on H

2 ×R contains lines within an H
2 slice, and the same holds

for B.

Question 7.7. Let V be the orbit of a point x ∈ H
2 under a group of isometries

Γ. Suppose that V is discrete and H
2/Γ is compact. (E.g., V is a co-compact

lattice in H
2.) Let WV (R) := H

2 \
⋃

v∈V B(v,R), and let RV
c denote the supre-

mum of the set of R such that WV (R) contains uncountably many lines. Does
WV (RV

c ) contain uncountably many lines?

It might be interesting to determine the value of RV
c for some lattices V .

Problem 7.8. It is not difficult to adapt our proof to show that in H
d, d ≥ 2,

for every R > 0 when λ is critical for the existence of lines in W, there are a.s.
no lines inside W. This should also be true for B, but we presently do not know
a proof. It seems that what is missing is an analog of Lemma 3.3.

Acknowledgements We are grateful to Wendelin Werner for insights related
to Section 6.
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