How objective is objective Bayesianism — and how Bayesian?

Olle Haggstrom

The dust jacket of Jon Williamson’s In Defence of Objective Bayesianism
is dominated by an ingenious drawing by early 20th century artist William
Heath Robinson that beautifully illustrates the second word of the book’s
title. From there, the book goes quickly downhill, never to recover.
Objective Bayesianism, in Williamson’s view, is an epistemology which
prescribes that the degrees to which we believe various propositions should

be
(a) probabilities,
(b) calibrated by evidence, and
(c) otherwise as equally distributed as possible among basic outcomes.

The task Williamson sets himself is, as the title suggests, to defend the idea
that this is the right epistemology to guide how we acquire and accumulate
knowledge, especially in science. This makes the book primarily a contribu-
tion to the philosophy of science rather than to mathematics, even though
mathematical formalism — especially propositional and predicate logic, en-
tropy calculations and probability  pervades it. The author masters such
formalism fairly well, apart from the occasional lapse (such as when, on p
34, he implies that a dense subset of the unit interval must be uncountable).

Among the proposed requirements (a), (b) and (c) on the extent to which
we should believe various propositions, (b) strikes me as the least trouble-
some (it would probably take a theologist to dissent from the idea that
evidence should constrain and guide our beliefs), while (a) seems more open
to controversy but not obviously wrong. I have more trouble with the final
requirement (c) about equivocation between different outcomes.

Given that we accept the premise (a) about expressing degrees of be-
lief in terms of probabilities, surely an unbiased thinker should follow (c) in
spreading his belief uniformly over the possible outcomes, unless constrained
otherwise by evidence? This may seem compelling, until we examine some
examples. Williamson is aware of the mathematical obstacles to defining uni-
form distribution on various infinite sets, but seems unaware of how poorly
assumptions of uniform distribution may perform even in finite situations.

Consider the following image analysis situation. Suppose we have a very
fine-grained image with 105 x 105 pixels, each of which can take value black



or white. The set of possible images then has 210" ¢lements. Suppose that
we assign the same probability 1/21012 to each element. This is tantamount
to assuming that each pixel, independently of all others, is black or white
with probability 1/2 each. Standard probability estimates show that with
overwhelming probability, the image will, as far as the naked eye can tell,
be uniformly grey. In fact, the conviction of uniform greyness is so strong
that even if, say, we split the image in four equally sized quadrants and
condition on the event that the first three quadrants are pure black, we are
still overwhelmingly convinced that the fourth quadrant will turn out grey.
In practice, this can hardly be called unbiased or objective.

Intelligent design proponent William Dembski (2002) makes a very sim-
ilar mistake in his attempt to establish the unfeasibility of Darwinian evo-
lution by appealing to the so-called no free lunch theorems. In doing so,
he implicitly assumes that the fitness landscape (a function which describes
how fit for reproduction an organism with a given genome is) is randomly
chosen from a large but finite set of possible such landscapes with a similar
product structure as in the image example. Just as the uniform prior in
the image example assigns probability very close to 1 to the event that the
image is just grey, the uniform prior in the biology example assigns proba-
bility very close to 1 to the (biologically completely unrealistic) event that
the fitness landscape is entirely unstructured. See Héggstrom (2007) for a
more detailed discussion.

These examples show that the term “objective” for the habit of prefering
uniform distributions whenever possible is about as suitable as the term
“objectivist” for someone who favors the night watchman state and who has
read and memorized Atlas Shrugged.

At this point, a defender of uniform distributions might suggest that the
reason why requirement (c) can lead so badly wrong in these examples is the
extremely large state spaces on which uniform distribution is applied. So
let’s look at an example with a smaller state space, with just 2 elements. In
his first chapter, Williamson describes a situation where a physician needs
to judge the probability that a given patient has a given disease S. All the
physician knows is that there is scientific evidence that the probability that
a patient with the given symptoms actually has disease S is somewhere in
the interval [0.1,0.4]. Williamson’s suggestion is that the physician should
settle for P(ill) = 0.4, because this is as close as he can get to uniform
distribution (0.5,0.5) on the space {ill, healthy} under the constraint given
by the scientific evidence.

I must admit first thinking that the author was joking in suggesting such
an inference, but no, further reading reveals that he is dead serious about



it. Rather than giving the whole list of objections that come to my mind,
let me restrict to one of them: what Williamson himself calls language de-
pendence. Let us suppose that we refine the crude language which only
admits the two possible states “ill” and “healthy” to account for the fact
that a healthy person can be either susceptible or immune, so that the state
space becomes {ill, susceptible, immune}, and Williamson’s favored estimate
goes down from P(ill) = 0.4 to P(ill) = 1/3. By further linguistic refine-
ment (such as distinguishing between “moderately ill”, “somewhat more ill”,
“very ill” and “terminally ill”), we can make P(ill) land anywhere we wish in
[0.1,0.4]. How’s that for objectivity?

Williamson is aware of the language dependence problem and devotes
Section 9.2 of his book to it. His answer is that one’s language has evolved
for usefulness in describing the world, and may therefore itself constitute
evidence for what the world is like. “For example, having dozens of words for
snow in one’s language says something about the environment in which one
lives; if one is going to equivocate about the weather tomorrow, it is better
to equivocate between the basic states definable in one’s own language than
in some arbitrary other language” (Williamson, p 156-157). This argument
is feeble, akin to noting that all sorts of dreams and prejudices we may have
are affected by what the world is like, and suggesting that we can therefore
happily and unproblematically plug them into the inference machinery.

So much for requirement (c) about equivocation; let me move on. Con-
cerning requirement (a) that our degrees of beliefs should be probabilities,
let me just mention that Williamson attaches much significance to so-called
Dutch book arguments. These go as follows. For a proposition 6, define my
belief p(#) as the number p with the property that I am willing to enter a
bet where I receive $a(1 — p) if € but pay $ap if =0 regardless of whether a
is positive or negative. Leaving aside the issues of existence and uniqueness
of such a p, it turns out that I am invulnerable to the possibility of a Dutch
book defined as a collection of bets whose total effect is that I lose money
no matter what — if and only if my beliefs satisfy the axioms of probability.

Let me finally discuss requirement (b) that beliefs should be calibrated by
evidence. This, as mentinoned above, is in itself pretty much uncontroversial;
the real issue is how this calibration should go about. Here, when reading the
book, I was in for a big surprise. Having spent the last couple of decades in
the statistics community, I am used to considering the essence of Bayesianism
to be what Williamson calls Bayesian conditionalization: given my prior
distribution (collection of beliefs), my reaction to evidence is to form my
posterior distribution by conditioning the prior distribution on the evidence.

Not so in Williamson’s “objective Bayesianism”! His favored procedure for



obtaining the posterior distribution is instead to find the maximum entropy
distribution among all those that are consistent with the evidence.

This is especially surprising given the significance that Williamson at-
taches to Dutch book arguments, because it is known that if the way I up-
date my beliefs in the light of evidence deviates from what is consistent with
Bayesian conditionalization, then I am susceptible a Dutch book in which
some of the bets are made before the evidence is revealed, and some after
(Teller, 1973). Even more surprisingly, it turns out that Williamson knows
this. How, then, does he handle this blatant inconsistency in his arguments?

At this point he opts for an attempt to cast doubt on the use of sequential
Dutch book arguments. On p 85 he claims that

in certain situations one can Dutch book anyone who changes
their degrees of belief at all, regardless of whether or not they
change them by conditionalization. Thus, avoidance of Dutch
book is a lousy criterion for deciding on an update rule.

Here emphasis is from the original, but I would have preferred if Willimanson,
for clarity, had instead chosen to emphasize the words “in certain situations”.
The force of his argument obviously hinges on what these situations are.
The answer: “Suppose it is generally known that you will be presented with
evidence that does not count against 6, so that your degree of belief in 6
will not decrease” (Williamson, p 85). Here it must be assumed that by
“generally known” he means “generally known by everyone but the agent”,
because as a Bayesian conditionalizer I would never find myself in a situation
where [ know beforehand in which direction my update will go, because then
I would already have adjusted my belief in that direction. So what he’s
actually referring to is a situation where the Dutch bookmaker has access to
evidence that Ilack. A typical scenario would be the following. I have certain
beliefs about how the football game Arsenal vs Real Madrid will end, and set
my probabilities accordingly. Now, unbeknownst to me (who was confused
about the game’s starting time), the first half of the game has already been
played, and Arsenal is down 0-3. The Dutch bookmaker approaches me for
a bet, then reveals what happened in the first half, and offers a second bet.
WEell, of course he can screw me over in such a situation! But if we allow the
Dutch bookmaker to peek at evidence that is currently unavailable to me,
then we might just as well let him see the whole match in advance, in which
case he could easily empty my wallet without even the need for a sequential
betting procedure.

Hence, what Williamson’s intended reductio shows is not that sequential
Dutch book arguments should be avoided, but rather that we must insist on



Dutch bookmakers not having access to evidence that the agent lacks. If we
do so, it follows from a straightforward martingale argument that an agent
who sticks to Bayesian conditionalization is immune to sequential Dutch
books with a bounded number of stages.

Dutch books aside, there is practically no end to the silliness of the
author’s further arguments for why his maximum entropy method is superior
to Bayesian conditionalization. On p 80, he offers the following example.

Suppose A is ‘Peterson is a Swede’, B is ‘Peterson is a Norwe-
gian’, C' is ‘Peterson is a Scandinavian’, and e is '80% of all
Scandinavians are Swedes’. Initially, the agent sets Pc(A) = 0.2,
Ps(B) =08, Ps(C) =1, Pe(e) = 0,2 and Ps(ANe) = Ps(B A
g) = 0.1. All these degrees of belief satisfy the norms of subjec-
tivism. Updating by [maximum entropy| on learning ¢, the agent
believes that Peterson is a Swede to degree 0.8, which seems quite
right. On the other hand, updating by conditionalization on €
leads to a degree of belief of 0.5 that Peterson is a Swede, which
is quite wrong.

Here Williamson obviously thinks the evidence € constrains the probability
of A to be precisely 0.8. This is plain false — unless we redefine C' to say
something like “Peterson was sent to us via some mechanism that picks a
Scandinavian at random according to uniform distribution, and we have
absolutely no other information about how he speaks, how he dresses, or
anything else that may give a clue regarding his nationality”. But this is not
how the problem was posed.

Suppose however for the sake of the argument that £ does have the conse-
quence that Williamson claims. Then in fact the choice of prior is incoherent,
because Pe(AAeg) = Ps(B A¢g) = 3Pc(e) means that given ¢, the odds for
Peterson being Swedish or Norwegian are fifty-fifty. Hence, this argument of
Williamson against Bayesian conditionalization carries about as much force
as if I would make the following argument against his objective Bayesianism:
“Suppose that, in the course of working out his maximum entropy updating,
Williamson assumes that x < 3 and that x = 5. This obviously leads to a
contradiction, so there must be something fishy about objective Bayesian-
ism.”

I could go on and on about the weaknesses of Williamson’s case for his pet
epistemology, but this review has already grown too long, so I'll just finish
by pointing to one more crucial issue. Namely, exactly how does evidence
lead to constraints on what is reasonable to believe constraints that serve
as boundary conditions in the entropy maximization procedure that follows



next. Williamson tends to treat this step as a black box, which seems to
me very much like begging the issue. For instance, on p 83 he discusses
what to expect of the 101th raven if we've already seen 100 black ravens
will it be black or non-black? Unconstrained entropy maximization yields
the distribution (0.5,0.5) on {black, non-black}, but Williamson rejects this,
claiming that the evidence constrains P(black) to be close to 1. And then
this: “Exactly how this last constraint is to be made precise is a question
of statistical inference the details need not worry us here” (Williamson, p
83). An author who wishes to promote some particular philosophy of science
but has no more than this to say about the central problem of induction has
a long way to go. In his final chapter, Williamson does admit that “there
is plenty on the agenda for those wishing to contribute to the objective
Bayesian research programme” (p 163). To this, T would add that they face
an upphill struggle.
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