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Abstract. In this paper, a stochastic mean square version of Lax’s equivalence theorem
for Hilbert space valued stochastic differential equations with additive and multiplicative
noise is proved. Definitions for consistency, stability, and convergence in mean square of an
approximation of a stochastic differential equation are given and it is shown that these notions
imply similar results as those known for approximations of deterministic partial differential
equations. Examples show that the made assumptions are met by standard approximations.

1. Introduction

A classical result in the theory of numerical methods for partial differential equations
(PDEs) is Lax’s equivalence theorem [21] which states that a consistent approximation of a
linear PDE is convergent if and only if it is stable. Within the last years the extension of PDEs
to stochastic partial differential equations (SPDEs) has become more and more important in
applications especially in engineering such as image analysis, surface analysis, filtering [15,
18, 22, 23, 31]. On the other hand side, in finance, people extend finite dimensional systems
of stochastic differential equations (SDEs) to infinite dimensional ones [5], i.e. to SPDEs.
Explicit solutions to most of the problems do not exist. Therefore it is natural to simulate
these SPDEs. In this paper we look at SPDEs of Itô type as Hilbert space valued SDEs
and approximate their mild solutions. This approach has been done in recent works, see
e.g. [1, 14, 18] and references therein. The main result of this paper is that we extend Lax’s
equivalence theorem for approximations of PDEs, which can be found in slightly different
versions as for finite differences and in a Hilbert space framework in [7, 9, 10, 17, 26], in a mean
square sense to these SDEs and their approximations. In order to make things compatible
with our chosen Hilbert space framework, we apply Theorem XX.3.1 in [9] as classical Lax
equivalence theorem. First approaches for a stochastic version of this theorem can be found
in [27, 28, 29]. Roth shows in [27, 28] for finite difference approximations of SPDEs driven
by a one-dimensional Brownian motion that his definitions of consistency and stability imply
weak convergence of a subsequence of approximation schemes. In [29], systems of real valued
SDEs are approximated and mean square convergence is shown under consistency, stability,
and some further assumptions.

For the used definitions in this paper, it is important to mention that stability in the sense
of Lax and Richtmyer just depends on the approximation of the deterministic part of the
equation. As big difference to PDE theory the approximation scheme of an SPDE needs a
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2 A. LANG

weaker formulation of consistency, i.e. a decay with the square root of the step size suffices
instead of a linear one. Furthermore, it has to be ensured that the properties of stochastic
Itô integrals are preserved in the corresponding approximations.

For equations with additive and multiplicative noise, i.e. equations of the form

dX(t) = AX(t) dt+G(X(t)) dM(t)

with initial condition X(0) = X0, where A is assumed to be generator of a C0–semigroup, G
is of Lipschitz type and M is a càdlàg square integrable martingale, we define approximation
schemes. Definitions of convergence in mean square, consistency in mean square, and stability
are given. Extensions to more general integrators are subject to further work. These defini-
tions introduced in Section 2 are related to each other in Section 3, where the main result of
this paper — Lax’s equivalence theorem holds for SPDEs under the transformed definitions of
convergence and consistency — is stated and proved. Finally, a finite difference scheme for the
heat equation with multiplicative noise is introduced in Section 4. This example emphasizes
the definitions of Section 2 and shows that the made assumptions are met by standard and
even very simple approximations. References to advanced examples are given in that section.

2. Convergence, Consistency, and Stability

Let (H, (·, ·)H) be a separable Hilbert space with corresponding norm ‖·‖H , e.g. H = L2(D),
where D ⊂ Rd is a bounded or unbounded region in Rd. Furthermore let Vh ⊂ H be a finite
dimensional subspace where, in general, h > 0 represents a discretization step in space, such
that Vh converges in the following sense toH as h→ 0: Assume that there exists an orthogonal
projection Ph from H into Vh such that

lim
h→0
‖Phu− u‖H = 0

for all u ∈ H, where we use the norm induced by H for the subspaces Vh. We introduce
M2(U) as the space of all càdlàg square integrable martingales with values in a separable
Hilbert space (U, (·, ·)U ) on a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the “usual
conditions”. Similarly to Section 8.6 in [25], we assume that for given M ∈ M2(U) there
exists Q in the space of all nuclear symmetric positive-definite operators from U into itself
L+

1 (U) such that for all r < t ∫ t

r
Qs d〈M,M〉s ≤ (t− r)Q,

where the L+
1 (U)–valued process (Qt, t ≥ 0) is the martingale covariance of M and 〈M,M〉

denotes the predictable variation process ofM given by the Doob–Meyer decomposition. Since
Q ∈ L+

1 (U), there exists an orthonormal basis (en, n ∈ N) of U consisting of eigenvectors of
Q. This implies the representation Qen = λnen, where λn ≥ 0 is the eigenvalue corresponding
to en. The square root of Q is defined by

Q1/2x =
∑
n

(x, en)U λ1/2
n en

for x ∈ U and Q−1/2 is the pseudo inverse of Q1/2.
Let us denote by (H, (·, ·)H) the Hilbert space defined by H = Q1/2(U) endowed with the

inner product (x, y)H = (Q−1/2x,Q−1/2y)U for x, y ∈ H. Typical processes satisfying these
conditions are Hilbert space valued Lévy processes as introduced in [25]. In what follows we
define an analog to the Itô isometry for processes inM2(U) with bounded covariance, where
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LHS(H, H) refers to the space of all Hilbert–Schmidt operators from H to H and ‖·‖LHS(H,H)

denotes the corresponding norm.

Proposition 1 ([25]). Let L2
H,T (H) := L2(Ω× [0, T ],P[0,T ], P⊗dλ; LHS(H, H)) be the space

of integrands, where P[0,T ] denotes the σ–field of predictable sets in Ω × [0, T ] and dλ is the
Lebesgue measure, then for every X ∈ L2

H,T (H)

E
(
‖
∫ t

0
X(s) dM(s)‖2H

)
≤ E

(∫ t

0
‖X(s)‖2LHS(H,H) ds

)
.

We consider the following SPDE on the finite interval [0, T ], which is actually a Hilbert
space valued SDE,

dX(t) = AX(t) dt+G(X(t)) dM(t), X(0) = X0,(1)

with values in H, where A generates a C0–semigroup S, M ∈M2(U) with bounded covariance
process (Qt, t ≥ 0), Qt ∈ L+

1 (U) for t ≥ 0, and G is a mapping from H into the linear
operators L(H, H). Furthermore G satisfies that there exists a constant C ∈ R+ such that
for all u, v ∈ H

‖G(u)‖LHS(H,H) ≤ C(1 + ‖u‖H),

‖G(u)−G(v)‖LHS(H,H) ≤ C‖u− v‖H .
(2)

Then by results in Chapter 9 of [25], Equation (1) has a unique mild solution for an F0–
measurable initial condition X0, i.e. supt∈[0,T ] E(‖X(t)‖2H) < +∞ and X(t) can be written
as

X(t) = S(t)X0 +
∫ t

0
S(t− s)G(X(s)) dM(s).

Furthermore these assumptions imply that the corresponding PDE
∂

∂ t
u(t) = Au(t)(3)

is well-posed, see Chapter 4 in [24].
We introduce a semi-discrete problem on Vh

dXh(t) = AhXh(t) dt+Gh(Xh(t)) dM(t), Xh(0) = X0,h = PhX0,

where Gh also includes the projection of M into a finite dimensional space. The operator Ah
can be obtained for example by finite difference methods (cf. [11],[26],[30]) or finite element
methods (cf. [11],[30],[33]). Let (tj , j = 0, . . . , n) be a partition of [0, T ] with t0 = 0 and
tn = T . For the sake of simplicity we assume an equidistant partition of the interval with
Mt = T/n but the results also hold for arbitrary time discretizations, where the maximal
step size converges to zero. In the following Mt and n will be coupled by this relation. We
define an approximation method or approximation scheme which allows to calculate Xn

h ∈ Vh,
an approximation to Xh(tn) starting from Xn−p

h for p = 1, . . . , P . In this paper we limit
ourselves to P = 1 which is called a two-level scheme. This can be written as

Xj+1
h = Dh(Mt, j)Xj

h = Dd
h(Mt)Xj

h +Ds
h(Mt, j)Xj

h, X0
h = X0,h,(4)

where Dd
h(Mt) ∈ L(Vh) is the linear operator approximating Equation (3) and Ds

h(Mt, j)
approximates the stochastic integral from tj to tj+1 and does not have to be a linear operator.

A fundamental question for an approximation scheme is that of convergence when h and Mt
tend to zero. We choose a definition that involves convergence in mean square. The question
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of almost sure convergence will be addressed in a later paper. The corresponding deterministic
definition as well as those for the successive terms can be found in Chapter XX, §1, 2 in [9].

Definition 2. The error e(h,Mt) = (ej(h,Mt), j = 0, . . . , n) of an approximation scheme
given by Equation (4) is defined by

ej(h,Mt) = X(tj)−Xj
h.

A discretization scheme given by Equation (4) is convergent in mean square to the solution
of Equation (1), if for all ε > 0 there exist η, δ > 0 such that for all 0 < h < η, 0 < Mt < δ,
and j ∈ {0, . . . , n} it holds that

E(‖ej(h,Mt)‖2H) < ε.

Examples of convergent approximation schemes are given in [18] and in Section 4 of this
paper.

Two properties that are fundamental for convergence are those of consistency and stability
what will be shown in the main result. In order to give stochastic analogs to the known
deterministic definitions we need two more definitions. First we define some properties of the
stochastic approximation that are not necessary for the approximation of PDEs.

Definition 3. The family of operators approximating the stochastic integral (Ds
h(Mt, j), j ∈

{0, . . . , n− 1}) in Equation (4) is F–compatible with Equation (1) for given h and Mt, if
Ds
h(Mt, j) is Ftj+1–measurable and E(Ds

h(Mt, j)|Ftj ) = 0 for all j = 0, . . . , n− 1.

An immediate consequence of F–compatibility is that E(Ds
h(Mt, j)) = 0 for all j due

to the properties of the conditional expectation. F–compatiblity can already been found
in [6]. In Remark 2.5, Buckwar and Winkler suggest an F–compatible representation of extra
perturbations of multilevel SDE approximations and use it in the proof of Theorem 3.3 for
the approximation of the stochastic integral.

The following simple example shows that F–compatibility is a natural condition that is
satisfied for known approximations.

Example 4 (Geometric Brownian Motion). Let H = R and consider the geometric Brownian
motion given by the SDE

dXt = aXt dt+ bXt dBt

with X0 = x0, a, b ∈ R, and B is a Brownian motion. The Euler–Maruyama scheme for this
equation is given in [16] as

Xj+1
Mt = (1 + aMt+ b MBj)X

j
Mt,

where we set MBj = Btj+1 −Btj , and the corresponding Milstein scheme as

Xj+1
Mt =

(
1 + aMt+ b MBj + 1

2 b
2 ((MBj)2 − Mt)

)
Xj

Mt.

These two schemes are F–compatible with the geometric Brownian motion which can be seen
by easy calculations and with properties of the conditional expectation as presented in [13].

The truncation error is introduced for PDEs in [9], [26], and [30] for example. Note that
this definitions vary by a factor of Mt from the following definition because SPDEs are integral
equations and not differential equations in the classical sense and therefore we do not divide
by Mt.
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Definition 5. The truncation error T (h,Mt) = (Tj(h,Mt), j ∈ {1, . . . , n}) of a discretization
scheme given by Equation (4) is defined by

Tj(h,Mt) = X(tj)−Dh(Mt, j − 1)PhX(tj−1).

The corresponding deterministic truncation error T d(h,Mt) = (T dj (h,Mt), j ∈ {1, . . . , n})
with respect to Equation (3) is defined by

T dj (h,Mt) = u(tj)−Dd
h(Mt)Phu(tj−1).

With the previous definitions we are now able to define consistency which consists of three
parts. In order to make the definition compatible with the deterministic one such that this
definition extends the known ones, we ask for consistency of the corresponding deterministic
problem. Furthermore we need a weaker condition for the SPDE due to the properties of
Itô integrals. Finally compatibility is necessary to preserve the properties of stochastic Itô
integrals in the approximations. Note that the missing Mt in the deterministic truncation
error is included in the consistency condition and therefore similar to consistency as defined
in [9, 30].

Definition 6. A discretization scheme given by Equation (4) is consistent in mean square
with Equation (1), if for all ε > 0 there exist η, δ > 0 such that for all 0 < h < η, 0 < Mt < δ,
and j ∈ {1, . . . , n}

E(‖Tj(h,Mt)‖2H) < εMt and ‖T dj (h,Mt)‖H < εMt,

as well as (Ds
h(Mt, j), j ∈ {0, . . . , n− 1}) is F–compatible.

Remark 7. We remark that the definition of consistency requires for the SPDE convergence
of the truncation error of order ε

√
Mt while convergence of order εMt is necessary for the

corresponding deterministic problem. The calculations in the proof of Theorem 11 will show
that this order of convergence is sufficient.

A direct consequence of the definition of consistency are the following lemmas that show
properties of the approximation of the stochastic integral.

Lemma 8. The approximation of the stochastic integral satisfies that for all ε > 0 there exist
η, δ > 0 such that for all 0 < h < η, 0 < Mt < δ, and j ∈ {1, . . . , n}

E(‖T sj (h,Mt)‖2H) = E
(∥∥∫ tj+1

tj

S(tj+1 − s)G(X(s)) dM(s)−Ds
h(Mt, j)PhX(tj)

∥∥2

H

)
< εMt.

Proof. To prove the lemma we use that the scheme is consistent and that the deterministic
part satisfies a consistency condition separately. We estimate in the following way

E(‖T sj (h,Mt)‖2H) ≤ 2
(
E(‖Tj(h,Mt)‖2H) + E(‖(S(Mt)−Dd

h(Mt)Ph)X(tj)‖2H)
)

< 2
(
εMt+ ε2 (Mt)2

)
,

where we used that E(‖X(t)‖2H) is bounded for all t ∈ [0, T ], and the lemma is proved. �

This lemma implies a second lemma on the properties of the operator Ds
h(Mt, ·) that will

be needed for later estimates.
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Lemma 9. The approximation of the stochastic integral satisfies for all square-integrable H–
valued, Ftj –measurable random variables X,Y , that for all ε > 0 there exist η, δ, C > 0, such
that for all 0 < h < η, 0 < Mt < δ, and j ∈ {1, . . . , n}

E(‖Ds
h(Mt, j)PhX −Ds

h(Mt, j)PhY ‖2H) ≤ εMt+ CMtE(‖X − Y ‖2H).

Proof. First we remark that for t ≥ tj the SPDE is given by

X(t) = S(t− tj)X(tj) +
∫ t

tj

S(t− s)G(X(s)) dM(s).

If we set X(tj) = X,Y we have that

E(‖Ds
h(Mt, j)PhX −Ds

h(Mt, j)PhY ‖2H)

≤ 5
(

2 E(‖T sj (h,Mt)‖2H) + E
(
‖
∫ tj+1

tj

S(tj+1 − s) (G(X(s))−G(X)) dM(s)‖2H
)

+ E
(
‖
∫ tj+1

tj

S(tj+1 − s) (G(Y (s))−G(Y )) dM(s)‖2H
)

+ E
(
‖
∫ tj+1

tj

S(tj+1 − s) (G(X)−G(Y )) dM(s)‖2H
))
.

The first expression is bounded by εMt by Lemma 8. The last expression satisfies by Propo-
sition 1 that

E
(
‖
∫ tj+1

tj

S(tj+1 − s) (G(X)−G(Y )) dM(s)‖2H
)

≤ E
(∫ tj+1

tj

‖S(tj+1 − s) (G(X)−G(Y ))‖2LHS(H,H) ds
)
.

The boundedness of the semigroup [24] and Equation (2) imply

E
(∫ tj+1

tj

‖S(tj+1 − s) (G(X)−G(Y ))‖2LHS(H,H) ds
)

≤ C E
(∫ tj+1

tj

‖X − Y ‖2H ds
)

= C MtE(‖X − Y ‖2H),

where C denotes a generic constant that changes. It remains to show that the two expressions
in the middle go faster to zero than Mt. As the estimates are the same for X and Y , we just
give those for X. First we observe that we have similarly to the previous estimates

E
(
‖
∫ tj+1

tj

S(tj+1 − s) (G(X(s))−G(X)) dM(s)‖2H
)
≤ C E

(∫ tj+1

tj

‖X(s)−X‖2H ds
)
.

This can be bounded by εMt, if E(‖X(s) − X‖2H) goes to zero for s → tj . But this is true
due to the properties of the solution, i.e.

E(‖X(s)−X‖2H) ≤ 2
(
E(‖(S(s− tj)− 1)X‖2H) + E

(
‖
∫ s

tj

S(s− r)G(X(r)) dM(r)‖2H
))
,
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where the first expression tends to zero because S is a C0–semigroup (see e.g. [24]) and the
second expression is bounded by

E
(∫ s

tj

‖S(s− r)G(X(r))‖2LHS(H,H) dr
)

which tends to zero due to the boundedness of the integrand. So we conclude that

E(‖Ds
h(Mt, j)PhX −Ds

h(Mt, j)PhY ‖2H) ≤ εMt+ CMtE(‖X − Y ‖2H),

which proves the lemma. �

Finally we define stability in the sense of Lax and Richtmyer which could also be called
numerical stability in order to avoid confusions with other concepts of stability like Lyapunov
stability or asymptotic stability. It turns out that the extension of a PDE to an SPDE and
a deterministic approximation scheme to a stochastic one does not affect the stability of the
scheme. In the proof of a stochastic version of Lax’s equivalence theorem it turns out that
just stability of the corresponding deterministic scheme is necessary for this type of SPDEs.

Definition 10. A discretization scheme defined by Equation (4) is stable, if there exists
K ≥ 1 such that for all h, Mt > 0 and all j ∈ {0, . . . , n} it holds that

‖(Dd
h(Mt))jPh‖L(H) ≤ K.

where L(H) denotes the space of all linear mappings from H into itself.

Examples of stable discretization schemes for a given SPDE are all approximations, where
the approximation of the corresponding PDE is stable.

3. Lax Equivalence Theorem

In this section we state and prove the main result of this paper.

Theorem 11 (Stochastic Mean Square Lax Equivalence Theorem). Assume that a consistent
approximation scheme defined by Equation (4) with respect to an SPDE of type (1) is given.
Then it is convergent in mean square if and only if it is stable.

The following lemma will be essential in the proof of the main result.

Lemma 12. Let (Ω,A, P ) be a probability space and B ⊂ A a σ–algebra. Furthermore assume
that X,Y are (H,H)–valued random variables with E(‖X‖2H),E(‖Y ‖2H) < +∞. If Y is also
B/H–measurable, then

E((X,Y )H |B) = (E(X|B), Y )H .

Proof. To prove the lemma, we first use the separability of the Hilbert space and the existence
of an orthonormal basis. This transforms the problem into a real valued one. As X and Y are
in L2, the dominated convergence theorem for conditional expectations of real valued random
variables (see e.g. [4]) can be applied. Parseval’s relation, the continuity of the inner product
and Equation (3.7.5) in [12] conclude the proof. �

Proof of Theorem 11. We first assume that the approximation scheme is stable and consistent
and show that it converges in mean square, i.e. for n large enough and all j ∈ {0, . . . , n}

E(‖X(tj)−Xj
h‖

2
H) < ε.
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We observe that Xj
h can be rewritten as

Xj
h = (Dd

h(Mt))jXh,0 +
j−1∑
i=0

(Dd
h(Mt))j−(i+1)Ds

h(Mt, i)Xi
h.

This implies for the difference of the mild solution and the approximation that

X(tj)−Xj
h =

(
S(tj)− (Dd

h(Mt))jPh
)
X0

+
j−1∑
i=0

(
S(tj − ti+1)− (Dd

h(Mt))j−(i+1)Ph
) ∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)

+
j−1∑
i=0

(Dd
h(Mt))j−(i+1)Ph

(∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)−Ds
h(Mt, i)PhX(ti)

)
+

j−1∑
i=0

(Dd
h(Mt))j−(i+1)(Ds

h(Mt, i)PhX(ti)−Ds
h(Mt, i)Xi

h)

and for the expression to be estimated by Hölder’s inequality

E(‖X(tj)−Xj
h‖

2
H)

≤ 4
(
E
(
‖
(
S(tj)− (Dd

h(Mt))jPh
)
X0‖2H

)
+ E

(
‖
j−1∑
i=0

(
S(tj − ti+1)− (Dd

h(Mt))j−(i+1)Ph
) ∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)‖2H
)

+ E
(
‖
j−1∑
i=0

(Dd
h(Mt))j−(i+1)Ph

(∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)−Ds
h(Mt, i)PhX(ti)

)
‖2H
)

+ E
(
‖
j−1∑
i=0

(Dd
h(Mt))j−(i+1)(Ds

h(Mt, i)PhX(ti)−Ds
h(Mt, i)Xi

h)‖2H
))
.

Next, we give estimates on each of the four expressions before finishing the first implication.
To the first term we apply the classical Lax equivalence theorem [9] as the approximation
scheme of the corresponding PDE is consistent and stable. Therefore the first term is smaller
than any ε for h and Mt small enough. For the second term we set

Ri = S(tj − ti+1)− (Dd
h(Mt))j−(i+1)Ph

and have for i < k by Lemma 12 and the properties of the conditional expectation as well as
of the stochastic integral

E
(
(Ri

∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s), Rk

∫ tk+1

tk

S(tk+1 − s)G(X(s)) dM(s))H
)

= E
(
(Ri

∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s), Rk E
(∫ tk+1

tk

S(tk+1 − s)G(X(s)) dM(s)|Ftk
)
)H
)

= 0.
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This implies that

E
(
‖
j−1∑
i=0

(
S(tj − ti+1)− (Dd

h(Mt))j−(i+1)Ph
) ∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)‖2H
)

= E
( j−1∑
i=0

‖
(
S(tj − ti+1)− (Dd

h(Mt))j−(i+1)Ph
) ∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)‖2H
)

≤ ε2
j−1∑
i=0

E
(
‖
∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)‖2H
)
,

where the last inequality follows from the convergence of the corresponding deterministic
problem. Finally we apply the properties of the semigroup, Proposition 1, and the assump-
tions made in (2) to get

E
(
‖
j−1∑
i=0

(
S(tj − ti+1)− (Dd

h(Mt))j−(i+1)Ph
) ∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)‖2H
)

≤ ε2C
j−1∑
i=0

∫ ti+1

ti

(
1 + E(‖X(s)‖2H)

)
ds.

The claim follows by the boundedness of the solution on [0, T ].
The compatibility of the approximation implies in a similar calculation as for the second

term that the mixed expressions in the fourth term are zero. The stability of the approxima-
tion and Lemma 9 lead for this term to

E
(
‖
j−1∑
i=0

(Dd
h(Mt))j−(i+1)(Ds

h(Mt, i)PhX(ti)−Ds
h(Mt, i)Xi

h)‖2H
)

=
j−1∑
i=0

E
(
‖(Dd

h(Mt))j−(i+1)(Ds
h(Mt, i)PhX(ti)−Ds

h(Mt, i)Xi
h)‖2H

)
≤ K2 (Tε+ C

j−1∑
i=0

MtE(‖X(ti)−Xi
h‖2H)).

The mixed expressions of the third term are split into four terms and satisfy by the properties
of the stochastic integral, the compatibility of the approximation and Lemma 12 for i < k, if
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we set Di = (Dd
h(Mt))j−(i+1)Ph,

E
((
Di

(∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)−Ds
h(Mt, i)PhX(ti)

)
,

Dk

(∫ tk+1

tk

S(tk+1 − s)G(X(s)) dM(s)−Ds
h(Mt, k)PhX(tk)

))
H

)
= E

((
Di

∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s), Dk E
(∫ tk+1

tk

S(tk+1 − s)G(X(s)) dM(s)|Ftk
))
H

)
+ E

((
DiD

s
h(Mt, i)PhX(ti), Dk E(Ds

h(Mt, k)|Ftk)PhX(tk)
)
H

)
− E

((
Di

∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s), Dk E(Ds
h(Mt, k)|Ftk)PhX(tk)

)
H

)
− E

((
DiD

s
h(Mt, i)PhX(ti), Dk E

(∫ tk+1

tk

S(tk+1 − s)G(X(s)) dM(s)|Ftk
))
H

)
which is equal to zero as seen in the previous estimates. This implies for the third term
combined with the stability of the approximation and its consistency with Lemma 8

E
(
‖
j−1∑
i=0

(Dd
h(Mt))j−(i+1)Ph

(∫ ti+1

ti

S(ti+1 − s)G(X(s)) dM(s)−Ds
h(Mt, i)PhX(ti)

)
‖2H
)

≤
j−1∑
i=0

K2εMt ≤ K2Tε.

So overall we have by a discrete version of Gronwall’s inequality [32]

E(‖X(tj)−Xj
h‖

2
H) ≤ εC1 + C2Mt

j−1∑
i=0

E(‖X(ti)−Xi
h‖2H) ≤ εC

which proves convergence in mean square.
Next we prove that convergence in mean square implies the stability of the approximation

scheme by contradiction. Therefore we assume that the approximation scheme is not stable,
i.e. for any K > 0 there exist Mt, h, j, and X0 ∈ H such that

‖(Dd
h(Mt))jPhX0‖H > K.

This implies by the deterministic Lax equivalence theorem [9] that the deterministic scheme
does not converge to the corresponding PDE, i.e. there exists R > 0 such that for all η, δ > 0
there exist 0 < h < η, 0 < Mt < δ, j ∈ {0, . . . , n} with

‖(S(tj)− (Dd
h(Mt))jPh)X0‖H > R.

The properties of the expectation and the integral as well as Cauchy–Schwartz’s inequality
imply

R < ‖(S(tj)− (Dd
h(Mt))jPh)X0‖H = ‖E(X(tj)−Xj

h)‖H ≤ E(‖X(tj)−Xj
h‖H)

≤ E(‖X(tj)−Xj
h‖

2
H)1/2,

i.e. the scheme does not converge in mean square and the theorem is proved. �
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Remark 13. In the case of additive noise, Theorem 11 also holds for approximations of equa-
tions where G is a mapping from the interval [0, T ] into the linear operators L(U,H) that
satisfies for all t ∈ [0, T ]

‖G(t)‖LHS(H,H) < C

for some constant C ∈ R+. The proof is similar to the one of the given theorem and therefore
omitted.

4. Examples

In this section an example of the heat equation is given to emphasize how the definitions
and the main result of this paper are related to practical problems. We will look at the heat
equation with multiplicative noise approximated by an Euler–Maruyama as well as a Milstein
scheme. More examples can be found in [18].

Consider the following heat equation onH = L2([0, 2π)) and on the finite time interval [0, T ]

dX(t) = 1
2∆X(t) dt+G(X(t)) dW (t)(5)

with initial condition X(0) = X0 ∈ H, W is a Q–Wiener process on H as introduced in [8]
with Tr Q < +∞. The operator G, which is a linear mapping from H to L(H,H), is given
by

G(φ)ψ(x) = g(x)φ(x)ψ(x)

for g, φ, ψ : [0, 2π)→ R. Furthermore we assume the Laplace operator on [0, 2π) with periodic
boundary conditions. Then it generates a semigroup of contractions which we denote by
S = (S(t), t ∈ [0, T ]). Let W be given by

W (t) =
∞∑
k=0

√
ak βk(t) ek,

where (ek, k ∈ N0) is the L2([0, 2π)) orthonormal basis consisting of sine and cosine functions,
the elements βk(t) are real valued, independent Brownian motions, and the coefficients ak are
given by

ak = (ml + kl)−n

for m ∈ R+ and l/2, n ∈ N. This equation has for g ∈ C4
B([0, 2π)) and l · n > 10 a mild

solution that satisfies for A = 1/2 ∆

E(‖A2X(t)‖2H) < K

for all t ∈ [0, T ] which can be shown by meeting the prerequisites of Theorem 6.7 in [8]. This
condition implies that a finite difference approximation of A converges of order Mt+(Mx)2 [30],
where Mt denotes the equidistant step size in time and Mx the one in space. Let the Euler–
Maruyama and Milstein approximations of Equation (5) be given by

Xj+1 = (1 + MtAh + g ηj)Xj ,(E)

Xj+1 = (1 + MtAh + g ηj + 1
2 g

2 (η2
j − Mt))Xj(M)

with

(g ηjXj)(x) = G(Xj)ηj(x) = g(x)
b2π/Mxc−1∑

k=0

√
ak (βk(tj+1)− βk(tj)) ek(x)Xj(x),
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i.e. all multiplications of functions are pointwise in x. The properties of the elements ηj
and how to simulate them efficiently can be found in [20]. The operator Ah denotes a finite
difference approximation and is given by

Ahf(x) =
f(x+ Mx)− 2f(x) + f(x− Mx)

2(Mx)2
,

where calculations in x are done modulo 2π.
The corresponding PDE

∂

∂ t
u(t) = 1

2∆u(t)

with the approximation scheme given by

uj+1 = (1 + MtAh)uj

is known to be consistent, stable and convergent of order Mt+(Mx)2 in the deterministic sense
for Mt ≤ (Mx)2 (see e.g. [11],[26],[30]). This implies stability of the approximation schemes
given by Equation (E) and (M) for Mt ≤ (Mx)2. The approximations of the stochastic integral
are compatible with Equation (5) by the properties of the Brownian motion in a similar way
as in Example 4. For consistency in mean square it remains to show that the truncation error
converges in mean square faster than Mt. We first look at the Euler–Maruyama scheme. For
j ∈ {1, . . . , n} we have that

E(‖Tj(h,Mt)‖2H) ≤ 2
(

E(‖(S(Mt)− (1 + MtAh))X(tj−1)‖2H)

+ E(‖
∫ tj

tj−1

S(tj − s)G(X(s)) dW (s)−G(X(tj−1))ηj−1‖2H)
)

by Hölder’s inequality. The first term is by the properties of the corresponding deterministic
problem of order O((Mt)4 + (Mt)2(Mx)4) as E(‖A2X(tj)‖2H) is bounded. The second term is
split into∫ tj

tj−1

S(tj − s)G(X(s)) dW (s)−G(X(tj−1)) ηj−1

=
∫ tj

tj−1

(S(tj − s)− 1)G(X(s)) dW (s) +
∫ tj

tj−1

G(X(s)−Xtj−1) dW (s)

+G(Xtj−1)((W (tj)−W (tj−1))− ηj−1).

The first of these three terms is by the properties of the semigroup [24] and of the stochas-
tic integral of order O((Mt)2). For the second term the regularity of the solution is needed
which is calculated in Lemma 3.3 in [19]. Overall by the properties of the stochastic inte-
gral the term is also of order O((Mt)2). The last term can be estimated with the property
that Q is nuclear. This implies that it is of order O(Mt(Mx)ln−1) and consistency in mean
square of order O((Mt)2(Mx)4 + (Mt)2 + Mt(Mx)ln−1) follows. Similar calculations for the
Milstein approximation given by Equation (M) lead to consistency in mean square of order
O((Mt)2(Mx)4 + (Mt)3 + Mt(Mx)ln−1). To prove convergence in mean square we do similar
estimates as for convergence in the proof of Lax’s equivalence theorem. These lead for the
Euler scheme with the properties of the approximation of the corresponding PDE to

E(‖ej(h,Mt)‖2H) = O(Mt+ (Mx)4),



A LAX EQUIVALENCE THEOREM FOR SDES 13

i.e. convergence of order O(
√
Mt+(Mx)2) and for the Milstein scheme to convergence of order

O(Mt+ (Mx)2) always under the assumption that Mt ≤ (Mx)2.
Finally we remark that the conditions on the discretization step size for an explicit ap-

proximation of a stochastic heat equation are the same as those for the deterministic heat
equation. The only difference that occurs is the worse order of convergence in time for the
simplest approximation of the Itô integral.

Examples with additive noise can be found in [18] and with Lévy noise and finite element
methods in [2] and [3].
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