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Abstract

By means of a series of examples, taken from classic contributions
to probability theory as well as from the author’s own practice, an
attempt is made to convince the reader that problem solving is often
a matter of cooking up an appropriate Markov chain. Topics touched
upon along the way include coupling, correlation inequalities, and per-
colation.
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1 Introduction

A century has passed since the introduction by A.A. Markov of what we
now know as Markov chains; see Markov (1906) and Basharian et al. (2004).
During that period, Markov chains have turned out to be not only a rich
source of beautiful mathematics, but also immensely useful in a variety of
applied areas such as statistical mechanics, queueing theory, information
theory, statistics, speech recognition, and bioinformatics, just to name a
few.

The most common way to use Markov chains in these and other areas is as
ingredients in the modelling of one kind or another of time dynamics. A com-
pletely different use of Markov chains is the so-called Markov chain Monte
Carlo (MCMC) method, pioneered by Metropolis et al. (1953), Hastings
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(1970), Geman and Geman (1984) and others. Here, Markov chains are ap-
plied to situations that in themselves need not involve any time dynamics at
all. The problem is to generate computer samples with some prescribed but
typically very complicated distribution 7 on some large state space S, and
the idea of MCMC is that in situations where it appears practically impossi-
ble to sample directly from m, it may be easy to sample from the transition
kernel of some irreducible and aperiodic Markov chain X = {X(0), X(1),...}
on S whose unique stationary distribution is precisely 7. If the chain has the
property of rapid convergence to stationarity (as hopefully it has), then an
easy way to generate an S-valued random object whose distribution is close
to m, is to start the chain with X (0) chosen arbitrarily, to run it for a while
(say, time n), and output X (n). See, e.g., Gilks et al. (1996) or Haggstrom
(2002) for introductions to the theory and practice of MCMC.

The purpose of the present paper is to elaborate on the somewhat less
well-known idea that the central ingredient in MCMC — namely the introduc-
tion of a Markov chain designed to have a prescribed stationary distribution
7 — is useful in a variety of contexts that do not involve computer simula-
tions of any sort. Rather, in the kind of applications I have in mind, it is not
necessary to implement and run the Markov chains: it will suffice to think
about them on a more abstract level. Every mathematician needs to have
a toolbox of devices and tricks to use in various situations, and I hope to
convince readers that the readiness to try out such Markov chain ideas is a
useful enough device that they will want to include it in their own toolboxes.

At this point, a line from Lindvall’s (1992) influential introduction to
coupling methods seems apt: “To know a method is to have learned how it
works. What we have ahead of us is a collection of applications of a few
basic ideas” (p. 6). In the remaining sections, I will focus on three basic
examples. In Section 2 I will discuss the use of Markov chains for proving
the very useful correlation inequality of Harris (1960). Then, I will go on to
discuss examples from my own practice: in Section 3 a domination inequality
needed in a problem arising in survey sampling, and in Section 4 a conditional
correlation inequality for percolation models.

One aspect of my Lindvallian approach in this paper is that I have no
pretentions of providing an exhaustive survey of the topic. For a partic-
ular subtopic which is left out of the discussion but which I recommend
to the ambitious reader, let me mention the exploitation of ideas from the
coupling-from-the-past approach of Propp and Wilson (1996) in so-called
perfect MCMC, to the rigorous analysis of ergodic properties of Gibbisan
random fields; this idea was first conceived by van den Berg and Steif (1998)
and then further exploited in Héggstrom and Steif (2000), Haggstrom et al.



(2000) and Haggstrom et al. (2002).

2 Harris’ inequality

Harris (1960) is a classic paper. Way ahead of its time, it contains a number
of ideas that have influenced percolation theory for decades, and one — a
correlation inequality now known as Harris’ inequality — whose influence has
extended far beyond that field.

Percolation theory (see Grimmett (1999) for an introduction) deals with
connectivity properties of random media, and the basic mathematical model
is as follows. Let G = (V, E) be a (finite or countably infinite) connected
graph with vertex set V' and edge set E, where each edge e € F links two of
the vertices. When @ is infinite it is customary to also impose the condition
of local finiteness, meaning that each x € V is incident to only finitely many
edges. A main example is to let G be the infinite square lattice, which is
denoted Z? and which arises by letting V' consist of all integer points in the
Euclidean plane and having edges between vertices at Euclidean distance 1
from each other. The so-called retention parameter p € [0, 1] is fixed, and
each edge in G is removed independently with probability 1 — p. This pro-
duces a random subgraph of G, and the percolation-theoretic challenge is
to say something about the connected components of this subgraph. For in-
stance, if G is infinite, one may ask whether an infinite connected component
occurs. The probability of getting an infinite connected component is easily
shown to be 0 or 1 depending on whether p is above or below a critical value
Pe = pe(G) € [0,1]. The main result of Harris (1960) was that for the square
lattice, p, > % This inequality was conjectured to be in fact an equality,
but it took another 20 years before that was rigorously estabished by Kesten
(1980).

What I've described here is so-called bond percolation, as opposed to site
percolation which has much the same flavor but where it is vertices rather
than edges that are removed at random.

Let me give a vague motivation for why correlation inequalities are im-
portant in percolation theory. Establishing connectivities over long distances
often proceeds through a kind of concatenation procedure. For two vertices
z,y € V, an obvious sufficient condition for the existence of a path between
z and y — an event that we denote by {z <> y} — is that both of them have
paths to some third vertex z € V. Thus,

Pz y) > Plx o 2z,zoy).



Here it is typically useful to be able to conclude that
Pz y) > Pz 2)Pz ey,

an argument that however requires that the events {z <> z} and {z + y}
are positively correlated in the sense that

Pz z,zy) > Pz 2)P(zoy). (1)

Are they? The answer is yes, by an application of Harris’ inequality (Theo-
rem 1 below).

To set the stage for this result, we need some definitions. We will be
concerned with a collection {X;};cs of real-valued random variables, where
the index set I is always taken to be finite or countably infinite. For z,z’ €
R/, we write z < ' if 7; < x| for every i € I, and we call a function
f :R! = R increasing if f(r) < f(z') whenever z < '

Theorem 1 (Harris’ inequality) Let X = {X,}icr be a collection of inde-
pendent real-valued random variables, and let f,g : RT — R be two bounded
and increasing functions. Then

E[f(X)g(X)] > E[f(X)]E[g(X)]. (2)

The significant condition here on f and g is that they are increasing, while the
boundedness is just a convenient way of making sure that the expectations in
(2) exist. The property that (2) holds for all bounded and increasing f and g
is sometimes known as the positive associations property of { X, }ier, so with
this terminology Harris’ inequality says that any collection of independent
real-valued random variables is also positively associated.

To see how (1) follows from Harris’ inequality, we first equip each edge
e € E with a random variable X, taking value 1 or 0 depending on whether
the edge e is present or not after the random thinning of the graph G. That
makes {Xc}ecr a collection of i.i.d. Bernoulli (p) random variables. The
indicator function 1y} is increasing in these variables, because increasing
the X,’s means inserting edges, and inserting edges cannot take us out of the
event {x ¢ z}. The same goes for the indicator 1y,,,}, so Harris’ inequality
tells us in particular that

E[l{sz}l{zHy}] 2 E[l{mHz}]E[l{zHy}]

which is just another way of expressing (1).
There are various ways to prove Theorem 1 — see Harris (1960) or Grim-
mett (1999) — besides the Markov chain approach employed here which I



personally find the most illuminating. This approach goes back to Holley
(1974). The core of the matter lies in proving the following special case con-
sisting of a finite collection of i.i.d. {0, 1}-valued random variables; once that
is done, the general case follows, as we shall see, in fairly straightforward
manner.

Proposition 1 Let X1,..., X, be i.i.d. Bernoulli (p) random variables, and
let f,g:{0,1}" — R be increasing functions. Then

E[f(X1,..., Xn)g(X1,..., Xn)] > E[f(Xq,..., X,)]|Elg(X1,..., X5)] -( |
3

A key ingredient in the preferred proof of this result, besides Markov chains,
is the notion of a coupling. A coupling of two probability distributions pu
and y' is a joint construction on the same probability space of two random
objects with respective distributions p and p’ done with the explicit purpose
of drawing conclusions about (and sometimes comparing) these distributions.
The coupling idea is best explained via examples, as will be done below, but
see also Lindvall (1992) and Thorisson (1995, 2000) for introductions to
coupling methods.

Here, let 41 denote the probability distribution on {0, 1}" of (X1,...,Xy),
as above i.i.d. Bernoulli (p). Furthermore, let 1y, be the so-called g-biased
perturbation of y, defined by setting

pg(w) = Z7 p(w)g(w)

for each w € {0,1}", where

Z= 3% pw)gw)

we{0,1}7

is a normalizing constant. Of course, this makes u, a probability measure
only if ¢ is nonnegative (and not identically zero). But since adding a con-
stant to the function g doesn’t change whether or not (3) holds, there is no
loss of generality in assuming that g(w) > 0 for all w € {0,1}". So let us
assume that.

An intermediate step in proving Proposition 1 is the following lemma.

Lemma 1 It is possible to couple two {0,1}"-valued random variables X
and Y with respective distributions p and pg, such that

P(X<Y)=1. (4)



Note in particular that since f is increasing, (4) implies that E[f(X)] <
E[f(Y)]. Once we have the lemma, Proposition 1 follows by a simple cal-
culation. Note first that in terms of y, the desired inequality (3) may be
written as

u(fg) > p(fwe), (5)
and that Z = u(g). We get, with X and Y as in Lemma 1,

w(f) = E[f(X)] < E[f(Y)]

= Ng(f)
= > py(w)f(w)
we{0,1}m
_ Zueqoyr Mw)gw) f(w)
Z
_ ulf9)
1(9)

and multiplying by u(g) yields (5). Thus, in order to prove Proposition 1, it
only remains to prove Lemma 1.

Proof of Lemma 1: Here is where the long-awaited Markov chains en-
ter our game. We will begin by defining two {0,1}"-valued Markov chains
(X(0),X(1),X(2),...) and (Y(0),Y(1),Y(2),...) designed to have p and g4
as their respective unique stationary distributions.

The transition mechanism for (X (0), X (1), X(2),...) is as follows. Given
X(k), set i = k(modn) + 1 and set, independently of everything else,

1 w.p.
Xi(k—i_l):{ 0 W.g.llj—p

while setting X;(k 4+ 1) = X;(k) for all j # i. (Note that this makes the
chain time-inhomogeneous with a transition kernel that repeats itself every
n time units.)

It is obvious that if X (k) has distribution y, then so has X(k+1). So u
is a stationary distribution for the chain. And it is equally obvious that the
chain is irreducible and aperiodic, so that X (k) converges in distribution to
i as k — oo no matter how it is started. (Note: While it is true that in the
time-inhomogeneous case irreducibility and aperiodicity are not in general
sufficient for a finite-state Markov chain to exhibit such convergence, here
this is not a problem because sampling X at every n’th time gives a time-
homogeneous chain with the corresponding properties.) Readers familiar



with MCMC will notice that this Markov chain is precisely the so-called
systematic scan Gibbs sampler for the distribution p.

Let us construct (Y(0),Y(1),Y(2),...) in the same vein. To this end,
for i € {1,...,n} and ¢ € {0,1}{1n\#} define ;¢ to be the conditional
probability that the i:th coordinate of a {0, 1}"-valued random object with
distribution 4 takes value 1 given that the other coordinates are given by &.
Let the transition mechanism for (Y'(0),Y(1),Y(2),...) be as follows. Given
Y (k), we set i = k(modn) + 1 and set

1 wp. v
CER PR

where € is given by the values of Y(k) on {1,...,n}\ {i}; and finally we set
Y;(k +1) = Y;(k) for all j # .

This makes (Y(0),Y(1),Y(2),...) another instance of the Gibbs sampler,
irreducible and aperiodic, with Y (k) converging in distribution to the chain’s
unique stationary distribution pg.

Next, we specify how to run the two chains simultaneously on the same
probability space. We start the chains by picking X (0) and Y (0) indepe-
dently according to their respective stationary distributions p and pg. Let
(Up, Uy, Us,...) be asequence of i.i.d. random variables uniformly distributed
on [0,1]. To go from time k to time k + 1, set

1 ifUp<p
0 otherwise

Xi(k+1) = { (6)

and

1 i Up <7ig
0 otherwise.

Yi(k+1) = { (7)

I now claim, crucially, that

Yig > P (8)

regardless of ¢ and &. This implies that as soon as a given coordinate % is
chosen, we have X;(k) < Y;(k) from that time k and forever after. As soon
as all coordinates have been visited, which happens at time n, we thus have
X;(n) <Yj(n) for all i. Thus, picking the pair (X,Y’) according to the joint
distribution of X (n) and Y (n) produces the desired coupling that establishes
the lemma.



It only remains to prove the claim (8). Write £ V 0 (resp. £ V 1) for the
element of {0,1}" that equals 0 (resp. 1) at the i:th coordinate, and agrees
with ¢ elsewhere. Showing (8) is the same as showing that

Vi€ b
1— g 215 ®)
We get
vie  _ pe§V1D  _ pEVI1gEvl)
L—vie  pg(€VO0) u(€ vV 0)g(€ Vv 0)
5 HEVI)
— pEVvo)
I
=

where the inequality is due to g being increasing. ¢

Lemma 1 and, consequently, Proposition 1 are thus established.

It is a slightly unusual feature of this particular Markov chain proof
that we got away with looking at the chains at a fixed finite time n; in the
following two sections we will have to consider asymptotics as time tends to
infinity.

Equipped with Proposition 1, we are now in a position to obtain Theorem
1 at low cost.

Proof of Theorem 1: We proceed by extending Proposition 1 via a couple
of intermediate levels of generality. As a first step, consider the case where
we allow an infinite collection X = (X3, Xo,...) of i.i.d. variables, but still
insist that they are binary. Define

fo(X) = B[f(X)| X1,..., Xn]
and gn,(X) analogously. Both f,, and g, are increasing, so Propsition 1 yields

E[fn(X)gn(X)] 2 E[fn(X)]E[gn(X)]. (10)

Furthermore, a standard application (to be found, e.g., in Kallenberg (1997),
Thm. 6.23) of the martingale convergence theorem tells us that, a.s., f,(X) —
f(X) and gn(X) — ¢g(X) as n — oco. Thus, we may take limits in (10) to
conclude that E[f(X)g(X)] > E[f(X)]E[g(X)].

As a next step, note that we can go directly from the case of infinitely
many binary variables to that of finitely or infinitely many variables whose



distribution is uniform on [0, 1], simply by representing the latter by their
binary expansions. (If f : [0,1] — R is increasing in the usual sense, then
f(x) is also an increasing function of the binary expansion of z, while the
converse is not true.)

Finally, to go from uniform [0, 1] variables to arbitrary real-valued ran-
dom variables, it suffices to recall the inverse probability transform which
tells us that any real-valued random variable can be obtained as a monotone
transformation of a uniform [0, 1] random variable, while noting that the
composition of two increasing functions is increasing. Theorem 1 is there-
fore established. ¢

Extensions of Harris’ inequality to certain classes of dependent random vari-
ables have been made. One contribution worth mentioning in this context
is Esary et al. (1967). Arguably the most famous extension is the so-called
FKG inequality of Fortuin, Kasteleyn and Ginibre (1971); see also Holley
(1974) and Georgii et al. (2001). Here I feel compelled to point out that
it is fairly common in the literature that alleged applications of the FKG
inequality concern i.i.d. systems, so that in fact a lot of credit that rightfully
should go to Harris ends up instead with the FKG trio.

Inspecting the Markov chain argument in the proof of Proposition 1 to
see what assumptions on u are really needed, and considering the asymp-
totic joint distribution of (X (k),Y (k)) as k — oo, leads to the variation of
the FKG inequality that appears, e.g., in Thm. 4.11 of Georgii et al. (2001).
Besides a technical assumption such as requiring that p assigns positive prob-
ability to all w € {0,1}" (this may be weakened), the crucial assumption is
that for any %, the conditional p-probability of seeing a 1 at coordinate 4,
given that the other coordiantes take values according to & € {0, 1}{1--n\ {1}
is increasing as a function of £. This turns out to hold for many important
examples, such as in the ferromagnetic Ising model and in the most rele-
vant parts of the parameter space of the so-called random-cluster model; see
Georgii et al. (2001) again.

3 A domination result for sampling

In 1995, I was approached by two of my local colleagues at Chalmers, Johan
Jonasson and Olle Nerman, who were stuck on a seemingly obvious inequality
which they needed in the context of survey sampling with unequal proba-
bilities. Thanks to my knowledge of the Markov chain approach to Harris’
inequality, I was quickly able to help them.

Fix n and p1,...,p, € [0,1], and let X1,...,X,, be independent (though



not necessarily identically distributed) Bernoulli variables with parameters
Plye..,Pn. Write § = 2?21 X for their sum. The question Jonasson and
Nerman asked is whether, for any ¢ € {1,...,n} and s € {0,...,n — 1}, it
is the case that P(X; =1|S =s) < P(X; =1|S = s+ 1). Intuitively this
seems highly plausible: the larger S is, the more likely should any of the
Bernoulli variables be to take value 1. And, yes:

Proposition 2 With X4,..., X, and S as above, we have, for any i €
{1,...,n} and s € {0,...,n — 1} that

P(X;=1|S=s) <P(X;=1|S=5+1). (11)

The similar inequality P(X; = 1|S < s) < P(X; = 1|S > s) follows
immediately from Harris’ inequality (with f(X) = X; and g(X) = 1ig54),
but (11) requires a different proof. The following is how I argued using
Markov chains.

Proof of Proposition 2: For s = 0,...,n, let us; denote the probability
measure on {0,1}" obtained by conditioning (X7, ..., X,) on the event {S =
s}. For each pg, we would like to devise a Markov chain with pg as its
stationary distribution. Directly copying the Gibbs sampler approach in
Section 2 won’t do, because the pg-conditional probability of having a 1 at
coordinate ¢ given the values at all other coordinates is always degenerate,
thus resulting in a boring Markov chain that ends up mapping any state onto
itself with probability 1.

Instead, let us try a variant of the Gibbs sampler where we update two
coordinates at a time. For fixed distinct 4,5 € {1,...,n}, the conditional
distribution of (X;, X;) given the event X; + X; = 1, is given by

pi(1—p;)
(X,A-’Xj) _ { (1,0) w.p. pi(l_;)'j&_i__pg]g_pi)
(0,1) w.p-. Pi(l_pjj)'i'le(l_Pi) ?

and this conditional distribution is unaffected by further conditioning on
S. Therefore, pg,p1,-- -, pn are all stationary distributions for the {0, 1}"-
valued Markov chain (X(0), X (1),...) with the transition mechanism where
at each time k we do the following:

1. Pick two indices 4,j € {1,...,n} at random according to uniform dis-
tribution without replacement.
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2. If X;(k) = Xj(k), then set X;(k+1) = X;(k+1) = X;(k). Otherwise,

set
1,0) w.p. — pi,(l_p,j) ,
(Xi(k +1), X;(k +1)) ={ 0 1) P pillopyie(p) (12)
’ W-p- pi(1—pj)+p;(1—p;) ?

3. Set Xp(k+1) = Xp(k) for all h & {i,5}.

Now let us run (X (0), X (1),...) together with a second {0, 1}"-valued Markov
chain (Y (0),Y (1),...) with exactly the same transition kernel. We “synchro-
nize” the transitions by

(a) always picking the same coordinates ¢ and j in the Y chain as in the
X chain, and

(b) whenever X;(k)+X;(k) = Y;(k)+Y;(k) = 1, we take (X;(k+1), X;(k+
1)) and (Y;(k + 1),Y;(k + 1)) to be equal (and equal to (1,0) or (0,1)
with the probabilities prescribed in (12)).

Now start the chains with X (0) chosen according to us, and independently
Y (0) according to frsy1.

Define, for each k, Z(k) as the number of coordinates in which X (k) and
Y (k) differ. Note that Z(k) > 1, with equality if and only if X (k) < Y (k).
Furthermore, with the above synchronization of the two chains, we see that
(Z(0),Z(1),Z(2),...) is a decreasing process, because Z(k + 1) will equal
Z(k) in all cases except when ¢ and j happen to be chosen in such a way
that (X;(k), X;(k)) = (1,0) and (Y;(k),Y;(k)) = (0,1) or vice versa, in which
case we get Z(k+ 1) = Z(k) — 2. Whenever Z(k) > 1 there is a positive
probability (bounded below by 2/n(n — 1)) that such ¢ and j are chosen,
and repeated application of the Borel-Cantelli lemma implies that a.s. the
Z process keeps decreasing until eventually it reaches the absorbing level 1.

Hence, from some (random) time and onwards we will have X (k) < Y (k)
and in particular that X;(k) < Y;(k). By picking two {0, 1}"-valued random
objects X and Y according to the asymptotic distribution as £k — oo of
(X (k),Y (k)) (after passing to a subsequence if necessary — which incidentally
it isn’t), and recalling that X (k) and Y (k) have distributions us and ps41
for each k (and thus also in the limit), we obtain (11). ©

This argument has to my knowledge previously appeared only in the preprint
by Jonasson and Nerman (1996). Publication of their paper was delayed, and
when eventually its descendant, Aires et al. (2002), appeared the work had
evolved to the point where Proposition 2 was no longer needed.

11



Some years after Jonasson’s and Nerman’s original query, Yuval Peres and
independently Tue Tjur explained to me, in response to my Markov chain
argument, that Proposition 2 is in fact intimately related to an inequality of
no less a soul than Isaac Newton.

In its simplest form, Newton’s inequality states that if a polynomial

P(z) = ap+ a1z +...,+apz"

with real coefficients has only real roots, then the coefficients ay, ..., a, sat-
isfy the log-concavity relation

aj_1aj4+1 < a? (13)

for every j; see Newton (1707) or Niculescu (2000). The connection between
this result and sums of Bernoulli variables proceeds via the observation that
if Xy,...,X, are independent Bernoulli variables with parameters p1,...,pp,
and S is their sum, then P (S = i) equals the coefficient a; in the polynomial

n
[ —p;+pjz).
j=1
Now, for ¢ € {1,...,n}, define S} = S — X;. Since S} is a sum of n — 1
independent Bernoulli variables, we get from (13) that
P(Si=s—1)P(Si=s+1) < P(S] = s5)? (14)
for any s. The inequality (11) in Proposition 2 is the same as saying that

P(XZ':1|S:8) < P(Xi:1‘S:S+1)
P(X;=0|S=s) = P(X;=0|S=s+1)’

which, by rewriting the two ratios, we see is equivalent to

P(X;=1,8=s-1) P(X;=1,8/=5s)
7 < 7
P(X;=0,8=s) ~ P(X;=0,5=s+1)

(15)
The probability in the numerator of the left-hand side factors into p;P(S; =
s — 1), and similarly for the three other probabilities, so (15) is the same as

piP(S, =s—1) < piP(S; = s)
(1 —p,)P(SZ, = S) - (1 —pZ)P(S; =s+ 1) ’

which of course follows via (14) from Newton’s inequality.

12



Note that this reasoning can be turned around to derive Newton’s in-
equality — at least in the case where all roots are negative — from Proposition
2. At one point, I therefore toyed with the idea of publishing a note with
a title like “A probabilistic proof of an inequality of Newton”, but decided
against it, as (13) admits a relatively straightforward proof by induction in
n (I leave this to the reader).

4 Conditioning and correlation in percolation

Harris’ inequality and related results have proved extremely useful in perco-
lation theory and related topics — see, e.g., Grimmett (1999) and Georgii et
al. (2001) — a fact that motivates a considerable interest in trying to come
up with new correlation inequalities. An important example is the so-called
BK inequality of van den Berg and Kesten (1985) for “disjoint occurence” of
increasing events, and the extension of this by Reimer (2000) to arbitrary
events. Here let us look in another direction, namely that of whether (vari-
ants of) the Harris and FKG inequalities are preserved under various kinds
of conditioning.

Let us focus on the standard bond percolation model on a finite or infinite
but locally finite graph G = (V, E) and retention parameter p, where each
edge is independently deleted with probability 1 — p, as in Section 2. Write
X € {0,1}¥ for the resulting random subgraph as represented by the indi-
cator variables Xe = 1ie is retained} fOr each e € E. Harris’ inequality tells
us that for any two bounded and increasing functions f,g: {0,1}* — R, we
have

E[f(X)g(X)] > E[f(X)]E[g(X)].
Suppose now that we condition on an event A C {0,1}¥. Does the inequality

E[f(X)g(X)[A] = E[f(X)[AJE[g(X) | A] (16)

then hold? It is easy to devise examples that show that the answer is no, and
that we do not even recover (16) by requiring that (the indicator function
of) A is increasing or that it is decreasing.

But all is not lost. Restricting to certain “connectivity events” in {0,1}"
allows us to derive certain correlation inequalities. For a vertex x € V, write
F for the o-field consisting of events whose occurence or non-occurence can
be determined from knowledge just of which vertices and which edges are
part of the connected component of X containing z. Examples of events in
F are

A = {the connected component containing z has at least 10 edges}

13



and, for fixed y € V, the event B = {z <> y} that y is in the same connected
component of X as z is. We write {z ¢ y} for the complement of the latter
event, and note that of course also this complement is in F.

The following conditional correlation inequality was recently established
by van den Berg et al. (2006a).

Theorem 2 Consider bond percolation on a locally finite graph G = (V, E)
with retention parameter p € [0,1]. Then, for any two vertices z,y € V and
any two bounded and increasing events A € Fy and B € F,, we have

P(ANB|{z #y}) < P(A[{z # y})P(B[{z # y}). (17)

Note the reversal of the inequality compared to Harris’ inequality. The result
seems intuitively plausible, since if we condition on {z ¢ y}, then further
conditioning on the connected component C, being large (in some sense)
restricts the space available to C, and should therefore tend to make it
smaller. It appears, however, to be not such an easy challenge to find a more
direct proof than the Markov chain argument given below. An alternative
proof, based on induction in the size of the graph G, arises by concatenating
vanden Berg and Kahn (2001), Proof of Thm. 1.2, and van den Berg et al.
(2006a), Proof of Thm. 1.5.

In van den Berg et al. (2006a), Theorem 2 is proved in the greater gen-
erality of the random-cluster model with clustering parameter ¢ > 1 (the
case ¢ = 1 corresponds to the ordinary bond percolation setup considered
here) using an extension of the Markov chain argument; the induction-based
alternative proof seems not to work in this setting. Applications of Theorem
2 to settle certain open problems concerning the equilibrium behavior of an
interacting particle system known as the contact process appear in van den
Berg et al. (2006a, 2006D).

Proof of Theorem 2: It suffices to prove the theorem for the case where
G is finite, as the infinite case follows from standard limiting arguments
similar to those discussed in the proof of Theorem 1. Consider the {0,1}#-
valued Markov chain (X (0), X(1),...) with the following transition mecha-
nism, where to go from time k to time k + 1, the edge configuration X (k) is
modified into X (k 4 1) via an intermediate configurations X'(k):

1. For each edge e € E that either is in the connected component of
X (k) containing z or has a vertex in this connected component as an
endpoint, set X\ (k) = X¢(k), while for all other edges set X.(k) = 1
(resp. 0) with probability p (resp. 1 — p), independently for different
edges.
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2. For each edge e € E that either is in the connected component of
X'(k) containing y or has a vertex in this connected component as
an endpoint, set X (k + 1) = X'(k), while for all other edges set
Xe(k+1) =1 (resp. 0) with probability p (resp. 1 — p), independently
for different edges.

Write p for the probability measure on {0,1}" corresponding to conditioning
percolation with parameter p on the event {z ¢ y}. If we condition x on the
connected component C, contaning z, then clearly the conditional distribu-
tion of the rest of the configuration is i.i.d. (p) percolation on the edges that
are neither in C,, nor adjacent to a vertex in Cj. Viewing the above transi-
tion kernel as the composition of two kernels — Steps 1 and 2 above — we thus
see immediately that y is invariant under Step 1, and similarly under Step 2,
and therefore also under the full kernel for (X (0), X(1),...). Furthermore,
the chain is easily seen to be irreducible (within the set of states satisfying
z 4 y) and aperiodic, so no matter how the initial state X (0) is chosen, we
know that the distribution of X (k) tends to u as k — oo.

Now, if we were to imitate the approach of the previous two chapters, we
would look for some suitable second Markov chain to couple (X (0), X (1),...)
with. We will not do so here, but instead something similar in spirit, namely
to specify in more detail how the randomization in the transition mechanism
is carried out. To this end, we introduce an array {U.(k)}ecE k=0,12,. of
ii.d. Bernoulli (p) random variables, and an array {U;(k)}ecr k=0,1,2,.. of
i.i.d. Bernoulli (1 — p) random variables, independent also of the first array.
(Coupling affectionados may view the following as a coupling of the Markov
chain and these arrays.) The random parts of Steps 1 and 2 are implemented
as follows:

1. For each edge e € FE that is neither in the connected component of
X (k) containing z, nor incident to it, set X.(k) = Ue(k).

2. For each edge e € E that is neither in the connected component of
X'(k) containing y, nor incident to it, set X¢(k + 1) =1 — U (k).

Now start the Markov chain in some fixed state: for definiteness we take
X (0) = 0. With the chosen transition mechanism, the set of edges in the
connected component of z in X (1) becomes an increasing function of the
variables {U,(0)}ecr, while the set of edges in the connected component of
y in X (1) becomes a decreasing function of the variables {Ug(0)}ecr and
{UZ(0)}ece- And proceeding by induction, we see that the set of edges
in the connected component of z in X (k) is an increasing function of the
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variables {Ue (%) }ec g i=0,...k—1 and {U; (%) }ec g i=0,... k—2, and that the set of
edges in the connected component of y in X (k) is a decreasing function of
the variables {Ue(i)}eeE,i:O,...,k—l and {U:(i)}eeE,i:O,...,k—l-

Constructing the Markov chain as a (in parts) monotone function of i.i.d.
random variables puts us in an ideal position for exploiting Harris’ inequality.
Write py, for the distribution on {0, 1}¥ of X (k), and fix two increasing events
A € F; and B € Fy as in the theorem. Noting that the composition of an
increasing function and another increasing function is again increasing, we
get from Harris’ inequality (or from the slightly more elementary Proposition
1) that

pe(ANB) < p(A)pg(B).
Sending k — oo gives
n(ANB) < pu(A)u(B)
and we are done. ¢

Note that this proof shows a bit more than the statement of the theorem.
If f,g:{0,1}¥ — R are bounded and increasing in the set of edges in the
connected component containing x as well as decreasing in the set of edges
that are in other connected components, then u(fg) > u(f)u(g). If we
restrict to the special case where f and ¢ are functions only of the connected
component containing z, then we recover an earlier result of van den Berg
and Kahn (2001), Thm. 1.5.

Another aspect of the proof worth noting is that instead of the appeal
at the beginning of the proof to “standard limiting arguments”, we could
alternatively have run the Markov chain directly on an infinite graph. The
fact that py converges in distribution to y is then slightly less elementary
than in the finite case, but still true. To see this, a classical-style cou-
pling argument will do: Run the chain (X(0), X(1),...) starting from an
arbitrary fixed configuration, together with another chain (Y'(0),Y (1),...)
with the same transition mechanism, with Y (0) chosen at random accord-
ing to p. We may use the same Bernoulli variables {Ue(k)}ecr k=0,1,2,.. and
{UF(k)}ecE k=0,1,2,.. for the updating of the two chains. If z is incident to

exactly d edges eq,...,eq, then this guarantees that the two chains become
identical from time k + 1 and onwards as soon as U, (k) = ... = U, (k) = 0.
This implies that for any event A that we have
k
k(4) = p(A)] < (1-(1-p)?)", (18)

which thus is a bound on the so-called total variation distance between p
and pg, and the key thing here is of course that this bound tends to 0 as
k — oo.
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5 Concluding remarks

The examples of Markov chain arguments in Sections 2—4 have a number of
common features. One such feature is that each of them is used to derive
one inequality or another. This raises the question of whether the circle
of ideas that I try vaguely to define through these examples is limited to
establishing inequalities. The answer is no, and the reader may, e.g., turn
to the Proof of Lem. 2.4 in Haggstrom (1996) for an argument that can
immmediately be recognized as belonging to the same circle, but is used
to prove a distributional identity. Other examples of results of kinds other
than inequalities obtained in similar fashion are the ergodic-theoretic results
of van den Berg and Steif (1998), Héaggstrom and Steif (2000), Higgstrom
et al. (2000) and Héggstrom et al. (2002) mentioned at the end of Section 1.

Another noteworthy feature is the following. As in MCMC, some of the
examples exploit the asymptotic behavior of their respective Markov chains.
But unike in MCMC, where it is of crucial importance that the convergence
to equilibrium is relatively fast, the rate of convergence to equilibrium is
unimportant in each of the examples here. The difference is, of course, that
in MCMC we need to implement and run the chains in computer simulations,
while in the examples considered here we only need to run them “in our
heads”, where it only takes a split second to imagine having run them until
we are close to equilibrium.
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