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Abstract

This thesis discusses the possibility to use modern optimizations methods in engine devel-
opment and more specifically how to optimize a five cylinder, naturally aspirated engine
when serial intake valves (SIV) have been added to its configuration. Both the SIV settings
and the hardware of the engine can be optimized.

The optimization problem to be solved is a ”black-box” optimization problem, since the
objective function’s form as well as its derivatives are unknown. Also, each function value
takes considerable time to compute. We evaluated five algorithms on a simpler engine
problem and found that Powell’s NEWUOA and Gutmann’s rbfSolve were worth utilizing
since they gave the best improvement over the starting solution and also used the least
number of function evaluations.

The result is promising. Our calculations show that the SIV can decrease the fuel con-
sumption up to 14% compared to that of an engine without SIV and about 5% compared to
that of a non-optimized engine with SIV. Our conclusion is that ”black-box” optimization
can be a valuable tool for improvements in the area of engine development.

The outcome of this thesis is of interest for engine developers, both for its emphasis
on SIV and for its analysis of optimization in engine development. The thesis should also
interest someone who wants to introduce the use of optimization algorithms in new areas
of specializations, with similar black-box optimization problems.
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Chapter 1

Introduction

1.1 Background

In todays industry there is a need for computer simulations. The simulations can tell a
company about the benefits or the drawbacks of a certain design before it is produced.
Since simulations are cheap and fast they can save a lot of money and time. And since the
simulations are fast, it is possible to try a lot of different solutions to a certain problem or
design. This is where simulation optimization can be useful. Simulation optimization is a
method that tries to find the best solution possible to a simulated problem using different
optimization algorithms.

The work behind this thesis has been a joint venture between the Mathematics De-
partment of Chalmers University of Technology, Fraunhofer-Chalmers centre for Industrial
Mathematics (FCC) and Volvo Car Corporation (VCC), Gothenburg, Sweden. VCC is a
company in the Ford Motor Company family, which also includes the automotive brands
Jaguar, Mazda, Land Rover and Aston Martin. Financially, VCC is totally separated from
AB VOLVO but they still share the same trademark.

1.2 Engine basics

The engine considered in this thesis is a 5 cylinder Volvo RNC25 (Revised new compact
2.5 liter) naturally aspirated engine (the engine has no turbocharger). It has twin overhead
camshafts and variable valve control (VVT) on the intake valves. For Swedish translations
of some engineering vocabulary, see Appendix A.

The subject of interest in this work is the air flow in the engine. When the air has entered
the intake and passed an air filter it arrives at a plenum. From the plenum the main pipes
lead the air, via inlet valves, to the cylinders where combustion occurs. The exhaust gas
then leaves the cylinder through the exhaust pipes via the outlet valves, except for some
residuals (EGR) that stay in the cylinders. Several parameters govern the behavior of the
air flow in the pipes and thus the performance of the engine. The parameters of interest
for this work were initially:
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Figure 1.1: A four stroke engine

• The length of the main inlet pipes (hardware),

• the diameter of the main inlet pipes (hardware), and

• the valve timing (hardware and software).

We distinguish between hardware variables, that is, parameters that are independent
of engine speed and software variables that can be adjusted depending on the speed of
the engine. The valve timing is worth looking at more closely. In a four stroke engine
the piston makes four strokes, that is, two strokes per crankshaft revolution. Referring to
Figure 1.1, the strokes are:

1. The induction (or, intake) stroke. The inlet valve is open and the piston travels down
the cylinder, drawing in an air/fuel mixture.

2. The compression stroke. Both valves are closed, and the piston travels up the cylin-
der. As the piston approaches its highest position, called top dead center (tdc), the
mixture is ignited.

3. The expansion (power or working) stroke. Combustion propagates throughout the
mixture, raising the pressure and the temperature, and forcing the piston down. At
the end of the power stroke the exhaust valve opens.

4. The exhaust stroke. The exhaust valve remains open and as the piston travels up
the cylinder the remaining gases are expelled. At the end of the exhaust stroke the
exhaust valve closes and some residuals will be left to dilute the next mixture drawn
in.
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Important in valve timing is the valve overlap, that is, the short duration at top dead
center after the exhaust stroke when both valves are open. This overlap can increase
or decrease the performance of the engine, depending on engine speed. This is one of the
reasons for using Variable Valve Timing (VVT). The VVT is a mechanism on the camshaft
by which the valve timing for different speeds is controlled. It is also important how the
crankshaft and the camshaft are related to each other, that is, at which crank angles the
valve shall open and close. This relation defines the duration during which the valves are
open. The duration can also be controlled by the VVT. On the RNC25, VVT is used on the
intake camshaft only because the closing of the intake valve is the most crucial parameter
in valve timing. If there is no VVT in the engine, the duration and cam top-angle are
considered to be hardware variables. The cam top-angle is where the valves reaches their
maximal lift and is measured in crank angles.

An unwelcome effect in gasoline engines is the occurrence of knocking. Knocking means
that the gasoline that enters the cylinder ignites before the spark plug fires. This spon-
taneous ignition causes the engine loss of power. The effect is more severe, when the
spontaneous ignition occurs very early in the compression stroke; then the engine can keep
firing and firing even when the ignition is turned off. The main reasons why knocking
occurs are that pressures and temperatures exceed the levels that the engine is designed
for.

1.2.1 Serial intake valves

In this thesis we focus on an engine with serial intake valves (SIV). Such valves are placed
on the intake pipes. They are supposed to increase the volumetric efficiency of the engine
by catching standing waves to aid in the aspiration of the engine. The new valves will
replace the throttle, as well as the intake VVT function. They are able to open and close
twice during the induction stroke. The timing of the opening and closing of the valves
are software variables, that is, they depend on the engine speed and load. We consider
the dependence on the engine speed at full load only, since at part load we have to use a
different approach to the problem. At part load the SIV:s settings are determined using
regulation control in Simulink, see Section ??. Because of the limited time allocated to the
thesis and the fact that finding a solution to the full load problem is of greatest importance,
we have concentrated on solving that problem.

There are many different SIV constructions; one such valve is shown in Figure 1.2. The
switching of the valves are in this design managed by electro-magnets and a spring in a
spring-mass system. The valves are able to open and close in around 2 ms. A rule-of-thumb
is: The faster the valves can open and close, the better they can aid in the aspiration of
the engine.
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Figure 1.2: An illustration of a SIV

1.3 Introduction to optimization

To optimize refers in this thesis to finding the optimal solution to the problem:

minimize
x

f(x), (1.1a)

subject to x ∈ S, (1.1b)

where f : <n 7→ < is called the objective function, S ⊆ <n is the set of feasible points
and x ∈ <n is the decision vector. If the problem is a maximization one, simply minimize
−f . The set S is usually defined by a set of constraints as in Problem (1.2), below. For
problems without constraints the set S = <n.

A constrained optimization problem can be formulated as:

minimize
x

f(x), (1.2a)

subject to gi(x) ≤ 0, i ∈ I, (1.2b)

gi(x) = 0, i ∈ E , (1.2c)

where the functions gi : <n 7→ <, i ∈ I(i ∈ E) define the inequality (equality) constraints.
If f and gi, i ∈ E ∪ I are linear functions, Problem (1.2) is called a linear program.

Now when the problem is defined, we have to specify an optimal solution. The basic
definition of an optimal solution x∗ to Problem (1.1) is that x∗ ∈ S and

f(x∗) ≤ f(x), ∀x ∈ S. (1.3)
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The point x∗ is then called a global minimizer of f over S. Most of the methods we have
tested in this work don’t guarantee to find a global minimizer. They find at best a local
minimizer that is, an x0 such that xo ∈ S and for a small enough value of ε > 0

f(xo) ≤ f(x) ∀x ∈ S such that ‖x − xo‖ ≤ ε. (1.4)

Many functions have more than one local minimum. Therefore it is hard to know if a
minimum found is a global minimum or just a local minimum. There are however cases
for which every local minimum is a global minimum. One such case is when the objective
is a convex function and the feasible region is a convex set. A set S is convex if every x
and y both in S can be connected with a line which also lies in S. Mathematically this is
formulated as follows: A set S is convex if, for any elements x and y of S,

αx + (1 − α)y ∈ S, ∀α ∈ [0, 1] (1.5)

A function f is convex on a convex set S if it satisfies:

f(αx + [1 − α]y) ≤ αf(x) + (1 − α)f(y), ∀α ∈ [0, 1], ∀x, y ∈ S (1.6)

For n = 1 the fefinition in (1.6) says that a line connecting (x, f(x)) and (y, f(y)), where
x, y ∈ S, must lie on or above the graph of the function in order to be convex; see Figure
1.3.

x y

f(x)

f(y)

αx + (1 − α)y

f(αx + (1 − α)y)

αf(x) + (1 − α)f(y)

Figure 1.3: A convex function

If the function f is twice continuously differentiable, then an alternative definition of
convexity can be given that is sometimes easier to check: If the Hessian matrix ∇2f(x) is
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positive semi-definite for all x ∈ S and S is a convex set, then the function f is convex on
S.

As mentioned above, if f is a convex function on a convex set S, then the following
holds: If x∗ is a local minimizer of f on S, then x∗ is also a global minimizer. A proof for
this result can be found in [11].

Sometimes we don’t know whether a problem is convex, since the objective function is
not known explicitly. Then we have to check if a given point is at least a local minimizer.
To use optimality conditions are the mathematical way to check that a given point is
a local minimizer to an optimization problem. We distinguish between necessary and
sufficient optimality conditions. Necessary conditions has to be fulfilled but they don’t
guarantee that the given point is a minimizer. The sufficient optimality conditions are
”sufficient” to guarantee that x∗ is a local minimizer. The first-order necessary condition
for an unconstrained optimization problem, Problem (1.1) with S = <n, is:

• If x∗ is a local minimizer of an unconstrained optimization problem and f is contin-
uously differentiable in an open neighborhood of x∗, then ∇f(x∗) = 0.

Optimization methods therefore seek points where the gradient of the objective function
vanishes. There is also a second-order necessary condition.

• If x∗ is a local minimizer of Problem (1.1) with S = <n and ∇2f is continuous in an
open neighbourhood of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.

The second-order sufficient condition is as follows:

• The point x∗ is a local minimizer to an unconstrained optimization problem, if
∇f(x∗) = 0 and ∇2f(x∗) is positive definite.

There are optimality conditions for constrained optimization problems, Problem (1.2),
as well. In this introduction to optimization we will just look very briefly into the subject
of optimality conditions for constrained optimization. A more complete description on
the subject can be found in [11], chapter 14. For unconstrained problems we have the
optimality condition ∇f(x∗) = 0, but as seen in Figure 1.4, x∗ can be an infeasible point.
A intuitive way to formulate optimality conditions for this constrained problem is to look
at −∇f(xo) and a vector of opposite direction ∇g which is a vector sum of the normals to
the linear constraints. When there is an equilibrium (compare with equilibrium of forces)
between ∇g and −∇f(xo) we have an optimal point for the constrained problem. In Figure
1.4 the objective function is displayed with isobars, the constraints are straight lines and
the feasible area is shaded.
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Optimal point, x∗,for unconstrained problem

Feasible region

g

−∇f(xo)

Linear constraints

Figure 1.4: A Constrained Problem

1.3.1 Optimization in engineering applications

A common situation in engineering optimization is that the computation of an accurate
objective value at a given point requires a call to a simulation program which is only
available in a compiled form. Then the simulation program has to be considered as a
black box. In such cases no derivatives are explicitly availabe. This doesn’t necessarily
mean that derivatives don’t exist, but they must be approximated by numerical differences.
An alternative is to build an algebraic model of the objective function which can then be
explicitly differentiated. If the function evaluations are inexpensive and without noise, then
it is possible to use numerical differences; otherwise it’s preferable to build an algebraic
model or to use a method based solely on objective values (such as pattern search methods
see Section 2.3).

We distinguish between global and local optimization methods.

• Global optimization methods are designed to find the lowest objective value of f over
S. These methods may work well on small problems, but as the problems grow larger
and more complex the solution time increases extremely rapidly.

• Local optimization methods are iterative processes that start in a point and then
search for optima in a region around the currently best point. These methods usually
converge faster to a local optimum than the global methods converge to a global
optimum.

1.4 Problem description

The idea of SIV is quite old, but not until recently the technology to produce them have
been available. VCC is interested in the possible benefits of SIV. However, more informa-
tion about their performance is needed to motivate the company to start producing engines
with SIV. Since the cost of building a first engine with SIV is very high, simulations are
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used for its design. These can give an indication of the benefits from SIV and motivate the
testing with a real engine. To utilize these simulations as much as possible, optimization is
used. We have a simulation tool, WAVE, that can simulate the performance of an engine
with or without SIV, and which can be used to calculate our objective function, see Section
1.4.1.

The simulation tool WAVE is a black box; the values of the hardware and software
variables are input and the output is an objective value. We don’t have access to the
derivatives which makes it hard to find fast and effective algorithms for optimization.

The fact that the variables governing the behavior of SIV can vary with engine speed
makes this problem particularly hard to solve. As mentioned above, we call variables that
vary with the speed software variables, since these variables will be controlled by the car’s
main computer. We need one set of software variables for each speed we want to consider.
If there are four variables governing the behavior of the SIV and we want to optimize
for 12 different speeds, there will be 12 ∗ 4 = 48 software variables. Together with 6
hardware variables, this makes 54 variables in total. Given the complexity of the objective
calculations, this is a large problem, and the long simulation time forces us to limit the
number of objective evaluations.

Since the original problem is very large we choose to partition the work into two projects.
The first project is devoted to the testing of several different algorithms for solving a small
version of the problem, that is, with only hardware variables. This should give a hint of
which algorithms to continue with for the full-size problem. Except for giving good results,
the algorithms should be fast and stable. The first problem was to maximize the torque
at 6000 rpm without the SIV. This way we don’t have to deal with the software variables,
since we consider one speed only, resulting in totally 6 variables. Also, the simulation time
for this problem is much shorter, since we only simulate for one speed.

We don’t know much about the properties of the objective function, only what can be
seen from the output of the black box. It is not likely that the objective function is convex
which makes it difficult to achieve second order necessary or sufficient optimality conditions.
We assume that the goal function is twice differentiable and continuous, because this is
what our local algorithms, see Section 2, demand to converge to a local optimum.

After finding appropriate algorithms we proceed with solving the full-size problem,
project two. This is defined as to modify the engine’s hardware parameters and adjust
the settings of the SIV in order to gain as much torque and get as low exhaust gas residu-
als (EGR) as possible. The EGR are hot gases which raise the temperature in the cylinder
and may cause knocking, see Section 1.2. We assume that the objective function has the
same properties as that of the small-size problem.

1.4.1 Mathematical model

The objective considered is a combination of two objectives which are linearly combined
with given weights. The first objective is to maximize the torque at each discrete engine
speed. With discrete we mean that we have separated the problem so that we optimize at
one engine speed at a time. The speeds at which we optimize have to be chosen carefully:
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A certain value of a variable can have one effect at low speeds, but a completely different
effect at high speeds.

The second objective is to minimize the exhaust gas residuals (EGR). The weights, α
and β associated with each objective, change the difference in importance between the two
objectives. We can even introduce weights, ws and γs, s ∈ S, where S are the set of all
engine speeds considered, in order to focus more on specific speeds where it is critical to get
good results. Upper and lower bounds on the variables are set using current engineering
knowledge. There are also constraints that are engine specific, for example, the cam top-
angle on the intake side has to be larger than that on the exhaust side. Another constraint
forbids the SIV to open a second time before it has closed the first time.

The variables are defined in Table 1.1. x1 − x6 are hardware variables and ys
1 − ys

4 are
software variables.

Table 1.1: Description of the variables to optimize

Variable Description
x1 Cam top-angle, intake
x2 Cam top-angle, exhaust
x3 Cam duration, intake
x4 Cam duration, exhaust
x5 Diameter, intake pipe leaving plenum volume (mm)
x6 Length, intake pipes
ys

1 SIV up, first time (crank angle)
ys

2 SIV duration, first time (crank angles)
ys

3 SIV up, second time (crank angle)
ys

4 SIV duration, second time (crank angles)

Our parameters are defined in Table 1.2.

Table 1.2: Description of the parameters
Parameter Description
t(x,ys) Torque [Nm] from simulation.
g(x,ys) EGR [%] from simulation.

ws A torque-weight depending on rpm [1].
γs An EGR-weight depending on rpm [1]

α, β Objective weights [1/Nm], [1/%].
l, u Bounds on the variables

With this notation, the main problem we are trying to solve can be formulated as follows:
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minimize f(x,y) = −α ·
∑

s∈S

ws · t(x,ys) + β ·
∑

s∈S

γs · g(x,ys), (1.7a)

subject to lx ≤ x ≤ ux, (1.7b)

ly ≤ ys ≤ uy, ∀s ∈ S (1.7c)

x1 ≥ x2, (1.7d)

ys
3 ≥ ys

1 + ys
2, ∀s ∈ S (1.7e)

1.5 Environment and Software

One of the challenges in this work has been to get different software to communicate. In
this section the software used is described.

1.5.1 WAVE

WAVE, see [16], is a tool for simulating the flow in a given system. It solves the simplified
Navier-Stokes equations, that is, the time dependent wave equation in one dimension. The
input and output files are in ASCII-format but there is also a Wavebuild program in which
the engine can be built graphically. A WAVE model of the RNC25 engine is presented
in Figure 1.5. The pipes corresponding to the hardware variables, x5 and x6, are shown.
Since all five intake pipes have the same length and diameter, we only get two intake pipe
variables instead of 2 ∗ 5 = 10. The basic procedure is to run WAVE for a number of
engine speed values, each speed value is called a case, run until the output for each case
has converged and then plot the results in a graphic interface. The output of interest in
this work are torque (Nm) vs. engine speed (rpm) and EGR (%) vs. speed (rpm). We use
this output to calculate the objective function, f(x,y). WAVE uses a FEM approach and
the space discretization is the limiting factor when speeding up the computations.

1.5.2 Matlab and Simulink

Matlab and Simulink are both products from Mathworks Inc. Matlab is a tool for math-
ematical and technical computing. There exist various application-specific tool-boxes in
Matlab. We use the Optimization Toolbox to implement our method, see Section 2.2. It is
also possible to interface Fortran subroutines with Matlab via mex-functions; this means
that an algorithm written in Fortran can be called as if it was a Matlab function. The
opposite is also possible; from a Fortran program calculations can be run in Matlab, re-
turning the result to the Fortran program. We have used these features and many more
in our work. Matlab is also the program which controls the other programs. For example,
Wave is started from Matlab using the ”unix”-function which executes a UNIX command.

Simulink is a program for designing and simulating continuous and discrete-time sys-
tems. It is possible to execute WAVE simultaneous with Simulink. When using Simulink
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Intake Pipe variables

Figure 1.5: An illustration of the WAVE model of the engine RNC2P25C with SIV

the auto-convergence criteria in WAVE is deactivated, which means that the simulation of
the engine can be run transiently.

1.5.3 Tomlab

Tomlab is an optimization package for applied optimization problems and works as a
Matlab tool-box. It has been developed by Professor Kenneth Holmström at Mälardalens
University. The base module includes several optimization algorithms and can also be
extended by other tool-boxes like the CGO toolbox for constrained global optimization.
We have mostly used the solver rbfSolve in the CGO module. The theory behind this
solver is described in Section 2.4.

1.5.4 Previous work

Our supervisor Johan Lennblad at VCC has been working with this problem for a short
while, trying to find a good solution changing the software variables “by hand”. This
solution serves as our initial guess in the local optimization algorithms, which all need a
starting solution.
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1.6 Hypothesis

The aim of the initial project is to test different algorithms on a small-size problem. Our
hypothesis is that it is possible to draw conclusions from the work in this project that are
useful in the main project. We also believe that optimization algorithms will find a solution
which increases the power of the engine compared to that of the starting solution. A rule-
of-thumb is that it is unlikely to find an improvement much greater than 5% in a system
which has already been optimized using a large amount of experience and knowledge about
the problem combined with simple heuristic methods.

The hypothesis of our work in the main project is that it is possible to improve the
performance of an engine equipped with SIV by using derivative-free optimization algo-
rithms, that is, algorithms that solve optimization problems without access to derivative
information. A distinct definition of what is a good performance of an engine is difficult
to formulate. Our objective can roughly be said to be a combination of the goals to gain
“a higher torque at lower speeds”, a “smooth curve of the torque with respect to speed”,
and the “same or higher torque at higher speeds”, compared to the initial solution.

The reason for our choice of objective f(x,y) is that if the torque increases for low
speeds, the fuel consumption will decrease provided that one puts in an extra gear like an
overdrive. An unsmooth curve of the torque indicates that the car isn’t nice to drive: If
the torque increases fast when the engine speed increases, the driver will experience a jerk
when he/she presses the gas pedal down. The reason why we want to have the same or
higher torque at higher speeds is obvious: The performance of the engine may not worsen
at any speed value, but it is unlikely that it will improve at high speeds since the SIV have
a rather small impact on the performance of the engine in this interval.
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A summary of algorithms utilized

We have studied various derivative-free methods and also constructed one ourselves. As
mentioned in the Introduction to optimization in Section 1.3 we distinguish between local
and global optimization methods. Of the five algorithms tested, four is for local optimiza-
tion and one is for global optimization. They are described in this chapter.

2.1 Trust-region methods

A basic trust-region algorithm can be intuitively understood since it is based on a straight-
forward way of thinking. We start with an initial point in <n. Then we build an algebraic
model of our objective function. The algebraic model is supposed to represent reality as
well as possible and can be built by interpolation or Taylor expansion for example. We
then apply an optimization method to find the models minimizer within a radius where
we ”trust” our model, the trust-region radius. If the model’s objective value at this point
agrees well with that of the real objective function, and is better than our initial guess,
the trust-region center is moved to this point and a new model is built around it, perhaps
updating the radius in some way. Trust-region methods are iterative algorithms, that is
they need a sequence of iterates to converge to optimality. They are local solvers, that
is, they only guarantee local optimality of the solution found. In the methods we study
in this work we build a model by interpolation since we do not know anything about the
objective function. When interpolating, it is crucial to avoid degeneracy, which can occur
when defining a quadratic model and all, or some, of the interpolation points lie on a
straight line. Then it is impossible to define a unique quadratic model and it will probably
not approximate the real objective very well. Therefore it is important for trust-region
methods to deal with these so called geometric conditions. There are various ways to deal
with this as shown in the following sections. A basic trust-region method is described in
Algorithm 1; see also [5].
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Algorithm 1 A basic Trust-Region method

Step 1: Initialization. An initial point x0 ∈ <n and an initial trust-region radius ∆0 > 0
are given. The constants ν1, ν2, γ1 and γ2 are also given, and satisfy

0 < ν1 ≤ ν2 and 0 < γ1 ≤ γ2 < 1. (2.1)

Compute f(x0) and set k = 0.

Step 2: Model definition. Choose the norm ‖ · ‖k and define the model mk in the
trust-region Bk = {x ∈ <n | ‖x − xk‖k ≤ ∆k}.

Step 3: Step calculation. Compute a step sk that ”sufficiently reduces the model” Qk

and is such that xk + sk ∈ Bk.

Step 4: Acceptance of the trial point. Compute f(xk + sk) and compute

ρk =
f(xk) − f(xk + sk)

Q(xk) − Q(xk + sk)
. (2.2)

If ρk ≥ ν1, then let xk+1 = xk + sk. Otherwise, let xk+1 = xk.

Step 5: Trust-region radius update. Choose

∆k+1 ∈











[∆k,∞) if ρk ≥ ν2,

[γ2∆k,∆k] if ρk ∈ [ν1, ν2)

[γ1∆k, γ2∆k] if ρk < ν1.

(2.3)

Increase k by 1 and go to Step 1.
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Figure 2.1: Example for n = 2. The circle represents the trust-region.

2.1.1 Wedge

Algorithm 1 can be modified in a huge number of ways with varying characteristics. Since
we are interested in derivative-free optimization, preferably on quadratic models, we have
studied the algorithm Wedge by Marazzi and Nocedal [9]. We are interested in quadratic
models because they can model dependence between two variables in a way linear models
can not. The Wedge algorithm tries to avoid degeneracy when building and updating the
model by applying ”wedge”-constraints, thus defining a taboo region, Wk, where we may
not search for new iterates. These wedge-constraints and the taboo-region is illustrated
in Figure 2.1. Wedge is an algorithm for unconstrained optimization, that is, it doesn’t
handle constraints.

In order to uniquely define a quadratic model at iteration k of the form

Qk(xk + s) = f(xk) + gT
k s +

1

2
sT Gks, s ∈ <n (2.4)

that interpolates between a set of points we need to determine the coefficients gk ∈ <n,
and the symmetric n × n matrix Gk, a total of m = 1

2
(n + 1)(n + 2) − 1 scalar unknowns.

The number of variables are denoted n. We thus need m so called interpolation points,

yl = xk + sl, l = 1, ...,m.

When the interpolation is done we compute a trial step sk by solving

minimize
s∈<n

Qk(xk + s) = f(xk) + gT
k s +

1

2
sT Gks, (2.5a)

subject to ‖s‖ ≤ ∆k, (2.5b)

s 6∈ Wk (2.5c)
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A formal description of the algorithm is given in Algorithm 2. Here y1, ..., ym is the
interpolation points that are used to define the model. The constants α and β are used
when updating the trust-region. The norm is euclidean, `2-norm.

In step 6 we keep a point if it is closer to the current iterate than is ylout , the interpolation
point farthest away from the currently best point xk. This helps improve the model in
the neighborhood of xk. Thus, if a sequence of unsuccessful trial steps is generated and
∆k decreases sufficiently, the trial point will eventually be admitted as an interpolation
point. As a result, the interpolation model Qk will become increasingly accurate, so that
eventually a successful step will be computed. The authors of [9] have so far only been
able to prove convergence of linear models, they are currently trying to prove convergence
of quadratic models, that is, Equation (2.4).

In interpolation-based trust-region methods there are two types of iterations. The first
is the minimization iteration, in which one tries to reduce the value of the algebraic model
Q, and the other a so-called simplex iteration designed to define a model that approximates
f better. Algorithm 2 only performs one type of iteration, the minimizing one. To avoid
problems with bad geometric properties of the model, a geometric constraint is imposed
in the minimization problem. It basically forbids the algorithm to search in a taboo region
Wk. The taboo region is defined by a maximum angle γ between the vectors sl = yl − xk,
between xk and the satellites yl, and the normal to sl, bk; see Figure 2.1 and [9] for details.

The step computation uses a procedure called Quadstep, which first finds the solution
sTR of the trust-region subproblem (2.5), ignoring the wedge constraint. This method is
described in [10]. If the wedge constraint is violated Quadstep computes a sequence of trial
steps that move away from the taboo region in a direction in which the violation of the
wedge constraint initially decreases. This is done until the constraint is satisfied or until
the objective value has increased too much with respect to the starting value at sTR; see
[9] for details.

We found an implementation of this algorithm in Matlab code on the internet, WEDGE;
see [18]. When we tested it, we got better results if we altered the radius update criteria:
We do not shrink the trust-region radius quite as much if the test point, xk + s, is closer to
the current iterate than is the farthest satellite even though it generates a worse objective
value. This is because we don’t want to shrink the trust-region too fast. The new criteria
slow down the convergence-rate because we have relaxed the “shrink-criterion”. The model
will become more and more accurate when we add test points to our satellite set, thus
increasing the probability of finding an accurate test point.

The initial sample points are, in this implementation, the vertices and midpoints on the
edges of a simplex in <n, see Figure 2.2. The starting point is x. The points marked ?, are
x±∆ei, i = 1, ..., n. The sign is randomly determined by the algorithm. The point marked
• is the midpoint of the edge between two different x±∆ei. The points marked # are the
midpoints of the edges between x and each x±∆ei. There is a degree of randomness in the
initialization of the sample points and also in the output. It is therefore recommended that
each problem is solved five times, to increase the chance to get an initial model that fits the
real objective well. The randomness is a necessity and disadvantage with this algorithm.

Wedge is developed for unconstrained optimization, that is, it can’t handle constraints.
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Algorithm 2 Wedge

Step 1: Initialization. Choose the trust-region parameters α, β ∈ (0, 1) and an initial
point x0. Select an initial set of satellites Σ0 = {y1, y2, ..., ym} such that x0 ∪ Σ0

is non-degenerate. Set k = 0.

Step 2: Find the satellite that is farthest from the current iterate:

ylout = argmax
y∈Σk

‖y − xk‖

.

Step 3: Model update. Define a model Qk(xk + s) that interpolates {xk} ∪ Σk, and
define the wedge Wk.

Step 4: Step calculation. Compute sk by solving Subproblem (2.5) approximately, and
evaluate f(xk + sk).

Step 5: Set ared(sk) ≡ f(xk) − f(xk + sk) and pred(sk) ≡ Qk(xk) − Qk(xk + sk).

Step 6: Trust-region update. If ared(sk) > α ·pred(sk), choose ∆k+1 such that ∆k+1 ≥
∆k, else set ∆k+1 = β · ∆k.

Step 7: If f(xk + sk) ≤ f(xk) (successful iteration)
Update the current iterate and include xk in the satellite set, discarding ylout :
a. xk+1 = xk + sk

b. Σk+1 = {xk} ∪ Σk \ {ylout}.
Else (unsuccessful iteration)
If the new trial point is closer, in Euclidean distance, to the current iterate than
ylout , admit it to the satellite set, discarding ylout ; otherwise, discard the new trial
point:
c. xk+1 = xk

d.

Σk+1 =

{

{xk + sk} ∪ Σk ∪ \{ylout} if ‖ylout − xk‖ ≥ ‖(xk + sk) − xk‖
Σk otherwise.

Step 8: Set k = k + 1. Goto step 2.
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Figure 2.2: Simplex in <2
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2.1.2 UOBYQA and NEWUOA

In [13] Powell presents an algorithm that performs both types of iterations (minimiza-
tion and simplex iterations) mentioned in Section 2.1.1, in contrast to Wedge that only
performs the minimization step. Powell uses Lagrangian functions to guarantee the cor-
rectness of the interpolation; see below. Also, he does not allow the trust-region radius to
increase, the motivation is that more decreases are needed later to achieve convergence if
the radius is allowed to increase. Recently, Powell has improved his algorithm UOBYQA
(Unconstrained Optimiztion BY Quadratic Approximation) into NEWUOA (NEW Un-
constrained Optimization Algorithm) so that only m = 2n + 1 interpolation points are
needed instead of m = 1

2
(n + 1)(n + 2); see [14]. In both algorithms the user must supply

the initial point xb and the initial and final values of the trust-region radius, ρbeg and ρend.
The user also has to provide a routine that calculates values of the objective function f(x).
Both methods are, as the names reveal, developed for unconstrained optimization. Like
Wedge they can’t handle constraints. The quadratic model is of the same form as that in
Wedge; see Equation (2.4).

The interpolation constraints are,

Q(xi) = f(xi), i = 1, 2, ...,m, (2.6)

where m is the number of interpolation points. Also required are the Lagrange functions
of the interpolation Problem (2.6). For j = 1, 2, ...,m The j-th Lagrange function being
the quadratic polynomial from <n to <

`j(xi) = δij, i = 1, 2, ...,m, (2.7)

where δij is the Kronecker delta,

δij =

{

1, if i = j,

0, otherwise



2.1 Trust-region methods 19

The Lagrange polynomial can also be formulated, compare with Equation (2.4),

`j(x) = cj + gT
j (x − xb) +

1

2
(x − xb)

T Gj(x − xb), x ∈ <n. (2.8)

(2.6) and (2.7) give us the identity

Q(x) =
m

∑

j=1

f(xj)`j(x), x ∈ <n. (2.9)

Using the quadratic model, (2.9), UOBYQA solves a trust-region sub-problem,

minimize Q(xk + d)

subject to ‖d‖ ≤ ∆,
(2.10)

where k is the index corresponding to the minimal value of f over all the previous iterates.
The norm is Euclidean and ∆ is a trust-region radius that satisfies ∆ ≥ ρ. We see that
Powell has two trust-region radii, ρ and ∆. ∆ is used in Problem (2.10) whereas ρ is used in
Problem (2.11). ρ is not allowed to increase because this would slow down the convergence
rate.

The other trust-region sub-problem is the one where a suitable new interpolation point
is moved by a model step,

maximize |`j(xk + d)|
subject to ‖d‖ ≤ ρ.

(2.11)

The reason for this calculation is that the new value xk + d is a suitable value for the
interpolation point xj. This choice of interpolation point maintains the non-degeneracy of
the interpolation problem, (2.6). Readers interested in the solving of the two subproblems
can read about it in [13].

The theoretically hard problem is how to combine these two subproblems so that the
algorithm converges to an optimal point. For convergence reasons a constant M is included
in the algorithm. M is an upper bound on the third derivatives of the objective function
(if they exist). If they exist, the difference between the quadratic model and the objective
function satisfies the condition,

|Q(x) − f(x)| ≤ 1

6
M

m
∑

i=1

|`i(x)‖x − xi‖3, x ∈ <n. (2.12)

This inequality speeds up the rate of convergence for general objective functions because
it constrains the problem and makes the feasible set smaller. The updating rules for ∆
depend on how well the quadratic model approximates the real objective function, much
like Wedge. Here we define r as,

r = [f(xk) − f(xk + d)]/[Q(xk) − Q(xk + d)]. (2.13)
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The value of r decides how to update ∆:

∆ =



























max[∆,
5

4
‖d‖, ρ + ‖d‖], r ≥ 0.7,

max[
1

2
∆, ‖d‖], 0.1 < r < 0.7,

1

2
‖d‖, r ≤ 0.1.

(2.14)

If the new value f(xk + d) is lower than f(xk), xk + d becomes an interpolation point. Let
t be the index of the new interpolation point. A new point xk + d can also be included as
an interpolation point if it satisfies

`(x̃t) 6= 0, (2.15)

where x̃t is the new position of the interpolation point. Otherwise the nonzero quadratic
polynomial `t would vanish on the new set of interpolation points so that the system of
Equations (2.6) would be singular.

If we combine Equations (2.15) and (2.12) we get a measure on which interpolation
point is the best one to move. This is done by letting t be the value of i which gives the
maximal value of the product

|`i(xk + d)|‖xk + d − xi‖3, i = 1, 2, ...,m. (2.16)

The second term promotes the replacement of a point that is far from the current best
vector. This value of t is calculated whenever f(xk + d) is lower than f(xk) or when one
of the terms in 2.16 exceeds one. Otherwise t = 0 is preferred.

When the quadratic model seems to be inadequate a model step is carried out. It picks
a point from the set

J = {i : ‖xi − xk‖ > 2ρ}, (2.17)

usually it is the point that has the property

‖xj − xk‖ = max{‖xi − xk‖ : i ∈ J }, (2.18)

according to Powell. Then Problem (2.11) is solved to get the move d.
If the situation arises that the quadratic model is satisfactory but we get a ‖d‖ ≤ ρ

when solving (2.10),then the algorithm reduces ρ from ρold to ρnew according to

ρnew =











ρend, ρend < ρold ≤ 16ρend√
ρoldρend, 16ρend < ρold ≤ 250ρend

0.1ρold, ρold > 250ρend

(2.19)

The algorithm is summarized in Algorithm 3. The convergence to a stationary point is
taken care of by the properties of ρ. When the model is unable to improve the solution for
a certain ρ we shrink the trust-region radius to say, one tenth. When ρend is reached we
have the desired precision of the solution.
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Turning to NEWUOA, it is basically the same algorithm as UOBYQA. In UOBYQA
the number of interpolation points for the quadratic model is m = 1

2
(n + 1)(n + 2) which

increases as n2 with the number of variables. The difference in NEWUOA; see [14], lies in
the use of the Frobenius norm in measuring the change in ∇2Q. This reduces the number
of points to m = 2n + 1 which only increases as n. The Frobenius norm of a matrix
is the square root of the sum of squares of its elements. In UOBYQA the model Q is
uniquely defined by the interpolation conditions. In NEWUOA the remaining freedom in
Q is eliminated by minimizing the Frobenius norm ‖∇2Qk+1 − ∇2Qk‖F , while satisfying
the linear constraints

Qk+1(xi) = f(xi), i = 1, 2, ...,m. (2.20)

This procedure is implemented when updating the quadratic model. It follows that the
updating technique provides the new model

Qk+1(x) = Qk(x) + {f(x+
t ) − Qk(x

+
t )}`+

t (x), x ∈ <n, (2.21)

where `+
t is chosen so that ‖∇2`+

t ‖F is minimal subject to the Lagrange conditions

`+
t (x+

i ) = δit, i = 1, 2, ...,m. (2.22)

x+
i are the new set of interpolation points after a model step and x+

t = xk+dk. The number
m = 2n+1 is chosen because it forces the second derivative matrix of every quadratic model
to be diagonal, which reduces the work of solving Equation (2.10). At the time this report
was written, there was no formal description of the NEWUOA algorithm available since
it was released in January 2004. We found an implementation of this algorithm on the
internet; see [12]. The algorithm is written in Fortran77.

2.2 Our method

Our method is based on, but not identical to the basic trust-region algorithm, that is,
Algorithm 1. The difference is that we don’t test whether our trial point has a better
objective value than the previous points. We neither increase nor decrease the trust-
region. The search for a better objective value starts at a point, x0, which is believed to
be rather good. The next step is to span a ball with the radius ∆ in scaled variables and
having x0 as the center. The ball has the dimension n, that is, as many dimensions as
variables. Then the idea is to build a quadratic model, Q, of the objective function. The
construction of a model is made by calculating the objective function inside as well as on
the bounds of the ball. The objective function is calculated four times on each coordinate
axis; at x0 ± ej and at x0 ± 0.35 · ej where ej is the j-th coordinate vector in <n . The
objective function is also calculated at x0 + 1√

2
(±ej ± ei) for each pair (i, j) of variables.

See Figure 2.3 for n = 2.
The objective value is hence calculated in 4n + 4n(n − 1)/2 points, where n is the

number of variables. Having these objective values calculated, the data is fitted to a
quadratic function Q, which becomes the model of the objective function. The next step
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Algorithm 3 UOBYQA

Step 1: Initialization. The user must specify the starting point xb, the original and
ending trust-region radii ρbeg and ρend. The algorithm then sets 1

6
M = 0, because

this is the least upper bound on the third derivatives, ρ = ρbeg,∆ = ρbeg, j = 0
and k becomes the least integer in {1,...,m} that has the property

f(xk) = min {f(xi) : i = 1, 2, ...,m}. (2.23)

Step 2: If j = 0, the Problem (2.10) is solved, which provides the trial step d. Further,
the number DNORM = ‖d‖ is noted and if DNORM < 1

2
ρ goto step 7.

Step 3: If j > 0 the value f(xk + d) is calculated. The numbers Q(xk + d) and `i(xk +
d), i = 1, 2, ...,m are computed too. The value FOLD = f(xk) is noted. Then the
parameter 1

6
M is overwritten by,

max{1

6
M, |Q(xk + d) − f(xk + d)|/

m
∑

i=1

|`i(x)|‖x − xi‖3} (2.24)

to assure that it is large enough.

Step 4: If j = 0, then ∆ is updated according to Equation (2.14). Further, t is selected
as suggested in the paragraph with Equation (2.16). Alternatively, if j > 0, then
t is set to j.

Step 5: If t > 0, then the interpolation point xt is moved to the position x̃t = xk + d.
Update the quadratic model and the coefficients of the Lagrange functions so
that they satisfy Equation (2.9). Moreover the value of k is changed to t if
f(x̃t) < FOLD. Let DMOVE be the Euclidean distance between the old position of
xt and xk for the new value of k.

Step 6: If t > 0 and if at least one of the four conditions

j > 0, f(x̃t) < FOLD, DNORM > 2ρ, DMOVE > 2ρ (2.25)

holds, then j is set to 0 and we go to step 2 in order to begin a trust-region step.

Step 7: Search for a positive integer j, according to the paragraph including Equation
(2.17). If one is found a model step d is calculated, otherwise j is set to 0.

Step 8: If j is positive or both j = 0 and DNORM > ρ occur, go to step 2.

Step 9: If ρ > ρend, then decrease ρ according to (2.19) and set xk to xk + d before
branching to step 2 for the next iteration.

Step 10: Return the current point xk and terminate.
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Figure 2.3: Points on and in the unit circle where the objective function is calculated

is to find the minimum of the model inside a cube with side length 2∆, centered around
the origin. In other words we search for xk+1 both inside and outside the ball (If we hadn’t
done so, the bounds wouldn’t been linear, since a ball is impossible to describe with linear
constraints). The last step is to set xk+1 as the origin and then span a new ball with the
same radius and start all over. The number of iterations is decided by the user in advance.

Algorithm 4 Our Method

Step 1: Initialization. The initial point x0 and an initial trust-region radius ∆ are given.
Set k = 0.

Step 2: Model definition. Define the set U of finite points, as U = {xk, xk ± ej j =
1 . . . n, xk ± 0.35 · ej j = 1 . . . n, xk ± 1√

2
· ej ± 1√

2
· ei j = 1 . . . n i = 1 . . . n}.

Evaluate the function value f(x), ∀x ∈ U . Define the quadratic model, Q.

Step 3: Step calculation. Compute a step sk that reduces the model such that
‖xk + sk‖∞ ≤ ∆.

Step 4: Move the origin. Set xk+1 = xk + sk. Increase k by 1 and go to Step 2.

At first sight one could find our method unorthodox, especially for the reader who is
familiar with the basic trust-region algorithm.The fact that we never compare the result of
the optimization of the algebraic model Q(xs) with the real function value f(xs) might cause
problem. We believe that our model is good and gives a proper value of the real function
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value. We draw that conclusion from the premise that 4n+4n(n−1)/2 interpolation points
are used when the number of interpolation points necessary are only (n + 1)(n + 2)/2. All
of our interpolation points x lie inside a ball with radius ∆, that is ‖x‖2 ≤ ∆, x ∈ U ,
but we look for new points in a cube with side length 2∆, ‖xk+1‖∞ ≤ ∆. This isn’t the
common procedure for trust-region methods, but once again we believe that the numerous
interpolation points will produce a good model so that we can trust the result even if some
point lie outside the ball but inside the cube.

We choose ∆ to be 1. The software used were WAVE and Matlab. The decision of where
to evaluate the objective function is made in Matlab. In WAVE the objective function
values are calculated. The function lsqcurvefit in the Matlab Optimization Toolbox is used
to fit data to the algebraic model by solving the non-linear curve-fitting problem in the
least-squares sense [8]. Another function in the Matlab Optimization Toolbox is quadprog
[15], which is used to find the optimum of the objective function.

In our method convergence is not guaranteed, since no comparison is made between the
function values of different iterates; it is not even guaranteed that the solution found is as
good as the starting point. A simple comparison between f(xk+1) and f(xk) could fix the
problem that we might move to a point that is worse than the origin.

2.3 Generalized Pattern Search (GPS)

Pattern Search methods have been around for a while. Hooke and Jeeves formulated
the original pattern search method in 1961, but it was not until 1997 that V. Torczon
constructed the general pattern search method and proved its convergence [17]. Since the
description of the algorithm in the article of C. Audet, J.E. Dennis Jr. [2] is equivalent
to Torczon’s version, but easier to understand, we choose to use their formulation and
Torczon’s convergence results.

Pattern search algorithms generate a sequence of iterates xk, k = 1, . . . ,. At each
iteration, the objective function is evaluated at a finite number of points on a mesh to try
to find an objective value that is lower than the lowest found so far. A search strategy
may be used to select mesh points in which the objective function will be evaluated. If
the search strategy fails to find a point where the objective value is lower than the best
solution found so far, the objective will be evaluated at all the neighbors of xk in the mesh
until a better solution is found. This is called the poll step. If the objective function is
evaluated at all the neighbors of xk in the mesh and no better solution is found, the mesh
will be refined and the search for a better solution will start over in the refined mesh. If
a better solution is found the parameter defining the size of the mesh in each direction is
kept the same or increased.

Pattern search algorithms are defined through a finite set of matrices S, each of whose
columns are a positive set in <n. However, for technical convergence reasons, [17], every
column s of each matrix must be generated from a single matrix GB ∈ <(n×n) and from
a finite set of integer generating matrices G` ∈ Z(n×n) for ` = 1, 2, . . . , `max as follows:
s = GBG`z for some z ∈ Zn. The current mesh Mk is defined as Mk = {xk + ∆kSz : z ∈
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Zns, Sz ∈ S}, where S is a finite set of matrices S such that S span <n, ∆k ≥ 0 is the
mesh size parameter, and ns is the number of columns in the matrix Sz. During the poll
step the objective is evaluated at the mesh points neighboring the current point. They are
defined as {xk + ∆ks : s is a column in Sk} for some positive spanning matrix Sk ∈ S.

Algorithm 5 GPS

Step 1: Initialization. An initial point x0 and an initial mesh M0 defined by ∆0 > 0 are
given such that x0 ∈ M0. Let X0 ⊂ M0 contain x0. Set k = 0.

Step 2: Search. Use some search strategy to find xk+1 ∈ Xk such that f(xk+1) ≤ f(xk).
If such a vector xk+1 is found, declare the Search successful and let ∆k+1 ≥ ∆k,
increase k by 1 and go to Step 2. Otherwise go to step 3.

Step 3: Poll. If Search is unsuccessful and xk minimizes f(x) over x ∈ {xk + ∆ks : s
is a column in Sk} then declare Poll unsuccessful, set xk+1 = xk, and refine the
mesh size: ∆k+1 ≤ ∆k. Else declare Poll successful, set xk+1 to a point in Mk

such that f(xk+1) ≤ f(xk) and set ∆k+1 ≥ ∆k. Increase k by 1 and go to Step 2.

We used the software package NOMADm, Nonlinear Optimization for Mixed variables
And Derivatives-Matlab, which is a Matlab code that runs various GPS algorithms to solve
nonlinear and unconstrained optimization problems [1]. The algorithm chosen don’t have
any Search step, which means that the search strategy is to have no points as candidates
for the next iteration. The poll directions are the Euclidean coordinate directions and their
negatives and the objective function for the points in the poll set are calculated in each of
these directions; that is e1,−e1, e2,−e2, . . .. If an iteration Poll is successful in finding an
improved mesh point, then the mesh is enlarged by double the mesh size parameter ∆k,
else the mesh size parameter is halved. The initial mesh size parameter is a tenth of the
initial point, that is ∆0 = 0.1x0. The algorithm terminates when the first of the following
criteria is met;

• the mesh size parameter falls below a certain level,

• the CPU time is longer than a constant specified by the user,

• the number of iterations, or the function evaluations exceed a fixed number.

The algorithm guarantees that if f(x) is continuosly differentiable where f(x) < f(x0),
then for the sequence of iterates {xk} produced by the generalized pattern search method,

lim
k→+∞

‖∇f(xk)‖ = 0 (2.26)

In other words, after infinitely many function evaluations the algorithm will converge to
a point which fulfills the first-order necessary optimality condition for unconstrained opti-
mization problems.
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Figure 2.4: The algorithm misses the global minimum if the global minimizer of the response
surface is the next local observation point.

2.4 rbfSolve

Gutmann has formulated a method [7, 6] whose target is to find a global optimum for con-
tinuous not necessarily convex functions on a compact subset of <n. The solver rbfSolve
[3] in the Tomlab package CGO is an implementation of Gutmann’s algorithm. The algo-
rithm uses radial basis functions for the interpolation, when building an algebraic model
of the objective function. This algorithm is efficient for problems for which the function
evaluations are costly, because the algorithm tries to estimate the global optimum when
searching for it.

The solver rbfSolve builds a model of the objective function within the feasible area, S.
The model is also called a response surface. The model is built by interpolating a number
of function values using both radial basis functions and polynomials. The next step is to
determine where to evaluate the objective function next. The naive and straightforward
idea would be to apply some optimization method to find the global minimizer of the
algebraic model and then evaluate the objective function at this point. If this strategy
is used, a global optimum may easily be missed. Figure 2.4 shows the objective function
as a solid curve and the response surface as a dashed curve. The circles indicate the
points where the objective function is calculated. If one choose the global minimizer of
the response surface as the next point to evaluate the objective function, one misses the
global minimum to the left in the figure. A better strategy is to base the decision where to
evaluate the objective function next on the response surface’s ”bumpiness”. The trick is
to estimate the global optimum value and for every point y /∈ {x1, . . . , xk}, assume that it
is the global optimum. {x1, . . . , xk} being the interpolation points. The next step is to fit
the surface through y and x1, . . . , xk. If the surface is very “bumpy”, one might not accept
that y is a global minimizer. The bumpiness is measured with the function σ, defined in
Equation (2.31) below. The strategy is now to choose the next evaluation point to be the
point whose radial basis function minimizes σ. Since this includes no objective function
evaluations, it is a rather cheap operation.

We next give a more formal description of this algorithm. The goal function is calculated
at the points x1, . . . , xk. The crude estimate f∗

k of the global optimum is computed as
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described below. For each y /∈ {x1, . . . , xk} there exists a radial basis function sy such that

sy(xi) = f(xi), i = 1, . . . , k, (2.27a)

sy(y) = f∗
k . (2.27b)

The next point xk+1, where the objective function is calculated, is equal to the vector
whose radial basis function is the least bumpy, that is, minimizes (σ(sy)). The radial basis
function interpolant has the form

sk(x) =
k

∑

i=1

λiφ(‖x − xi‖2) + bT x + a, (2.28)

where λ = (λ1, ..., λk)
T ∈ <k, b ∈ <n, a ∈ <, and φ(r) = r3 or φ(r) = r2 log r. To find the

parameters λ, b and a, one solves the system of linear equations:
(

φ P
P T 0

)

·
(

λ
c

)

=

(

F
0

)

, (2.29)

where φ is a k × k matrix with element (i, j) equal to φ(‖xi − xj‖2),

P =











xT
1 1

xT
2 1
...

...
xT

k 1











, λ =











λ1

λ2
...

λk











, c =















b1

b2
...
bn

a















, and F =











f(x1)
f(x2)

...
f(xk)











(2.30)

The function σ is defined as

σ(sk) =
k

∑

i=1

λisk(xi). (2.31)

It is shown in [7] that σ(sy) equals

σ(sy) = σ(sk) + µk(y)[sk(y) − f∗
k ]2, y ∈ S\{x1, ..., xk}, (2.32)

where µk(y) is the coefficient corresponding to y of the Lagrangian function L that satisfies

L(xi) = 0, i = 1, . . . , k,

L(y) = 1.
(2.33)

Thus minimizing σ(sy), y ∈ S is equivalent to minimizing gk, where gk is defined as

gk(y) = µk(y)[sk(y) − f∗
k ]2, y ∈ S\{x1, ..., xk}, (2.34)

How the target values f∗
k are chosen is important for the performance of the algorithm.

If the value of f∗
k is very low the algorithm will perform a global search. If f∗

k is nearer the
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minimum of sk(y) the search will be more local. So a good mixture of low and high values
of f∗

k for different k is vital. Two different strategies are implemented in rbfSolve. In [7]
Gutmann rejects one of the strategies as ”not useful anymore”; left is just one strategy to
perform a cycle of length N + 1, N ∈ N and choose f∗

k as

f∗
k = min

y∈S
sk(y) − W

(

max
i

f(xi) − min
y∈S

sk(y)

)

, (2.35)

where

W =

[

(N − [k − kinit]) modulo (N + 1)

N

]2

(2.36)

where kinit is the initial number of points. In the Tomlab implementation of Gutmann‘s
algorithm N is fixed to be 5. The maximum of f(xi) is not taken over all points, except
for the first step of the cycle. In each of the subsequent steps in the cycle, the k − kmax

points with the largest function values are not considered when computing the maximum.
The maximum of f(xi) is decreasing, and therefore f∗

k will increase throughout the cycle.
The cycle starts with global searches and tends towards more local searches. Left to define
is:

kmax =

{

k, if [(k − kinit) modulo (N + 1)] = 0,

max{2, kmax − floor((k − kinit)/k)} otherwise
(2.37)

A more concise formulation of the algorithm is given in Algorithm 6.
Convergence is guaranteed for every continuous function f if the sequence of target

values f∗
k is chosen carefully. Then there will be infinitely many function evaluations and

the sequence (xk) will be dense in the feasible area S. In other words, if we evaluate every
point y ∈ S the algorithm will converge to the global optimum. In practice, however, the
algorithm will not have to visit every point in S, in order to get an improvment in the
objective function.
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Algorithm 6 rbfSolve

Step 1: Initialization. Choose k initial points x1, ..., xk. Compute Fi = f(xi), i =
1, 2, ..., k, and set kinit = k. In the Tomlab implementation kinit = 2n + 1.

Step 2: Start cycle. Start a cycle of length N + 1. For every run in the cycle, perform
Step 4–9. In the first run perform also step 3, before Step 4–9.

Step 3: Stop criterion. If the maximum number of function evaluations is reached, then
quit.

Step 4: Compute sk. Compute the radial basis function interpolant sk by solving the
system (2.27) of linear equations.

Step 5: Minimize sk(y). Solve the minimization problem minimzey∈S sk(y). The output,
y∗, is used in the step 6.

Step 6: Compute f∗
k . Compute f∗

k according to (2.35).

Step 7: Find xk+1. The point xk+1 is the value of y that minimizes gk(y) according to
(2.34).

Step 8: Compute Fk+1. Compute Fk+1 = f(xk+1) and set k = k + 1.

Step 9: Goto. If we have reached the end of cycle, go to step 2. Otherwise go to step 4.





Chapter 3

Project 1 - Testing the algorithms

The aim of this project is to test and compare the different algorithms on a smaller problem.
The goal is to discharge some methods as unsuitable for this type of problems and not
having to test them on the larger problem in the main project. The problem in this project
is to maximize the power of the engine. In other words, we wish to maximize the torque at
6000 rpm, since power equals speed times torque, and 6000 rpm is the highest speed of the
engine. A popular measure of engine performance is the number of horsepowers, which is
also frequently used in the marketing of cars. Therefore, great effort is made to maximize
the power.

3.1 Experimental design

In this section the experimental design will be presentated. The work with the experiment
is divided into three parts, improving the WAVE-model in order to gain faster calcula-
tions, see Section 3.1.1, configuration of the software so that all the different software
communicate with each other, see Section 3.1.2 and finally the optimization, see Section
3.1.3.

3.1.1 Improving Wave

Because of the nature of the optimization methods explored in this work we had to speed up
WAVE. Several iterations are needed and every iteration includes many evaluations of the
objective function. The time step in explicit methods depends on the size of the smallest
component cell and is therefore almost constant for different values of speed (rpm). This
causes the computational time to be longer at low speeds than at high speeds. With ten
different speeds, one sweep between 1500 and 6000 rpm took more than 20 minutes in the
beginning. When we increase the discretization lengths for the elements which were the
bottlenecks, the computational time shrinks to about 6 minutes with fairly little difference
in output results, see Figure 3.1.
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Figure 3.1: Comparison between the original model and the ”fast” model with increased dis-
cretization lengths

3.1.2 Software configuration

Next we have to get Wave and Matlab to communicate. The input to Wave is a .wvm
-ASCII file which defines the geometry of the engine, valvetiming etc. We create a Matlab
program autowvm.m that produces a .wvm-file given a certain set of variables x. This file
is used in all of our algorithms. The .wvm-file is run in Wave and the output is a .stb-file,
which is a .ASCII file containing the value of the torque. For the algorithms written in
Matlab code, fully or partly, the process looks like in Figure 3.2:

Matlab Wave
.wvm-file

.stb-file

x

t(x)

Figure 3.2: Flow chart for algorithms written in Matlab code

For NEWUOA, which is written in Fortran 77, the process scheme can been seen in
Figure 3.3, below. Matlab is still used to start and control Wave. The vector x is placed
in Matlab‘s workspace, using the possibility to call Matlab from a Fortran application.
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replacemen

Matlab WaveNEWUOA
.wvm-file

.stb-file

xx

t(x)t(x)

Figure 3.3: Flow chart for NEWUOA

In Table 3.1 we present a short list of m-files developed for the different methods we
choose to implement in project 1.

3.1.3 Optimization

When the software development is complete for the different algorithms, we test them on
our problem. The objective function is to maximize torque at 6000 rpm, (see section 1.4.1
for notation), which we formulate as:

minimize
x

−t(x) (3.1)

In other words we have an unconstrained problem and all the methods except rbfSolve
will solve it as an unconstrained problem. RbfSolve can only solve box-bounded problem
so we have to convert our unconstrained problem into a box-bounded one. It is possible
the optimal solution becomes infeasible when the unconstrained problem is converted to
a box-bounded one. The bounds are therefore set so that it is unlikely that the optimal
solution becomes infeasible.

The local solvers need a starting point which is chosen to be the current values for the
existing engine as seen in Table 3.2. The global solver rbfSolve does not need a starting
point, as mentioned above it needs only the upper and lower bounds on the variables,
which are also specified in Table 3.2. The trust-region radius and upper and lower bounds
are set after consultation with our supervisor at VCC.

Table 3.2: Starting values and bounds for the different variables
Variable xi

0 Lower bound Upper bound Trust-region radius
Cam-top angle intake (◦) 487 430 510 8
Cam-top angle exhaust (◦) 250 220 300 8
Cam duration intake 1 0.95 1.3 0.025
Cam duration exhaust 1 0.95 1.3 0.025
Intake-pipe diameter (mm) 43.5 20 60 3
Intake-pipe length (mm) 325 100 500 10

The stopping criteria varies between the different algorithms, according to the following:
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Table 3.1: Matlab files Project 1
Our Method
TheMother.m The executable file where the starting point,

x0, is set and the variables are defined
plan.m Decides which points to interpolate and

scales them into a unit cube
Polynom.m Creates a polynomial by interpolation by

calling lsqcurvefit
Opt.m Applies quadprog to our polynomial
rbfSolve
setMoreSpec.m Definition of the problem. The variables to

use, how many iterations to do, etc.
drive.m Executes the algorithm, sets the algorithm’s

specifics (which are the same for all prob-
lems).

FuncEval.m Evaluates the objective function by running
Wave

NEWUOA
main.f A Fortran file where the number of variables

and iterations are set. Its subroutines man-
ages the optimization

calfun.f A Fortran subroutine that calls Matlab to
execute start.m

start.m Call on calfun.m and receives the objective
value and exits Matlab

calfun.m same as FuncEval.m
Wedge
driver.m The driver of wedge.m
wedge.m The framework for the algorithm
setSpecs.m Sets the number of iterations, defines the up-

date of the trust-region, and the convergence
tolerance

user ufn.m Objective function evaluation and scaling of
the variables

user usetup.m The origin
GPS
func.m Objective function evaluation
func x0.m The starting point
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Table 3.3: Result from project 1
Algorithm Torque (Nm) # function evaluations
Our method 209.15 168
GPS 210.80 200
rbfSolve 213.06 200
NEWUOA 212.417 118
WEDGE 212.00 127

Our Method: Stops after a specified number of iterations.

rbfSolve: Stops after a specified number of function evaluations.

NEWUOA: Stops when ρ = ρend.

Wedge: Stops when the trust-region radius ∆ was smaller than 0.1.

GPS: Stops after a specified number of function evaluations.

3.2 Results and discussion

Before the optimization of the variables, the torque at 6000 rpm was 204.75 Nm. All of
the algorithms find solutions which increase the torque. The algorithms and their stopping
criteria are very different from each other. It is hard to compare different algorithms
without knowing the optimal solution in advance, and since the function evaluations are
costly we don’t want to perform too many. Especially in the main project, when the
function evaluations will become even more expensive, it is important to reach a result
quickly. The most fair test to perform is to let the different algorithms use the same
number of function evaluations. We set the maximum number of function evaluations
allowed to 200. The result of the optimization and the number of function evaluations
used by different algorithms is presented in Table 3.3. One of them - our method - can’t
use all the function evaluations because each iteration takes a certain amount of evaluations
that have to be carried out before a new point can be found. NEWUOA and WEDGE
converges and does not improve after 118 and 127 evaluation respectively.

In Table 3.3 one can see that rbfSolve gives the best result after 200 function evaluations
and NEWUOA gives the second best value using fewer function evaluations than rbfSolve.
The different algorithms find different solutions to the problem as seen in Table 3.4.

Table 3.4: x
∗ for project 1

Algorithm x1 x2 x3 x4 x5 x6

Our method 483.17 247.5 1.050 1.043 49.2 330.8
GPS 487.0 250.0 1.075 1.025 66.7 427.4
rbfSolve 482.1 247.2 1.078 1.033 53.0 277.5
NEWUOA 480.4 246.1 1.071 1.011 54.7 284.0
WEDGE 479.1 247.4 1.060 1.035 63.0 303.8
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Since the variables don’t have the same unit it is hard to see what a large change in
the value of a variable is and what a smaller one is, but the size of the trust-region radius
in Table 3.2 gives us a hint. In Table 3.5 the change in the different variables in number
of original trust-regions are displayed. The unit is a bit awkward for the global solver
rbfSolve, which neither have a trust-region nor does it has a start value x0. GPS don’t
have a trust-region radius, but it has an initial mesh size which in some ways plays the same
role as a trust-region. The initial mesh size doesn’t have the same value as the trust-region
in Table 3.2. Despite these differences Table 3.5 still gives an idea of which variables have
changed the most in the algorithm’s respective solutions.

Table 3.5: x
∗ for project 1 in the unit number of original trust-regions

Algorithm x1 x2 x3 x4 x5 x6

Our method -0.4792 -0.3066 2.0000 1.7213 1.9069 0.5769
GPS 0 0 3.000 1.000 7.7333 10.2400
rbfSolve -0.6159 -0.3441 3.1080 1.3360 3.1495 -4.7452
NEWUOA -0.8438 -0.4931 2.8500 0.4281 3.7307 -4.1039
WEDGE -0.9871 -0.3252 2.7893 1.4109 6.4926 -2.1191

As one can see, the changes are small with some notable exceptions. It’s interesting to see
that rbfSolve finds a solution fairly close to both NEWUOA’s and WEDGE’s solution. This
indicates that the starting point lies near the point we believe to be a global optimum, since
we find a solution very close to the original with both global and local search methods. It
also indicates that the objective function behaves well near the starting point; an objective
function that, for example, have a barrier near the global optimum will trick the trust-
region to wander away in a wrong direction. The algorithms which are provided with a
starting point change the variable values in a way that is typical for each algorithm. Our
method uses many points to build a model and is therefore very slow. GPS changes one
variable at a time and the length of the step is due to the mesh size; the large change in x6

shows that at some point during the optimization the mesh size has been very large and
the algorithm found a better value for the objective function when increasing the value
of x6. GPS can’t find a solution that makes smaller changes in all variables at the same
time, since it only changes the value of one variable each iteration. Both NEWUOA and
WEDGE are trust-region methods; it is therefore not surprising that they show the same
behavior when given the same starting point and initial trust-region radius.

3.3 Conclusions

We have tested five algorithms on the same problem. All the algorithms tested improved
the performance of the engine at 6000 rpm. Some algorithms improved the performance
less than the others. The two algorithms whose improvment of the objective functions
wasn’t as good as the other algorithms was our method and GPS. Some algorithms used
more function evaluations than the others to achieve almost the same result. Since function
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evaluations are expensive, that is, time consuming and will be even more expensive in the
next project, the number of function evaluations is critical when choosing which algorithms
to use in the next project. For the algorithms that build models of the goal function, the
number of function evaluations used to do this is also important. So there are three criteria
to consider when choosing the algorithms to use in the main project:

1. Expected improvment of the objective function;

2. Few function evaluations;

3. Fast model building;

NEWUOA, rbfSolve and WEDGE gave the best results; NEWUOA and WEDGE used
the fewest function evaluations. The natural conclusion would be to use NEWUOA and
WEDGE in the main project. However, WEDGE uses O(n2) functions evaluations to build
a model of the goal function which means the number of function evaluations grows as n2

when the number of variables increases compared to NEWUOA and rbfSolve which just
use O(n). Even worse is the fact that we have to solve the problem five times in WEDGE
with different sets of initial points, to be sure that the result is stable and can’t improve
with a different set of initial points. With this in mind it is not wise to use WEDGE when
the number of variables increases and the function evaluations become more costly. The
conclusion is that NEWUOA and rbfSolve is worth utilizing in the main project.





Chapter 4

Project 2 - Optimizing the serial
intake valves

In this chapter we will solve and discuss the problem to optimize the engine with the SIV
described in Section 1.2.1. In Section 4.1.1 we solve the problem with a dip in the torque
graph. The way the optimization is performed, how the objective function is chosen and
similar matters are discussed in Section 4.1.2. The result of the optimization is presented
in Section 4.2 and discussed in Section 4.3, together with conclusions drawn from our work.

4.1 Experimental design

4.1.1 The mystery at 2000 rpm

When we began our work with this thesis, our supervisor at VCC told about a dip in the
torque graph at 2000 rpm when serial intake valves are used. This phenomenon struck him
as a bit odd, because when the SIV are not in use there is instead a peak at this speed.
After some investigations we found that this phenomenon originates on the intake side,
that is, between the air-intake and the plenum. When we studied the flow at 2000 rpm
in the frequency spectrum we saw a standing wave in the intake system over the air filter.
This standing wave seems to cause the dip. To deal with this problem, there is a number
of opportunities:

1. One can lengthen the intake pipes in order to move the dip towards lower engine
speeds where it doesn’t cause much damage,

2. one can reduce the diameter of the intake pipes for the same reason as above, or

3. one can place a resonator on the air filter, which works at a certain frequency with
a suitable bandwidth.

We tried all of the methods above and came to the conclusion that the last alternative
was the best, since that was the alternative that altered the original engine the least. The
resonator that we choose was a Helmholtz resonator, placed on the air filter.
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Figure 4.1: Helmholtz resonator
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Figure 4.2: The effect of a Helmholtz resonator

A Helmholtz resonator is an acoustic device, often found in audio speakers. It is built
like a bottle, with a neck of length L, a cross sectional area A and a volume V , see Figure
4.1. To calculate L when A, the frequency f and V are given, we use Equation (4.1),

f =
c

2π

√

A

V L
(4.1)

where c is the speed of sound. After studying the engine in the frequency domain we
could pin down the frequency we wanted to suppress to f = 84 Hz. With V = 1 dm3

and A = 1250 mm2 the length of the pipe becomes L = 534 mm. When we attached this
resonator to our engine we saw that it did exactly what it was supposed to do, suppress
the dip, as illustrated in Figure 4.2. This design was not optimized due to the limited time
allocated for this thesis.
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4.1.2 Optimization

The problem and its mathematical model are found in Section 1.4.1. As it is formulated
there, the number of variables are too many. The large number of variables would be a
problem even if the function evaluations were not so costly since we have no information
about the derivatives. Our solution is to separate the problem into two: One problem
deals with the hardware variables and the other deals with the software variables. First,
the entire problem is solved for a small number of engine speeds. This is done in order to
fix the values of the hardware variables. Then the hardware variables are fixed and the
software variables only are optimized for a larger number of speeds.

It is not useful to optimize the hardware for just one speed. We have to optimize for
several speeds simultaneously, otherwise the hardware variables can be set to something
that is unsuitable for many other speed values. As an example, long cam durations are
preferable at high speeds whereas the opposite is true for low speeds.

The plan is to optimize hardware and software variables at four different speeds: 1200,
3000, 4500 and 6000 rpm. These speeds are chosen so that as much as possible of the speed
range is covered. It is necessary to optimize both software and hardware variables during
this phase, in spite of the fact that the main purpose is to set the hardware variables. If
both hardware and software variables are optimized simultaneously, the benefits of the SIV
(software) are taken into consideration.

Since we are only concerned about four different speed values, we don’t run the simula-
tion of the engine transient from 1000 to 6000 rpm. Instead we simulate the engine at each
speed considered until WAVE converges. The mathematical formulation of the hardware
optimization is (see Section 1.4.1 for notation):

minimize f(x,y) = −
∑

s∈S
t(x,ys), (4.2a)

subject to lx ≤ x ≤ ux, (4.2b)

ly ≤ ys ≤ uy, ∀s ∈ S (4.2c)

x1 ≥ x2, (4.2d)

ys
3 ≥ ys

1 + ys
2, ∀s ∈ S, (4.2e)

where S = {1200 3000 4500 6000}. The difference between this formulation and the one in
Section 1.4.1 is that here the EGR is not minimized, since just adding SIV to the engine
will lower the EGR and we believe that this reduction will be enough to avoid knocking,
see Section 1.2. To receive an even lower EGR, one should choose γs > 0 in (1.7).

Next, we implement the two optimizing algorithms which we expect to give the best
results, based on the experience from the smaller problem, that is, rbfSolve and NEWUOA.
We allow the algorithms to use at most 300 function evaluations. However, NEWUOA is
for unconstrained optimization and Problem (4.2) is a constrained problem. This problem
is solved by the fact that when the algorithm gives WAVE an infeasible point as input,
the output from WAVE is very bad, that is, the objective value f(x,y) is very high. This
means that an infeasible point will give a result that the algorithm considers as bad and
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it will therefore reject that point. One could say that the constraints are embedded in the
objective function. rbfSolve, on the other hand, handles linear constraints.

In part two of the larger problem, our goal is to optimize the software variables. It is
not possible to optimize all the software variables at all speeds since then there will be too
many variables. We choose to optimize for one speed at a time. This is possible since the
software variables at two different speed values are not much related. The fact we have to
consider is that if the software variables varies too much with speed, there will be transient
effects when the SIV are too slow to keep up with the rapid changes.

Since it is not possible to optimize the software variables for every possible speed value,
one must discretize the speed interval and let the input to the engine be a linear interpo-
lation of the software variables between the discrete speed values. Our solution is to solve
the problem for each speed given in Table 4.1. The constraints (4.3b) keep the changes of
the values of the variables between speed values at a reasonable level. These constraints
yield more gentle transitions in the values of software variables and reduce the problem
that the SIV can’t keep up with rapid changes. More speed values are chosen among the
lower end values and where dips in the torque-curve typically occur than among the high
values.

Table 4.1: The engine speed values s ∈ S at which the software variables are optimized

s rpm s rpm s rpm
1 1300 7 2000 13 3300
2 1450 8 2100 14 3450
3 1600 9 2200 15 3600
4 1700 10 2600 16 4000
5 1800 11 2800 17 4400
6 1900 12 3000 18 4800

Hence, the following sequence of problems is solved in the order, s = 1, ..., 18:

minimize f(ys) = −t(ys), (4.3a)

subject to ys−1 − ∆ ≤ ys ≤ ys−1 + ∆, (4.3b)

ys
3 ≥ ys

1 + ys
2, (4.3c)

where ∆ ≥ 0[crank angles] are the allowed differences in software variables between two
subsequent speed values. In other words we have 18 problems with four variables in each
problem. The problems are solved separately, each time increasing the speed, starting with
1300 rpm. The starting point of the problems is taken from the previously solved problem
(s − 1), except when s = 1 where it is taken from the hardware optimization solution at
1200 rpm in the first project. The limit of the function evaluations is 50 per speed value.

For this problem we choose not to use the algorithm NEWUOA, since it does not handle
constraints. Furthermore its strength is to solve problems with many variables and these
problems only have four variables each, so we will use rbfSolve here.
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4.2 Results and discussion

The improvement made in the first part, optimizing the hardware variables according to
Problem (4.2), are shown in Figure 4.3. Both NEWUOA and rbfSolve was used to solve
this problem. NEWUOA and rbfSolve used 200 and 300 function evaluations respectively.
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Figure 4.3: Results of hardware optimization

Clearly, NEWUOA performs better with a fewer number of function evaluations. There
is an improvement in the torque at almost all speeds considered. The resulting torque at
each speed value is taken right before the little peak at the end of each speed considered.
This peak arises when we change the speed in WAVE rapidly and it can be ignored.
Notable is the remarkably high torque at 6000 rpm, that is, the highest power obtained. It
is almost as high as in project one where we considered 6000 rpm only, without SIV. This
indicates that the use of SIV results in an engine where the hardware design is focused on
the high-end speed range whereas the SIV themselves increase the torque at lower speeds.
The values of the optimized hardware variables are shown in Table 4.2

Table 4.2: Values of the optimized hardware variables
rbfSolve NEWUOA

x1 466 470
x2 258 251
x3 1.20 1.18
x4 0.95 1.08
x5 49.1 49.7
x6 333 326

With the values of the hardware variables from NEWUOA:s solution we started the
software optimization with rbfSolve. With 50 function evaluations for each s ∈ S and
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∆ = [20 15 20 15], the values of the software variables converged to those shown in Figure
4.4.
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Figure 4.4: The changing of software variables

In Figure 4.4 it can be seen that there are also some ripples around 2000 rpm. This
indicates that the objective function is still a bit unsmooth, despite our efforts with the
Helmholtz resonator. When the two lower curves coincide around 3500 rpm we get only
one lift and one closure since the first closure and second lift occurs at the same time. This
is optimal since it is favourable to keep the SIV open as long as possible at higher speeds
and since the SIV aren’t fast enough to open and close twice at high speeds.

These values of the software and hardware variables give the optimized torque-curve
seen in Figure 4.5.
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Figure 4.5: Effects on torque due to optimization and SIV
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As can be seen in Figure 4.5 there is a significant improvement of the torque in the
range between 2000 and 3500 rpm which are the most frequently used engine speeds.

Another interesting result which, to some extent, explains the raise in the torque is the
improvement achieved in volumetric efficiency as seen in Figure 4.6(a). It is easy to see
that there is a correlation between volumetric efficiency and torque. A well known fact in
the automotive industry is that high volumetric efficiency is a necessary, but not sufficient,
condition for high torque.
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Figure 4.6: Optimization results that may effect knocking

The big concern is now the effect of knocking; see Section 1.2. We do not know whether
or not it will occur. The risk for knocking increases with higher volumetric efficiency.
As mentioned, one way to lower the probability of knocking is to lower the exhaust gas
residuals (EGR). What happened to the EGR after the optimization is shown in Figure
4.6(b); we can see that the residuals are almost halved compared to the original values for
low speeds. This helps keeping the temperature down and hopefully prevents knocking.

4.2.1 Fuel consumption

With the torque-curves shown above, there is a potential for reducing the fuel consumption.
The high, low-end speed torque, allows a change in the gear ratio, that is, to put in an
extra gear like an overdrive. We did not have much time to focus on fuel consumption
but Jan Karlsson at VCC helped us to estimate the fuel consumption using a computer
program developed for such calculations. We applied the standard driving cycle, the ECUC
(European Combined Urban Cycle), which is a combination of the EUDC (Extended Urban
Driving Cycle) and UDC (Urban Driving Cycle), and which is used to certify the engine.
The fuel consumption, together with vehicle speed and gear for EUDC and UDC are shown
in 4.7.
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Figure 4.7: Driving cycles and fuel consumption

Because of the high, low-end torque we managed to decrease the fuel consumption with
about 14% compared to an engine without SIV and with about 5% to one with SIV but
not optimized, as seen in Table 4.3.

Table 4.3: Fuel consumption (g/kWh)

Without SIV SIV Optimized with SIV
UDC 616 538 507

EUDC 342 314 306
ECUC 441 395 379

4.3 Conclusions

If resonance phenomena occur we have to find out why they happen and then find a way
to compensate for them. It is very unlikely that the optimization process will fix them,
since most of the algorithms require a smooth goal function; resonance phenomena result
in a very unsmooth objective function.

We have tested two algorithms, NEWUOA and rbfSolve, on part 1 of this problem and
one algorithm, rbfSolve on part 2. The result is a higher torque at the low-end speeds and
more power, that is, higher torque at 6000 rpm. Between the low and the high-end speeds
the torque is almost the same (or higher) as for the engine without serial intake valves. We
believe that the reason why the engine without SIV has a higher torque than the engine
with SIV between 4250 rpm and 5250 rpm is that the engine without SIV has a variable
valve timing (VVT) which the engine with SIV doesn’t have. The volumetric efficiency is
above one for all speeds below 5000 rpm, and the EGR is almost halved, compared to the
original engine. There is a tradeoff between EGR and volumetric efficiency; the higher the
volumetric efficiency is the lower the EGR has to be to avoid knocking. Otherwise, the
improvements that we predicted in our hypothesis has been obtained.
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In Figure 4.3 one can see that NEWUOA, using fewer function evaluations, finds a
solution that is better than that found by rbfSolve. The comparison might be a bit unfair:
NEWUOA starts from a good point and rbfSolve starts with an area around the good
starting point. But on the other hand the algorithms have different requirements. The
conclusion is that if a good starting point exists a local optimizer like NEWUOA should
be used.

So far everything looks good, but high volumetric efficiency gives high pressure and as
mentioned in Section 1.2, high pressure might cause knocking. The problem is that WAVE
does not predict knocking. It should be necessary to perform some real engine testing to see
if knocking occurs. On the other hand, we believe that the SIV scavenging of the cylinders
will allow a higher volumetric efficiency than traditional engines, since lower EGR-values
indicate lower temperatures. To avoid knocking one could redo the optimization with a
goal function that gives priority to volumetric efficiency close to one at low speeds, and to
a high torque at higher speeds.

The minimum time required for opening and closing the SIV is probably a limiting
factor in how large improvement that can be acchieved. We have touched this issue very
briefly, and the preliminary results show that it would be good if the SIV were able to open
and close in 1 ms, instead of today’s 1.8 ms. If it isn’t possible to speed up the SIV one
has to consider to open just once during the intake stroke which results in two software
variables only for each engine speed.

We have tested just one objective function for each part of the project. As mentioned
in Section 1.6, it is hard to mathematically formulate a goal function for the problems in
this thesis. More work could thus be done on improving the expression of the objective
function.





Chapter 5

Conclusions

This thesis shows the value of utilizing mathematical optimization in engine development.
We have studied and implemented various derivative-free optimization methods. The ex-
pectancy of a 5% improvement in fuel consumption and torque compared to the initial
solution has been reached and sometimes exceeded. Depending on problem type, different
choices of algorithms are advantageous. Below follows a summary of the methods that
we recommend to be used in the future and how the implementation of the respective
algorithms works.

rbfSolve (Tomlab) is a global solver, that is, it needs no starting point and guarantees to
find the global optimum to a box-bounded problem given enough time (maybe eternity).
However it produces good results in a reasonable time for our type of problem. rbfSolve
is the only method presented here that can handle constraints explicitly. It possesses a
user-friendly syntax (Tomlab’s) in Matlab and an extensive manual. We found some bugs
in the source-code, these were corrected by Tomlab personnel. The results are displayed
in a good way and stored while running so that warm start is possible (Warm start means
that it is possible to continue the optimization process from the last iteration, even if the
process has terminated.). Since WAVE sometimes terminates unexpectedly, warm start is
a useful feature.

NEWUOA is a local solver and needs a starting point which is often available in industrial
simulations since the problem often is to improve something that is already developed. It
gives excellent results for large problems, with more than 15 variables, in reasonable time.
For smaller problems it seems like rbfSolve performs better, but this depends of course
on the starting point. NEWUOA has better convergence properties than rbfSolve. The
downside is the implementation which is made in Fortran 77; it can be rather difficult to
get a deep understanding of what happens inside the algorithm. We have made it possible
to use Matlab for function evaluations, which makes NEWUOA a lot easier to use.

WEDGE is also a local solver. It gives good results for smaller problems with less than
10 variables. Since it requires m = 1

2
(n + 1)(n + 2) − 1 function evaluations to build a

model of the goal function it is not useful for larger problems. It also has a convergence
criterion, which is as good as NEWUOA’s. Some of the code is written in Fortran but has
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a Matlab interface; see [18].

5.1 Further work

The methods presented here are very general. They apply to almost all conceivable op-
timization problems, even though there are better methods when explicit derivatives are
available. Since there exists a vast number of simulation tools in industry today, where
derivatives are not explicitly available, we see a great potential in applying these methods
elsewhere.

Of course, much work is left on developing user-friendliness and solving stability issues.
We think, but are not sure, that the results found here are stable; it is possible to repeat
our calculations and get the same result. Also, if a completely new problem with another
simulation tool is to be solved, more experience with the algorithms and their usage are
necessary.

There are non-derivative algorithms which we have not considered due to the limited
amount of time avaible for this thesis. New algorithms are developed continuously, for
example; DFO, see [4], which is a trust-region method that can handle constraints.

Another path is also interesting. It may be possible to extract the derivatives directly
from WAVE. We have not been able to investigate this option since it seems to be very
difficult. If derivatives were available, it would be possible to make use of a large number
of Newton-methods, for example.

As a closing remark, we would like to emphasize that simulation optimization can be a
valuable tool to improve or even discover new solutions in the area of engine development.
The components that are required are a simulation tool, an efficient optimization algorithm,
and an objective function.
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[10] J. Moré, D.C. Sorensen, Computing a trust region step, SIAM Journal on Scientific
and Statistical Computing, 4 (1983), pp. 553-572.

[11] S. Nash, A. Sofer, Linear and Nonlinear Programming, McGraw-Hill, Singapore, 1996.

[12] ”NEWUOA, fortran optimization code”,
http://plato.la.asu.edu/topics/problems/nlounres.html, 2004.



52 BIBLIOGRAPHY

[13] M.J.D. Powell, UOBYQA: unconstrained optimization by quadratic approximation,
Mathematical Programming, 92 (2002), pp. 555-582.

[14] M.J.D. Powell, On the use of quadratic models in unconstrained minimization without
derivatives, Report No. DAMTP 2003/NA03, University of Cambridge, Cambridge,
U.K., 2003.

[15] ”quadprog (Matlab function reference)”,
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/quadprog.shtml,
2003.

[16] ”Ricardo WAVE 5.1 Overview”,
http://www.ricardo.com/wave, 2004.

[17] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal of Opti-
mization, 7 (1997), pp. 1-25.

[18] ”Wedge Nonlinear Optimization Code”,
http://www.ece.northwestern.edu/∼nocedal/wedge.html, 2003.



Appendix A

Technical dictionary

Table A.1: English-Swedish vocabulary
English Swedish
camshaft kamaxel
constraint bivillkor
crankshaft vevaxel
exhaust avgas
exhaust gas residuals (EGR) restgaser
feasible/infeasible till̊aten/otill̊aten
Finite Element Method (FEM) finita element metoden
inlet insug
ignite tända
knock knack
manifold grenrör
naturally aspirated engine sugmotor
objective function, goal function målfunktion
plenum plenumvolym
revolutions per minute (rpm) varv per minut
(scavenging spolning
serial intake valves (SIV) lufttaktventiler
spark plug tändstift
throttle gasregleringsspjäll
torque moment
valve ventil
variable valve control (VVT) variabel ventilstyrning
volumetric efficiency (volef) volumetrisk verkningsgrad


