TMA371 Partial Differential Equations TM, 1999-04-06. Solutions

1. a) Multiply the equation $\dot{u} = u''$ by u and integrate over $x \in (0,1)$:

$$\frac{1}{2}\frac{d}{dt}||u||^2 = \int_0^1 \dot{u}u \, dx = \int_0^1 u''u \, dx = \{\text{part. int.}\}\$$
$$= u'u|_0^1 - \int_0^1 u'u' \, dx = -||u'||^2 \le 0,$$

i.e., $||u||^2$ and hence ||u|| is decreasing in t.

Now multiply the equation $\dot{u} = u''$ by -u'' and integrate over $x \in (0,1)$:

$$\frac{1}{2}\frac{d}{dt}||u'||^2 = \int_0^1 \dot{u}'u' \, dx = \dot{u}u'|_0^1 - \int_0^1 \dot{u}u'' \, dx$$
$$= -\int_0^1 u''u'' \, dx = -||u''||^2 \le 0,$$

i.e., $||u'||^2$ and hence ||u'|| is decreasing in t.

b) According the first relation above $\frac{1}{2}\frac{d}{dt}||u||^2+||u'||^2=0$. Integrating over t yields:

$$\frac{1}{2}||u||^2(t) + \int_0^t ||u'||^2 d\tau = \frac{1}{2}||u_0||^2.$$

Thus, it follows that $\int_0^\infty ||u'||^2 dt$ must converge, which is possible only if the decreasing function $||u'||^2$ tends to 0 as $t \to \infty$, i.e., $||u'|| \to 0$ as $t \to \infty$.

- c) In the absence of a heat source, the temperature and heat flux are decreasing (non-increasing) in time, especially the heat flux tends to 0 as $t \to \infty$.
- **2.** a) Let $\Gamma = \partial \Omega$ be the boundary of Ω . We have that

$$||\Delta u||^2 = \int_{\Omega} u_{xx}^2 + u_{yy}^2 + 2u_{xx}u_{yy}.$$

Now an application of the Green's formula (partial integration first in y and then in x) gives

$$\int_{\Omega} u_{xx} u_{yy} = \int_{\Gamma} u_{xx} u_y n_y - \int_{\Omega} u_{xxy} u_y = \int_{\Gamma} u_{xx} u_y n_y - \int_{\Gamma} u_{xy} u_y n_x + \int_{\Omega} u_{xy} u_{xy},$$

where $n=(n_x,n_y)$ is the outward unit normal at the boundary. Now, on the part of the boundary Γ , where $n_y \neq 0$, we have $u_{xx}=0$, since u=0. Likewise, $u_y=0$ on the part of the boundary, where $n_x \neq 0$. Thus $\int_{\Omega} u_{xx} u_{yy} = \int_{\Omega} u_{xy} u_{xy}$, which gives the desired identity.

- b) In the case of Neumann boundary condition: $\frac{\partial u}{\partial n} = 0$ on the boundary, we have that $u_y = 0$ on the part of Γ where $n_y \neq 0$, similarly $u_{xy} = 0$ on the part of Γ where $n_x \neq 0$ (because, then $u_x = 0$ in y-direction). Thus we obtain the same identity as in a).
- c) We have, using Green's formula, that $||u||^2 = \int_{\Omega} u^2 \Delta \phi = -2 \int_{\Omega} u \nabla u \cdot \nabla \phi \le 2 \max_{\Omega} |\nabla \phi| ||u|| ||\nabla u||$, which gives the desired (Poincare) inequality with $C_{\Omega} = 2 \max_{\Omega} |\nabla \phi|$.

3. We have that

(1)
$$\left(a(x)u'(x)\right)' = 0, \quad 0 < x < 1, \quad a(0)u'(0) = u_0, \ u(1) = 0.$$

a) Let \mathcal{T}_h be a partition of I=(0,1) into subintervals $I_j=(x_{j-1},x_j)$, $j=1,\ldots,M+1$, and let \mathcal{V}_h be the space of continuous, piecewise linear functions v(x) defined on \mathcal{T}_h such that v(1)=0. The continuous variational formulation for problem (1) is obtained by multiplying the equation in (1) by a test function v and integrating over (0,1):

$$\int_0^1 \left(a(x)u'(x) \right)' v(x) \, dx = [PI] = \left[a(x)u'(x)v(x) \right]_0^1 - \int_0^1 a(x)u'(x)v'(x) \, dx$$
$$= -a(0)u'(0)v(0) - \int_0^1 a(x)u'(x)v'(x) \, dx = 0, \quad \forall v(x), \text{ with } v(1) = 0,$$

this gives that

(2)
$$\int_0^1 a(x)u'(x)v'(x) dx = -u_0v(0), \quad \forall v(x), \text{ with } v(1) = 0,$$

The cG1-method for problem (1) is the following discrete version of the variational problem (2): Find $U \in \mathcal{V}_h$ such that

(3)
$$\int_0^1 a(x)U'(x)v'(x) dx = -u_0v(0), \quad \forall v \in \mathcal{V}_h.$$

An a posteriori error estimate

We start by defining the interpolant $\pi_h v \in \mathcal{V}_h$, of a function v(x) with v(1) = 0 as $\pi_h v(x_j) = v(x_j)$, $j = 1, \ldots, M+1$. Let now e = u-U, we have using the equations (2) and (3) that

$$||e'||_a^2 = \int_I ae'e' \, dx = \int_I au'e' \, dx - \int_I aU'e' \, dx$$

$$= [(2), e(1) = 0, \text{ with } v = e] = -u_0 e(0) - \int_I aU'e' \, dx$$

$$= [v = \pi_h e \text{ in } (3)] = -u_0 \Big(e(0) - \pi_h e(0) \Big) - \int_I aU'(e - \pi_h e)' \, dx$$

$$= -\sum_{j=1}^{M+1} \int_{I_j} aU'(e - \pi_h e)' \, dx = \sum_{j=1}^{M+1} \int_{I_j} (aU')'(e - \pi_h e) \, dx$$

$$= \int_I (aU')'(e - \pi_h e) \, dx \le ||h(aU')'||_{1/a} ||h^{-1}(e - \pi_h e)||_a$$

$$\le ||h(aU')'||_{1/a} C_i ||e'||_a,$$

which gives the a posteriori estimate

$$(4) ||e'||_a \le C_i ||h(aU')'||_{1/a}.$$

b) Let now \mathcal{T}_h be a partition of I=(0,1) into 4 subintervals: $I_1=(0,1/4),\ I_2=(1/4,1/2),\ I_3=(1/2,3/4)$ and $I_4=(3/4,1)$. Then the functions $\{\phi_i\}_{i=1}^4$, where $\phi_i\in\mathcal{V}_h,\ \phi_i(x_j)=\delta_{i,j},\ i,j=1,2,3,4,\ x_j=\frac{j-1}{4}$, form a basis for \mathcal{V}_h . In this way (3) is equivalent to

(5)
$$\int_0^1 a(x)U'(x)\phi_i'(x) dx = -u_0\phi_i(0), \quad i = 1, 2, 3, 4.$$

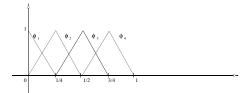


FIGURE 1. Base functions

Set now $U(x) = \sum_{j=1}^{4} \xi_j \phi_j(x)$, inserting in (5) yields to the following linear system of equations:

$$\sum_{j=1}^{4} \xi_j \int_0^1 a(x) \phi_j'(x) \phi_i'(x) dx = -u_0 \phi_i(0), \quad i = 1, \dots 4 \iff A\xi = b,$$

where $A = (a_{ij})$ is the massmatrix with $a_{ij} = \int_0^1 a(x)\phi'_j(x)\phi'_i(x) dx$ and $b = (b_i)$ is the load vector with $b_i = -u_0\phi_i(0)$. Now with a(x) = 1/4 for x < 1/2, a(x) = 1/2 for x > 1/2 and $u_0 = 3$ we have

$$b_1 = -3, b_2 = b_3 = b_4 = 0.$$

Further note that A is a 4×4 symmetric matrix and with the mesh size h = 1/4 we get

$$a_{11} = \int_{0}^{1/4} \frac{1}{4} (-\frac{1}{h})(-\frac{1}{h}) dx = \frac{1}{4} \times 4 \times 4 \int_{0}^{1/4} dx = 4 \times \frac{1}{4} = 1$$

$$a_{22} = \int_{0}^{1/4} \frac{1}{4} (\frac{1}{h})(\frac{1}{h}) dx + \int_{1/4}^{1/2} \frac{1}{4} (-\frac{1}{h})(-\frac{1}{h}) dx = 2$$

$$a_{33} = \int_{1/4}^{1/2} \frac{1}{4} (\frac{1}{h})(\frac{1}{h}) dx + \int_{1/2}^{3/4} \frac{1}{2} (-\frac{1}{h})(-\frac{1}{h}) dx = 3$$

$$a_{44} = \int_{1/2}^{3/4} \frac{1}{2} (\frac{1}{h})(\frac{1}{h}) dx + \int_{3/4}^{1} \frac{1}{2} (-\frac{1}{h})(-\frac{1}{h}) dx = 4$$

$$a_{12} = \int_{0}^{1/4} \frac{1}{4} (-\frac{1}{h})(\frac{1}{h}) dx = -1$$

$$a_{23} = \int_{1/4}^{1/2} \frac{1}{4} (-\frac{1}{h})(\frac{1}{h}) dx = -1$$

$$a_{34} = \int_{1/2}^{3/4} \frac{1}{2} (-\frac{1}{h})(\frac{1}{h}) dx = -2.$$

So that our matrix equation is:

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 3 & -2 \\ 0 & 0 & -2 & 4 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

which gives the approximate solution $U = -3(1/2, 1, 2, 3)^t$.

c) Since a is constant and U is linear on each subinterval we have that

$$(aU')' = a'U' + aU'' = 0.$$

By the a posteriori error estimate (4) we then have $||e'||_a = 0$, i.e., e' = 0. Combining with the fact that e(x) is continuous and e(1) = 0 we get that e = 0, which means that the finite element solution, in this case, would coincide with the exact solution.

4. See lecture notes (Chapter 17: obs! a parallel version).

5. Consider

(6)
$$-div(\varepsilon \nabla u + \beta u) = f, \text{ in } \Omega, \qquad u = 0 \text{ on } \Gamma = \partial \Omega.$$

a) Multiply the equation (6) by $v \in H^1_0(\Omega)$ and integrate over Ω to obtain the Green's formula

$$-\int_{\Omega} div(\varepsilon \nabla u + \beta u)v \, dx = \int_{\Omega} (\varepsilon \nabla u + \beta u) \cdot \nabla v \, dx = \int_{\Omega} fv \, dx.$$

Variational formulation for (6) is as follows: Find $u \in H_0^1(\Omega)$ such that

(7)
$$a(u,v) = L(v), \quad \forall v \in H_0^1(\Omega),$$

where

$$a(u,v) = \int_{\Omega} (\varepsilon \nabla u + \beta u) \cdot \nabla v \, dx,$$

and

$$L(v) = \int_{\Omega} f v \, dx.$$

According to the Lax-Milgram's theorem, for a unique solution for (7) we need to verify that the following relations are valid:

i)

$$|a(v,w)| \le \gamma ||u||_{H^1(\Omega)} ||w||_{H^1(\Omega)}, \quad \forall v, w \in H^1_0(\Omega),$$

ii)

$$a(v,v) \ge \alpha ||v||^2_{H^1(\Omega)}, \quad \forall v \in H^1_0(\Omega),$$

iii)

$$|L(v)| \le \Lambda ||v||_{H^1(\Omega)}, \qquad \forall v \in H^1_0(\Omega),$$

for some γ , α , $\Lambda > 0$.

Now since

$$|L(v)| = |\int_{\Omega} fv \, dx| \le ||f||_{L_2(\Omega)} ||v||_{L_2(\Omega)} \le ||f||_{L_2(\Omega)} ||v||_{H^1(\Omega)},$$

thus iii) follows with $\Lambda = ||f||_{L_2(\Omega)}$.

Further we have that

$$\begin{aligned} |a(v,w)| &\leq \int_{\Omega} |\varepsilon \nabla v + \beta v| |\nabla w| \, dx \leq \int_{\Omega} (\varepsilon |\nabla v| + |\beta| |v|) |\nabla w| \, dx \\ &\leq \Big(\int_{\Omega} (\varepsilon |\nabla v| + |\beta| |v|)^2 \, dx \Big)^{1/2} \Big(\int_{\Omega} |\nabla w|^2 \, dx \Big)^{1/2} \\ &\leq \sqrt{2} \max(\varepsilon, ||\beta||_{\infty}) \Big(\int_{\Omega} (|\nabla v|^2 + v^2) \, dx \Big)^{1/2} ||w||_{H^1(\Omega)} \\ &= \gamma ||v||_{H^1(\Omega)} ||w||_{H^1(\Omega)}, \end{aligned}$$

which, with $\gamma = \sqrt{2} \max(\varepsilon, ||\beta||_{\infty})$, gives i).

Finally, if $div\beta \leq 0$, then

$$a(v,v) = \int_{\Omega} \left(\varepsilon |\nabla v|^2 + (\beta \cdot \nabla v)v \right) dx = \int_{\Omega} \left(\varepsilon |\nabla v|^2 + (\beta_1 \frac{\partial v}{\partial x_1} + \beta_2 \frac{\partial v}{\partial x_2})v \right) dx$$
$$= \int_{\Omega} \left(\varepsilon |\nabla v|^2 + \frac{1}{2} (\beta_1 \frac{\partial}{\partial x_1} (v)^2 + \beta_2 \frac{\partial}{\partial x_2} (v)^2) \right) dx = \text{Green's formula}$$
$$= \int_{\Omega} \left(\varepsilon |\nabla v|^2 - \frac{1}{2} (div\beta)v^2 \right) dx \ge \int_{\Omega} \varepsilon |\nabla v|^2 dx.$$

Now by the Poincare's inequality

$$\int_{\Omega} |\nabla v|^2 dx \ge C \int_{\Omega} (|\nabla v|^2 + v^2) dx = C||v||^2_{H^1(\Omega)},$$

for some constant $C = C((\Omega))$, we have

$$a(v,v) \ge \alpha ||v||^2_{H^1(\Omega)}, \quad \text{with } \alpha = C\varepsilon,$$

thus ii) is valid under the condition that $div\beta \leq 0$.

From ii), (7) (with v = u) and iii) we get that

$$\alpha ||u||^2_{H^1(\Omega)} \le a(u, u) = L(u) \le \Lambda ||u||_{H^1(\Omega)},$$

which gives the stability estimate

$$||u||_{H^1(\Omega)} \le \frac{\Lambda}{\alpha},$$

with $\Lambda = ||f||_{L_2(\Omega)}$ and $\alpha = C\varepsilon$ defined above.

MA