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Abstract

In this short note, a direct proof of L2 convergence of an Euler–Maruyama approximation of
a Zakai equation driven by a square integrable martingale is shown. The order of convergence
is as known for real-valued stochastic differential equations and for less general driving noises
O(

√
∆t) for a time discretization step size ∆t.
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1. Introduction

A large amount of literature on the numerical study of real-valued stochastic differential
equations (SDEs) exists (cf. [1], [2]), while Hilbert space valued stochastic differential equations
(or SPDEs) have just been treated in recent years. SDEs appear in various models in financial
mathematics. However, in the last years an increasing number of problems have surfaced for
which infinite dimensional noise seems to be more appropriate, and which are then modeled by
SPDEs such as interest rate modeling ([3], [4]) and energy markets ([5]). To calculate prices
one needs a numerical approximation of infinite dimensional Hilbert space valued stochastic
differential equations.

For a numerical treatment of SPDEs, which will be seen in the more general framework of
Hilbert space valued SDEs, approximation has to be done in space and time. There are various
approaches possible. In this paper we study a semidiscrete Euler–Maruyama scheme which
approximates the solution of a stochastic partial differential equation of the form

dut = (A + B)ut dt +G(ut)dMt, u0 = v, (1.1)
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in time. The generalization of this approach to fully discrete schemes is currently under investi-
gation. Here M is a — not necessarily continuous — square integrable martingale with values in
a separable Hilbert space U. Probably the most popular examples of such stochastic processes
are Wiener and Lévy processes. The operators A and B act on a separable Hilbert space H, where
A is generator of a C0 semigroup of contractions which is a necessary condition below, and the
operator G is a mapping from H into the linear operators from U to H.

In the literature Euler–Maruyama schemes are approximations of the stochastic integral of
an SDE which are derived from the Itô–Taylor expansion [1]. For the simplest example of a
real-valued SDE

dXt = Xt dBt, X0 = x

with Brownian motion B, it is given by

X j+1
= (1 + ∆B j)X j

and converges of order O(
√

∆t) where ∆t denotes the time discretization step size. The elements
∆B j are the normal distributed increments of the Brownian motion. For an SPDE as introduced
here but driven by a Q–Wiener process a similar time discretization was derived in [6] and [7].
The scheme introduced in these papers converges in L2 and almost surely of order O(

√
∆t) and

has the iterative form

X j+1
= S ∆tX j

+ S ∆tBX j ∆t + S ∆tG(X j) (W(t j+1) −W(t j)),

where S denotes the semigroup generated by A. There, higher order schemes are also developed.
In this paper we will use a similar scheme but the driving noise is a square integrable martin-
gale. Furthermore, in [7] and [8] the authors proved almost sure convergence by Chebyshev’s
inequality and the Borel–Cantelli lemma, giving estimates in Lp for p > 2. These estimates
implied L2 convergence immediately but the methods did not work for L2 estimates. Here, we
present an approach to prove L2 convergence directly for a much simpler scheme. It is subject
of future work to generalize this idea to fully discrete approximations and higher order schemes.
The reason why we look at L2 convergence instead of Lp for p > 2 is that for non-continuous
martingales Burkholder–Davis–Gundy type inequalities that preserve the known orders of con-
vergence for continuous martingales do not exist and therefore worse orders of L2 convergence
will be achieved. This can be seen by looking at the moments of a Poisson process for p ≥ 2. For
small times t they all behave like t independently of the moment. So far, to the knowledge of the
author, there do not exist results for almost sure convergence for Zakai’s equation with that type
of noise.

The type of equation studied in this paper appears naturally in the study of filtering problems
with Zakai’s equation (cf. [9]). Fully discrete approximations of its solution were already studied
in [6], while a semidiscrete time approximation with higher order of convergence was presented
in [7] and a Galerkin–Milstein approximation was done in [8]. Zakai’s classical nonlinear fil-
tering problem transformed to an SPDE and extended to square integrable martingales is given
by

dut(x) = L∗ut(x)dt +G(ut(x))dMt(x) (1.2)

on a bounded domain D ⊂ Rd with zero Dirichlet boundary conditions on ∂D and initial condition
u0(x) = v(x). The operator L∗ is a second order elliptic differential operator of the form

L∗u =
1
2

d

∑
i, j=1

∂i∂ jai ju −
d

∑
i=1
∂i fiu
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for u ∈ C2
c(D) and it can be split into the operators A and B in Equation (1.1). This will be

done explicitly in Section 2. Originally the operator G denotes a pointwise multiplication with a
suitable function g ∈ H. This is included in the more general assumptions on G in Equation (1.1)
which will be introduced in detail in the next section.

The work is organized as follows: Section 2 sets up the framework including the properties
and the regularity of the SPDEs to be approximated. In Section 3 the time discretization scheme
is introduced and the main result that the approximation converges of order O(

√
∆t) in L2 is

shown. Finally, the last section presents future work that should be done using the presented
estimation methods.

Acknowledgement. The author wishes to express many thanks to Jürgen Potthoff for fruitful
discussions and helpful comments and to anonymous referees for helpful comments.

2. Framework

Let H denote the Hilbert space L2(D), where D ⊂ Rd is a bounded domain with piecewise
smooth boundary ∂D. We are interested in developing a numerical algorithm to approximate the
solution of equation

dut = (A + B)ut dt +G(ut)dMt (2.1)

on the finite time interval [0,T ] with initial condition u0 = v and zero Dirichlet boundary condi-
tions on ∂D. M is a square integrable martingale — not necessarily continuous — on a filtered
probability space (Ω,F , (Ft),P) with values in a separable Hilbert space (U, (⋅, ⋅)U). The space
of all square integrable martingales on U with respect to (Ft) is denoted byM2(U). We restrict
ourselves to the following class of square integrable martingales

C ∶= {M ∈M
2
(U) ∶ ∃Q ∈ L+1 such that ∀t ≥ s ≥ 0, ⟪M,M⟫t − ⟪M,M⟫s ≤ (t − s)Q},

where L+1 denotes the space of all nuclear, symmetric, positive-definite operators. The operator
angle bracket process ⟪M,M⟫t is defined as

⟪M,M⟫t = ∫

t

0
Qs d⟨M,M⟩s,

where ⟨M,M⟩t denotes the unique angle bracket process from the Doob–Meyer decomposition.
The process (Qs, s ≥ 0) is called the martingale covariance.

Since Q ∈ L+1 (U), there exists an orthonormal basis (en,n ∈ N) of U consisting of eigen-
vectors of Q. Therefore we have the representation Qen = γnen, where γn ≥ 0 is the eigenvalue
corresponding to en. The square root of Q is defined as

Q1/2x ∶=∑
n
(x, en)U γ

1/2
n en, x ∈ U

and Q−1/2 is the pseudo inverse of Q1/2. Let us denote by (H, (⋅, ⋅)H) the Hilbert space defined
byH = Q1/2(U) endowed with the inner product (x, y)H = (Q−1/2x,Q−1/2y)U for x, y ∈H.

In what follows we introduce a generalization of the Itô “isometry” for square integrable
martingales of class C, where LHS (H,H) refers to the space of all Hilbert–Schmidt operators
from H to H and ∥ ⋅ ∥LHS (H,H) denotes the corresponding norm. Let the space of integrands be
given by L2

H,T(H) ∶= L2(Ω × [0,T ],P[0,T], P ⊗ dλ; LHS (H,H)), where P[0,T] denotes the σ–
field of predictable sets in Ω × [0,T ] and dλ is the Lebesgue measure, then by Equation (1.6)
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in [10], we have, as a generalization of Proposition 8.16 in [11], for every X ∈ L2
H,T(H) an Itô

type inequality

E( sup
0≤t≤T

∥∫

t

0
Xs dMs∥

2
H) ≤ C E(∫

T

0
∥Xs∥

2
LHS(H,H) ds). (2.2)

For a full introduction to Hilbert space valued stochastic differential equations we refer the reader
to [11, 12, 13].

The operators A and B in Equation (2.1) are derived from L∗ in Equation (1.2). We assume
that the functions ai j, for i, j = 1, . . . ,d, are twice continuously differentiable on D with con-
tinuous extension to the closure D̄. The operator A is the unique self-adjoint extension of the
differential operator

d

∑
i, j=1

∂i(ai j ∂ ju), u ∈ C2
c(D),

where ∂i denotes the derivative in the ith coordinate direction of Rd and C2
c(D) is the space of

all twice continuously differentiable functions on D with compact support, to the second order
Sobolev space H2

0 with elements satisfying zero Dirichlet boundary conditions. B is a first order
differential operator given by

Bu ∶=
d

∑
i=1
∂i(biu), u ∈ C1

c(D),

for f continuously differentiable on D with continuous extension to D̄, with elements bi that are
defined as

bi ∶=
1
2

d

∑
j=1
∂ j ai j − fi.

With the following assumptions the right hand side of Equation (2.1) is well defined.

Assumptions 2.1. The coefficients of A and B and the initial condition u0 satisfy the following
conditions:

(a) ai j and fi, i, j = 1, . . . ,d belong to the space of all twice continuously differentiable func-
tions with bounded derivatives on D denoted by C2

b(D) with continuous extension to D̄,
(b) ∑d

i, j=1 ai j(x)ξiξ j ≥ δ∥ξ∥
2
Rd for all x ∈ D and ξ ∈ Rd,

(c) u0 is F0-measurable and E(∥u0∥
2
H1) < +∞.

Assumption 2.1(b) implies that the operator A is dissipative, see e.g. [14]. Then by the
Lumer–Phillips theorem, e.g. [15], A generates a strongly continuous contraction semigroup on
H which we denote by S = (S t, t ≥ 0). By Corollary 2 in [16], S is analytic in the right half-plane.
Therefore fractional powers of A are well defined, cf. [15], and we denote for simplicity reasons
A−α = (−A)−α and Aα = A−1

−α for α > 0. With this notion we make the following assumptions:

Assumptions 2.1 (cont’d). The operator G satisfies for a constant C ∈ R+ the following condi-
tions:

(d) ∥G(φ)∥LHS(H,H) ≤ C(1 + ∥φ∥H) for φ ∈ H,
(e) ∥G(φ) −G(ψ)∥LHS(H,H) ≤ C∥φ − ψ∥H for φ,ψ ∈ H,
(f) ∥A1/2G(φ)∥LHS(H,H) ≤ C (1 + ∥φ∥H1) for φ ∈ H1.
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We shall make use of the following lemma — whose statement is also known as Kato’s
conjecture — and which was proved in [17].

Lemma 2.2. The domain of A1/2 satisfies that D(A1/2) = H1
0 , where Hm

0 denotes the Sobolev
space of order m with zero Dirichlet boundary conditions, and the norm ∥A1/2 ⋅ ∥H is equivalent
to ∥ ⋅ ∥H1 , i.e. there exists C > 0 such that

∥A1/2 φ∥H ≤ C ∥φ∥H1 and ∥φ∥H1 ≤ C ∥A1/2 φ∥H

for all φ ∈ H1.

Definition 2.3. Let u0 be a F0-measurable square integrable random variable with values in H.
A predictable process u ∶ R+ ×Ω→ H is called a mild solution to (2.1), if

sup
t∈[0,T]

E(∥ut∥
2
H) < +∞

for all T ∈ (0,+∞), and if for all t > 0

ut = S tu0 + ∫

t

0
S t−sBus ds + ∫

t

0
S t−sG(us)dMs. (2.3)

It follows from Assumptions 2.1 that these integrals are well defined and Equation (2.1) has
a unique mild solution by results in Chapter 9 of [11]. Furthermore we have similarly to [18],
[19], [20], [10] that Equation (2.2) implies for all X ∈ L2

H,T(H)

E( sup
0≤t≤T

∥∫

t

0
S t−sXs dMs∥

2
H) ≤ C E(∫

T

0
∥Xs∥

2
LHS(H,H) ds). (2.4)

To simplify the notation we introduce the following norm for a mapping Φ from [0,T ] × Ω

into H with finite p-th moment for fixed p ≥ 1

∥Φ∥p,H,T ∶= (E( sup
0≤t≤T

∥Φ(t)∥p
H))

1/p
.

The next Lemma provides some insight on the regularity of the mild solution.

Lemma 2.4. Under Assumptions 2.1 the mild solution satisfies ∥u∥2,H1,T < +∞.

Proof. From here on C denotes a constant that may vary from line to line.

∥u∥2
u,H1,T = ∥S tu0 + ∫

t

0
S t−sBus ds + ∫

t

0
S t−sG(us)dMs∥

2
2,H1,T

≤ C(E(∥u0∥
2
H1) + ∥∫

t

0
S t−sBus ds∥2

2,H1,T + ∥A1/2 ∫

t

0
S t−sG(us)dMs∥

2
2,H,T)

≤ C (E(∥u0∥
2
H1) +E( sup

0≤t≤T
(∫

t

0
∥S t−sBus∥H1 ds)2

)

+E(∫

T

0
∥A1/2G(us)∥

2
LHS (H,H) ds))

≤ C (E(∥u0∥
2
H1) +E( sup

0≤t≤T
(∫

t

0
(t − s)−1/2

∥us∥H1 ds)2
) +E(∫

t

0
(1 + ∥us∥H1)

2 ds))

≤ C (E(∥u0∥
2
H1) + T + ∫

T

0
(1 + (T − s)−1/2

)∥u∥2
2,H1,s ds)

≤ C (1 +E(∥u0∥
2
H1)) < +∞,
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where we used the property of the contraction semigroup and Equation (2.4) in the second step,
Lemma 2.2, Corollary 1.4 in [21] and the definition of the Bochner integral in the third one, and
Hölder’s and Gronwall’s inequality in the fourth. The last steps are shown in more detail in the
proof of the main result.

The regularity of the solution is given in the following lemma, where we set, for an H-valued
stochastic process on [0,T ] with finite p-th moment

∥Φ∥p,H,r,R = (E( sup
r≤t≤R

∥Φ(t)∥p
H))

1/p
.

Lemma 2.5. If u is the mild solution of Equation (2.3), then for 0 ≤ r ≤ R ≤ T

∥u − ur∥
2
2,H,r,R ≤ C(1 + ∥u∥2

2,H1,T) (R − r).

Proof. Let

φ(t) = ∫
t

0
S t−sBus ds

and
ψ(t) = ∫

t

0
S t−sG(us)dMs,

then we estimate employing Assumptions 2.1, Theorem 2.6.13 in [21], Equation (2.4), and
Lemma 2.2

∥u − ur∥
2
2,H,r,R ≤ 4(∥(S − S (r))u0∥

2
2,H,r,R + ∥(S (⋅ − r) − 1l)(φ(r) + ψ(r))∥2

2,H,r,R

+ ∥φ − φ(r)∥2
2,H,r,R + ∥ψ − ψ(r)∥2

2,H,r,R)

≤ C (E(∥A1/2u0∥
2
H) + 1 + ∥u∥2

2,H,T + ∥u∥2
2,H1,T)(R − r)

≤ C(1 + ∥u∥2
2,H1,T) (R − r).

3. Discretization and main result

In this section we give a time discretization of Euler–Maruyama type that approximates Equa-
tion (2.1). This semidiscrete scheme gives the main idea how to approach L2 convergence if Lp

convergence for p > 2 is not available or not optimal due to the properties of the not neces-
sarily continuous square integrable martingale as driving noise. Generalizations to higher order
schemes as in [7] and fully discrete schemes as in [8] will be possible with this approach and are
subject to future work.

We shall always consider a finite time horizon: t ∈ [0,T ] with T < +∞. Let T = (Tm, m ∈ N)

be a sequence of partitions Tm, m ∈ N, of the interval [0,T ] whose mesh ∆m tends to zero as m
tends to +∞. We write Tm as {tm

0 , t
m
1 , . . . , t

m
nm
} with nm ∈ N, 0 = tm

0 < tm
1 < ⋯ < tm

nm
= T , and

∆m = max
i

(tm
i+1 − tm

i ),

the maximum being taken over i ∈ {0, . . . ,nm − 1}. For m ∈ N, we define the map πm ∶ [0,T ] →

{tm
i , i = 0, . . . ,nm} by πm(s) = tm

i if tm
i ≤ s < tm

i+1.



/ Procedia Computer Science 00 (2010) 1–10 7

Then we define a time discretization of Equation (2.1) by

um
t = S tu0 + ∫

t

0
S t−πm(s)Bum

πm(s) ds + ∫
t

0
S t−πm(s)G(um

πm(s))dMs. (3.1)

The corresponding recursive scheme is given by

ui+1
= S ∆i ui

+ ∆iS ∆i Bui
+ S ∆i G(ui

)(Mtm
i+1
− Mtm

i
)

with ui = um
tm
i

and ∆i = tm
i+1 − tm

i .
This Euler–Maruyama type scheme converges in L2 of order O(

√
∆m) as for similar schemes

for SDEs (cf. [1]) and for less general driving noises (cf. [6], [7], [8]):

Theorem 3.1. Under Assumptions 2.1, there exists a constant C ∈ R+ depending on the proper-
ties of the solution of the SPDE (2.1) and T , such that for all m ∈ N

∥u − um
∥

2
2,H,T ≤ C ∆m.

Proof. To prove this theorem we split the mild form of the SPDE (2.3) and the discretization
scheme given by (3.1) as follows:

ut − um
t = ξm

(t) + ηm
(t)

with

ξm
(t) = ∫

t

0
S t−sBus ds − ∫

t

0
S t−πm(s)Bum

πm(s) ds = ξm
1 (t) + ξm

2 (t) + ξm
3 (t),

ηm
(t) = ∫

t

0
S t−sG(us)dMs − ∫

t

0
S t−πm(s)G(um

πm(s))dMs = η
m
1 (t) + ηm

2 (t) + ηm
3 (t),

where

ξm
1 (t) = ∫

t

0
(S t−s − S t−πm(s))Bus ds,

ξm
2 (t) = ∫

t

0
S t−πm(s)B(us − uπm(s))ds,

ξm
3 (t) = ∫

t

0
S t−πm(s)B(uπm(s) − um

πm(s))ds

and

ηm
1 (t) = ∫

t

0
(S t−s − S t−πm(s))G(us)dMs,

ηm
2 (t) = ∫

t

0
S t−πm(s)(G(us) −G(uπm(s)))dMs,

ηm
3 (t) = ∫

t

0
S t−πm(s)(G(uπm(s)) −G(um

πm(s)))dMs.

Next we give estimates on the six different expressions separately. We start with ξm
1 and apply

first the properties of the Bochner integral:

∥ξm
1 ∥

2
2,H,T ≤ E( sup

0≤t≤T
(∫

t

0
∥(1l − S s−πm(s))S t−sBus∥H ds)2

).
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The properties of the semigroup in Theorem 2.6.13 in [21] lead to

∥ξm
1 ∥

2
2,H,T ≤ C E( sup

0≤t≤T
(∫

t

0
(s − πm(s))1/2

∥A1/2S t−sBus∥H ds)2
)

≤ C∆m E( sup
0≤t≤T

(∫

t

0
(t − s)−1/2

∥Bus∥H ds)2
),

where C denotes a constant varying from line to line and independent of m. Finally, we take the
supremum of ∥Bus∥H and get

∥ξm
1 ∥

2
2,H,T ≤ C∆m (∫

T

0
(T − s)−1/2 ds)2

∥Bu∥2
2,H,T) ≤ C 4T ∥u∥2

2,H1,T ∆m.

For the second term we use again Theorem 2.6.13 in [21] and split the singularity in zero.
Hölder’s inequality is applied and leads to

∥ξm
2 ∥

2
2,H,T ≤ C E( sup

0≤t≤T
(∫

t

0
(t − πm(s))2⋅(−1/4)

∥us − uπm(s)∥H ds)2
)

≤ C ∫
T

0
(T − πm(s))−1/2 ds E( sup

0≤t≤T
∫

t

0
(t − πm(s))−1/2

∥us − uπm(s)∥
2
H ds)

≤ C 2
√

T
nm

∑
i=1

∥u − utm
i−1

∥
2
2,H,tm

i−1,t
m
i ∫

tm
i

tm
i−1

(T − πm(s))−1/2 ds.

The properties of the solution from Lemma 2.4 imply

∥ξm
2 ∥

2
2,H,T ≤ C 2

√
T∆m ∥u∥2

2,H1,T ∫

T

0
(T − πm(s))−1/2 ds ≤ C ∥u∥2

2,H1,T ∆m.

The expression ξm
3 is first estimated in the same way as ξm

2 , which leads to

∥ξm
3 ∥

2
2,H,T ≤ C 2

√
T ds E( sup

0≤t≤T
∫

t

0
(t − πm(s))−1/2

∥uπm(s) − um
πm(s)∥

2
H ds)

≤ C 2
√

T E(∫

T

0
(T − πm(s))−1/2 sup

0≤t≤s
∥ut − um

t ∥
2
H ds)

= C 2
√

T ∫
T

0
(T − πm(s))−1/2

∥u − um
∥

2
2,H,s ds.

Next, we give the estimates on the expressions with respect to the stochastic integrals. The
estimates on the semigroup are the same as in the previous calculations. For the first term we
have

∥ηm
1 ∥

2
2,H,T = E( sup

0≤t≤T
∥∫

t

0
S t−s(1l − S s−πm(s))G(us)dMs∥

2
H)

≤ C E(∫

T

0
∥(1l − S s−πm(s))G(us)∥

2
LHS(H,H) ds),

where we applied Equation (2.4). Next, Theorem 2.6.13 in [21] leads similarly to the estimates
for ξm

1 to

∥ηm
1 ∥

2
2,H,T ≤ C ∆m E(∫

T

0
∥A1/2G(us)∥

2
LHS(H,H) ds).
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Finally, Assumption 2.1(f) and the regularity of the solution imply

∥ηm
1 ∥

2
2,H,T ≤ C ∆m E(∫

T

0
(1 + ∥us∥H1)

2 ds) ≤ C 2T(1 + ∥u∥2
2,H1,T)∆m.

Applying again Equation (2.4) and Assumption 2.1(e), we get for the second stochastic integral
expression

∥ηm
2 ∥

2
2,H,T ≤ C E(∫

T

0
∥G(us) −G(uπm(s))∥

2
LHS(H,H) ds) ≤ C E(∫

T

0
∥us − uπm(s)∥

2
H ds).

The regularity of the solution from Lemma 2.5 leads to

∥ηm
2 ∥

2
2,H,T ≤ C T(1 + ∥u∥2

2,H1,T).

The last expression is estimated similarly to ηm
2 , which gives

∥ηm
3 ∥

2
2,H,T ≤ C E(∫

T

0
∥uπm(s) − um

πm(s)∥
2
H ds).

Fubini’s theorem and the properties of the supremum finally imply

∥ηm
3 ∥

2
2,H,T ≤ C∫

T

0
∥u − um

∥
2
2,H,s ds.

So overall we have

∥u − um
∥

2
2,H,T ≤ 6

3

∑
i=1

(∥ξm
i ∥

2
2,H,T + ∥ηm

i ∥
2
2,H,T)

≤ C1(1 + ∥u∥2
2,H1,T)∆m +C2 ∫

T

0
(1 + (T − s)−1/2

)∥u − um
∥

2
2,H,s ds

and Gronwall’s inequality yields

∥u − um
∥

2
2,H,T ≤ C1(1 + ∥u∥2

2,H1,T)∆m exp(C2 ∫

T

0
(1 + (T − s)−1/2

)ds) ≤ C∆m

due to the properties of the solution from Lemma 2.4. This proves the theorem.

4. Future work

In this short note, the problems that arise when looking at the approximation of SPDEs
driven by non-continuous square integrable martingales are presented. As the absence of similar
Burkholder–Davis–Gundy type inequalities for non-continuous driving noises as for continu-
ous ones causes problems especially in connection with time approximations, we show here a
way how to prove mean square convergence directly for a simple time discretization scheme.
Previously, this was done by proving Lp convergence for p > 2 and applying Hölder’s inequal-
ity. This approach leads without Burkholder–Davis–Gundy type inequalities that have the same
convergence properties as for continuous martingales to worse upper bounds for the order of
convergence than with direct estimates. The approach presented here has to be generalized to
fully discrete schemes and higher order approximations like Milstein schemes in future work,
which shall be straight forward similarly to [7] and [8].
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