TMAZ371 Partial Differential Equations TM, 1999-04-06. Solutions

1. a) Multiply the equation 4 = v" by u and integrate over z € (0, 1):

1i||u||2—/ldud:t:—/lu”uda:—{part int.}
2 di A ; - int.

1
= u'ul§ —/ u'u' de = —||u'||*> <0,
0

i.e., ||ul|? and hence ||u|| is decreasing in ¢.
Now multiply the equation 4 = u"” by —u" and integrate over z € (0,1):

1d 1 1
—— / o'u' de = ' — / " dx
0 0

2 dt
1
— _/ U”U” de = _||ull||2 S 0,
0

']

i.e., ||u'||* and hence ||u'|| is decreasing in t.
b) According the first relation above %%Hu”z +|[u'||? = 0. Integrating over t yields:

1 2 ¢ 1112 1 2
SHlP@) + [l dr = 5 ol
0

Thus, it follows that fooo ||w'||? dt must converge, which is possible only if the de-
creasing function ||u'||? tends to 0 as t — oo, i.e., ||u’[| = 0 as t — oo.
c¢) In tha absence of a heat source, the temperature and heat flux are decreasing
(non-increasing) in time, especially the heat flux tends to 0 as t — oo.

2. a) Let T’ = 9Q be the boundary of 2. We have that
||Au||2 — /Qui$ + uzy + 2uppUyy.

Now an application of the Green’s formula (partial integration first in y and then
in ) gives

/umuyyz/umuyny—/uzzyuy=/umuyny—/uzyuynw+/uzyuzy,
Q r Q r r Q

where n = (ng,ny) is the outward unit normal at the boundary. Now, on the part
of the boundary ', where n, # 0, we have ug; = 0, since u = 0. Likewise, u, =0
on the part of the boundary, where n, # 0. Thus [, uzatiyy = [, UsyUey, Which
gives the desired identity.

b) In the case of Neumann boundary condition: g—z = 0 on the boundary, we have
that u, = 0 on the part of I where n, # 0, similarly u,, = 0 on the part of I' where
ny # 0 (because, then u,; = 0 in y-direction). Thus we obtain the same identity as
in a).

¢) We have, using Green’s formula, that ||ul]®* = [, u?A¢ = =2 [(uVu - V¢ <
2maxgq |V¢|||lu||[|Vul||, which gives the desired (Poincare) inequality with Cq =
2 maxq |V¢| .
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3. We have that
(1) (a(:c)u'(x))' —0, 0O<z<1, a(0)u(0)=uo, u(l)=0.

a) Let 7, be a partition of I = (0,1) into subintervals I; = (z;_1,z;), j =
1,...,M + 1, and let V}, be the space of continuous, piecewise linear functions
v(z) defined on T, such that v(1) = 0. The continuous variational formulation for
problem (1) is obtained by multiplying the equation in (1) by a test function v and
integrating over (0,1):

/0 1 (a(m)u'(w))lv(m) dz = [PI] = [a(w)u'(x)v(w)]

1

- /1 a(z)u' (z)v'(z) dx
0

0
= —a(0)u'(0)v(0) — /1 a(z)u' (z)v'(z)dxr = 0, Vv(zx), with v(1) =0,
0
this gives that
(2) /1 a(z)u' (z)v'(z) dv = —upv(0), Vo(z), with v(1) =0,
0

The ¢G1-method for problem (1) is the following discrete version of the variational
problem (2): Find U € V;, such that

1
(3) /0 a(z)U'(z)v' (z) de = —ugv(0), Vv € V4.

An a posteriori error estimate

We start by defining the interpolant m,v € Vy, of a function v(z) with v(1) = 0 as
mpv(z;) = v(zj), j=1,...,M+1. Let now e = u—U, we have using the equations
(2) and (3) that

lle'l|? = /ae'e'd:c=/au'e'dm—/aU'e’dx
I I I

=[(2),e(1) = 0, withv = €] = —uge(0) —/aU'e' dz
I

= [v = mpe in(3)] = —ug (e(O) - 7Th€(0)) - /IaU'(e —mpe) dx

M+1 M+1

=— ; /I]- alU'(e — mpe)' dx = g /Ij (aU")' (e — mhe) dz

= /(aU')'(e —mne) dz < [|h(@al") [l1/allh™ (e — mhe)la
I
< Ih(aU")'ll1/aCille |,
which gives the a posteriori estimate
(4) le'lla < Cillh(@U")'ll1/a-

b) Let now T be a partition of I = (0,1) into 4 subintervals: I; = (0,1/4), I =
(1/4,1/2), Is = (1/2,3/4) and I = (3/4,1). Then the functions {¢;}1 ,, where
i € Vi, ¢i(x;) = 0;j, 4,5 =1,2,3,4, z; = %, form a basis for V. In this way
(3) is equivalent to

(5) /1 a(z)U' (z)¢;(z) dz = —uep;(0), i=1,2,3,4.
0
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Set now U(z) = 2;21 &ip;(x), inserting in (5) yields to the following linear
system of equations:

1
0

FIGURE 1. Base functions

4 1
36 [ @@ ds = -u0i0), i=1,...4 > g =,
j=1

where A = (a;;) is the massmatrix with a;; = fol a(z)¢;(z)¢;(z) dz and b =
the load vector with b; = —ug¢;(0). Now with a(z) = 1/4 for z < 1/2, a(x)
for £ > 1/2 and uyp = 3 we have

by =-3, bo=b3 =04 =0.

Further note that A is a 4 x 4 symmetric matrix and with the mesh size h = 1/4
we get

(bl) is
=1/2

11,1
= —)(+)dz = -1
ai2 /0 ( h)(h) 24
1/2 11
a3 = ——)(+)dz = -1
== [, 107)G)
41 1.1
asy = —(=)(3)dzr = -2
= PG
So that our matrix equation is:
1 -1 0 0 & -3
-1 2 -1 0 & | _| o
0 -1 3 -2 & |7 o |’
0 0 -2 4 &4 0

which gives the approximate solution U = —3(1/2, 1,2, 3)".
¢) Since a is constant and U is linear on each subinterval we have that

(aU"Y' = d'U' +aU" = 0.
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By the a posteriori error estimate (4) we then have ||¢’||, = 0, i.e., ¢ = 0. Com-
bining with the fact that e(z) is continuous and e(1) = 0 we get that e = 0, which
means that the finite element solution, in this case, would coincide with the exact
solution.

4. See lecture notes (Chapter 17: obs! a parallel version).

5. Consider
(6) —div(eVu + fu) = f, in Q, u=0 on T'=0Q.

a) Multiply the equation (6) by v € HE(2) and integrate over Q to obtain the
Green’s formula

—/ div(eVu + fu)vdx = /(EVu—Fﬂu) -Vodr = / fodz.
Q Q Q

Variational formulation for (6) is as follows: Find u € Hg(f2) such that
(7) a(u,v) =L(v), Vv € Hy(Q),
where

a(u,v) = /Q(EVU + Bu) - Vo dz,

and
L(v) =/fvd:c.
Q

According to the Lax-Milgram’s theorem, for a unique solution for (7) we need to
verify that the following relations are valid:

i
)
la(v, w)| < vllull g (@) llwll # (), Yo, w € Hy (),

ii)

a(v,v) > allvl®m1@), Yo € Hg(9),
iii)

IL@)| < Allvllgre), Yo € Hy(Q),
for some v, a, A > 0.
Now since

|L(v)| = |/vad:c| SNl za@ 0l Loy S Nl Lo IVl 1) 5

thus iii) follows with A = ||f||L2(Q).
Further we have that

a(v,w) < [ [eVo+ B[Vl de < [ EIV0] +[8o])[Vulda
Q Q

< ([ wel + il as) ([ (v as) "

1/2
< Vamax(e, 1810 [ (9o +0%) o) ol

= ’Y||U||H1(Q)||w||H1(Q),

which, with v = v2max(e, ||8]| o), gives ).



Finally, if divg < 0, then
a(v,v) = /Q (6|VU|2 + (8- Vv)v) dx = /Q (€|VU|2 + (ﬁ186—;1 + ﬁzg—ai)v) dz
= / (£|V1}|2 + 1(ﬂl i(v)2 + ﬂzi(v)2)) dz = Green’s formula
Q 2 6.(131 6.732

1
:/ (E|VU\2 - —(divﬂ)vz) dzx > / g|Vv|? dz.
Q 2 Q

Now by the Poincare’s inequality
[ IvoPda>C [ (VoP + ) de = Clolf m o)
Q Q

for some constant C = C((2)), we have
a(v,v) > a|v||* (@), with a = Cé,

thus ii) is valid under the condition that div§ < 0.
From ii), (7) (with v = u) and iii) we get that

allull®m @) < a(u,u) = L(u) < Allull (o),

which gives the stability estimate

A
1 < —
||u||H Q) > a;

with A = [|f||,() and a = Ce defiened above.
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