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Abstract

The critical value for Bernoulli percolation on the Z? lattice in any dimension
d is shown to be a computable number in the sense of the Church-Turing thesis.

1 Introduction

In 2004, at the 8th Brazilian School of Probability, I gave a lecture series entitled
Percolation theory: the number of infinite clusters, based mainly on a draft version of
Héggstrom and Jonasson [6]. This was a highly rewarding experience, not only because
of the beautiful location but also because of one of the most stimulating audiences 1
have ever had. During one of the breaks, and later at an open problems session, Andrei
Toom asked whether the critical value p,. for Bernoulli percolation on the Z? lattice is
computable in the sense of the Church—Turing thesis for all d, and described (probably
somewhat tongue-in-cheek) the lack of a known answer to this question as a serious
shortcoming of the subject of percolation theory. The purpose of this note is to show
how an affirmative answer to Toom’s question can be deduced relatively easily from
some of the percolation technology that had been developed for other purposes in the
1980’s and 1990’s. To prove the desired computability result from scratch is a different
story, and I suspect it would be quite involved.

The rest of this section is devoted to describing the setup and stating the main result.
Then, in Section 2, the algorithm that is used to establish the result is described, and
finally in Section 3 the algorithm is shown to halt in finite time with the desired output.

Percolation theory (see Grimmett [4] for an introduction) deals with connectivity
properties of random media, and the most basic setup, known as Bernoulli percolation,
is as follows. Let G = (V, E) be a finite or infinite but locally finite graph with vertex
set V and edge set E, fix p € [0,1], and remove each edge e € E independently with
probability 1—p, thus keeping it with probability p, and consider the resulting subgraph
of G. It will sometimes be convenient to represent an outcome of this percolation process
as an element of {0, 1} where a 0 denotes the removal of an edge, and a 1 its retention.
In the following, we will conform to standard terminology by speaking of retained edges
as open, and deleted edges as closed. For z,y € V, we write x <> y for the event that
there exists a path of retained edges between x and y.

What we have defined here, and will be concerned with in the following unless
otherwise stated, is bond percolation. Alternatively, one may consider site percolation,
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where it is the vertices rather than the edges that are retained (declared open) or
removed (declared closed) independently with retention probability p.

When @G is infinite, it is natural to ask for the probability of the existence of at
least one infinite connected component of the resulting subgraph. Kolmogorov’s 0-1-
law implies that this probability 1(p) is either 0 or 1 for any p, and a simple coupling
argument shows that 1 (p) is nondecreasing in p. Combining these two observations
yields the existence of a critical value p, = p.(G) € [0, 1] such that

] 0 forp<p.
¢(P)—{1 forp > p..

Much of percolation theory deals specifically with the case where G is the Z¢ lattice,
i.e., the graph with vertex set Z% and with edge set E,a consisting of edges connecting
vertices at Euclidean distance 1 from each other. The case d = 1 is fairly trivial with
pe = 1, but already the case d = 2 turns out to be extremely intricate, with Kesten’s
[7] 1980 result that p.(Z?) = 3 standing out as one of the classical achievements in the
subject. For higher dimensions d > 3 no exact expressions for p.(Z?) are known. This
makes it natural to ask for upper and lower bounds for p. as well as properties such as
the computability considered here.

Beginning in 1936, a number of formal models of computing — the most well-known
ones being Turing machines and A-calculus — were introduced that were later shown
to yield equivalent notions of computability. The Church-Turing thesis states that
the set of functions f : Z — Z computable according to one (hence all) of these models
exhausts the set of functions that would naturally be regarded as computable. Due to the
vagueness of the statement, the thesis cannot be formally proven, but it is held in high
esteem among computer sceintists, and certainly any function that allows computation
by a program written in (pseudo-)Pascal or other standard programming languages can
also be computed on a Turing machine. See, e.g., Knuth [8] or Blass and Gurevich [3]
for more on this topic. Actually programming a Turing machine is an extremely tedious
task, and we will instead follow tradition by reverting to describing our algorithms in
a more informal language, yet specifically enough to make it evident that they can be
implemented on a computer.

The notion of computability of a function is easily extended to that of a real number
z with binary expansion z = Y, 7;27": we say that z is computable if f(i) = z; is a
computable function (and it is easy to see that this computability property is unchanged
if we switch to, e.g., base 3 or any other integer base). We can now state our main result:

Theorem 1.1 The critical value p. = p.(Z%) for Bernoulli bond percolation on Z% is
computable for any d.

Our choice to state and prove the result only for bond percolation is just a matter
of convenience: the result and its proof allow almost verbatim translation to the site
percolation setting.

One peculiarity of our proof of Theorem 1.1 is a slight lack of constructiveness:
Either p, is dyadic (i.e., equals j27* for some integers i and j), or it is not. If it is,
then obviously it is also computable, while if it is not, then the algorithm in Section 2
will compute p.. We are thus unable to point at a single algorithm and with confidence
say that this algorithm computes p.. This peculiarity is an artifact of the precise choice
of definition of computability of a real number z. If instead (as some authors prefer)



we choose the equivalent definition of saying that z is computable if there exists an
algorithm which given any i produces an interval of length 2% that contains z, then a
minor variation of the algorithm in Section 2 will suffice to achieve this regardless of
whather z is dyadic or not; see Remark 2.3.

The algorithm outlined in Section 2 — or more precisely the variant given in Remark
2.3 — improves a (randomized) scheme for estimating p. due to Meester and Steif [11].

Their scheme produces a sequence of estimates ﬁgl), p?),... that converges (almost

surely) to p., but at no stage is there any guarantee that pﬁi) is within a given distance

¢ from pc. In contrast, our algorithm yields a sequence ﬁgl), ﬁg), ... for which we know
that |ﬁ£z) —pe| < 27 for each i.

How far — i.e., to which lattices and graphs — can Theorem 1.1 be extended? Cer-
tainly not to all graphs, because, as observed by van den Berg [2], there exists for any
p € [0,1] a graph G with p.(G) = p. It might be tempting to hope that p.(G) is com-
putable for every transitive graph, but I suspect that even this is false, in view of Leader
and Markstrom’s [9] construction of uncountable families of non-isomorphic transitive

graphs.

2 The algorithm and some basic properties
Fix the dimension d. For N a multiple of 8, define
Ay = {x:(xl,...,xd) VAR —% <z; < % for j = ,...,d},

and define Ej, as the set of edges in the Z¢ lattice whose endpoints are both in Ay.
For Bernoulli bond percolation on Z% consider the two events Ay and By defined in
terms of the edges in Ej , as follows.

e Ap is the event that at least one connected component of the set of open edges in
E\, contains two vertices at Euclidean distance more than N/10 from each other.

e By is the event that the set of open edges in F, contains a connected component
intersecting all the 2d sides of the cube Ay, but that no other connected component
contains two vertices at Euclidean distance more than N/10 from each other.

For p € [0,1], define P, as the probability measure on {0,1}¥z¢ corresponding to
Bernoulli bond percolation on Z?. Note that for rational p, the probability P,(Ay) is

easy to compute: just go through all the 24C°3)* different configurations w € {0, l}EAN,
check for each of them whether Ay happens, and sum

PP (1 — p)dF)n(w)

over those w’s for which Ax happens; here n(w) is the number of 1’s in w. By the same
token, we can compute P,(By).

Our algorithm which, given ¢, produces the 7 first binary digits of p. — or equivalently,
gives an interval of the form [j27%, (5 + 1)27%) containing p. — is as follows.

(I) Set N =8.

(II) Compute Pjo-i(An) and Pjy—i(By) for j =0,1,...,2".



(ITT) If for some j € {0,...,2" — 1} we have
_ad

and
P(ii1)-i(By)>1-877,

then let j' be the smallest such j, output the interval [j'27¢, (5’ + 1)2~*) and stop.
Otherwise increase N by 8 and continue with (II).

We need to show, under the assumption that p. is non-dyadic, that the algorithm
terminates after some finite number of cycles, and that the interval [j27¢, (j + 1)27¢) it
outputs satisfies . '

pe €[22, (G +1)2°7). (1)
The termination property follows from Proposition 2.1 below applied to p = 27 and
p* = (j +1)27% where j = max{j’ : 27" < p.}, and property (1) follows from Propo-
sition 2.2. Hence, once the two propositions are proved, we know that non-dyadicity
of p. implies its computability, and as explained in Section 1 this implies Theorem 1.1.
We defer the proofs of the propositions to Section 3.

Proposition 2.1
(a) For any p < p¢, we have imy_,c Pp(An) = 0.
(b) For any p > p., we have limy_,oo Pp(Byn) = 1.

Proposition 2.2
(a) For no p < p. and no N € 8,16,24,... do we have Pp(By) > 1 —877.

(b) For no p > p. and no N € 8,16,24,... do we have Pp(An) < (2d — 1)_3d.

Remark 2.3 The reason why the above algorithm doesn’t necessarily work in case p.
is dyadic is that if j27* = p., then we may end up having Pjo-i(Ax) > (2d — 1)=3
and Pjy-i(By) < 1 — 89 for all N, causing the algorithm to keep running without
ever terminating. If we are content with an interval of width 27**! (which can still be
made as small as we wish) containing p., then regardless of dyadicity the algorithm will
terminate and produce an interval containing p. if we simply replace step (III) above
by

(IID) Iffor some j € {0,...,2—1} we have Pjy-i(Ay) < (2d—1)3" and P(j12)2-i(Bn) >
1—877, then take j’ to be the smallest such j, output the interval [§'27%, (j'+2)277)
and stop. Otherwise increase N by 8 and continue with (II).

Remark 2.4 The proposed algorithm is obviously incredibly slow — so slow that no-
body in her right mind would use it in practice to estimate p.. It might nevertheless
be of some theoretical interest to find bounds for its running time. Such bounds can
presumably be obtained by inspecting the proofs of the limit theorems from [12] and
[1] used in the next section, and extracting convergence rates (though it might require
hard work). For the algorithm in Remark 2.3 the bounds can probably be obtained
independently of any detailed information about p., whereas for the original algorithm
pe would have to enter the bound in one way or another. To see this, suppose for in-
stance that p. € (%, % +1071990) To get the third binary digit in place we would have
to decide whether % is sub- or supercritical, and since 2 is so close to p. that would

8
require a stupendously large N — and the running time is exponential in N.



3 Proofs

The definitions of the events Ay and By are tailored to fit into known percolation
technology to make the proof of especially Proposition 2.1 as streamlined as possible.
In particular, the proof of Proposition 2.1 (a) is based on the famous exponential decay
result for subcritical percolation, which was proved by Menshikov [12] and is explained
at greater length by Grimmett [4]. Writing D for the radius of the connected component
containing the origin 0, i.e.

D = sup{dist(0,z) : z € Z% z < 0}

where dist denotes Euclidean distance, the result states that for any p < p. there exists
a C = C(p) > 0 such that
P,(D>n) < e " (2)

for all n.

Proof of Proposition 2.1 (a). Fix p < p. and choose C' > 0 in such a way that (2)

holds for all n. Write Zp for the number of vertices x € Ay that are connected to at
d

least one vertex at distance at least N/10 away. Since Ay contains (% + 1) vertices,

(2) implies that the expected value of Zy satisfies

d
Ey[Zn] < (3 +1) e CN10

so that
Jim Py(dy) < Jim Py(Zy > 1)
< Jlim Ey[Zy]
< Jim (3 +1)7e M0 =0,
as desired. O

The proof of Proposition 2.1 (b) consists in a reference to a result of Antal and Pisztora
[1]. The choice of using this particular result is somewhat arbitrary, and could be
replaced by any of a number of similar results from the renormalization technology
pioneered by Grimmett and Marstrand [5] and discussed at a gentler pace by Grimmett

[4].
Proof of Proposition 2.1 (b). This is Antal and Pisztora [1, Prop. 2.1]. O

In order to prove Proposition 2.2, we need the notion of I-dependent site percolation.
This is a generalization of ordinary (Bernoulli) site percolation where the independence
assumption is weakened as follows. The Lo.-distance between two vertices (z,y) € Z¢
with coordinates z = (z1,...,24) and y = (y1,...,yq) is defined to be max;{|z; — vi|}.

Definition 3.1 A {0, 1}Zd—valued random object X 1is said to be 1-dependent if for any
finite collection of vertices x1,...,z, € Z% such that no two of them are within Ly,-
distance 1 from each other we have that X (x1),...,X(zx) are independent.

The key to proving Proposition 2.2 is the following lemma about 1-dependent site per-
colation. By a cluster, we mean a maximal connected component of open vertices.



Lemma 3.2 Fiz o € [0,1], and let X € {0,1}2" be a translation invariant and 1-
dependent site percolation process such that for each z € Z¢ we have P(X(z) = 1) = a.

(a) If a >1—879, then a.s. X contains an infinite cluster.
(b) If a < (2d — 1)_3d, then a.s. X contains no infinite cluster.

One way to prove this result (with the contants 1—8 % and (2d— 1)*3d inconsequentially
replaced by other constants in (0,1)) is to invoke the stochastic domination results of
Liggett, Schonmann and Stacey [10]. Here we opt, instead, for a simple modification of
the classical path and contour counting arguments for proving p. € (0,1) in standard
Bernoulli percolation, as outlined, e.g., in the introductory chapter of Grimmett [4]. We
begin with part (b) of the lemma.

Proof of Lemma 3.2 (b). For any n, the number of non-selfintersecting paths in the
Z? lattice from the origin is at most 2d(2d — 1)"~1; this is because the first vertex to go
to can be chosen in 2d ways, and from then on there are at most 2d — 1 vertices to choose
from in each step. In each such path R, we can find a subset S of its vertices that has
cardinality at least n/3% and such that no two x,y € S are Lo-neighbors; such a subset
can be found by picking vertices in R sequentially and deleting all their L.,-neighbors.
By the definition of 1-dependence, we get that each such R has probability at most
a3 of being open, in the sense that all its vertices are open. The expected number of
such open paths of length n from the origin is therefore bounded by 2d(2d — 1)"_104"/ 3d,
which when a < (2d — 1)_3d tends to 0 as n — oo. Hence, the origin has probability 0
of being in an infinite cluster, and the same argument applies with the origin replaced
by any z € Z¢, so the existence of an infinite cluster has probability 0. O

Proof of Lemma 3.2 (a). We proceed similarly as in part (b). First note that by
restricting to a two-dimensional hyperplane in Z¢, we reduce the problem to only having
to consider the case d = 2. Define a *-path as a sequence of vertices with consecutive
vertices at Leo-distance 1 from each other, and a *-circuit as one that ends within Lo-
distance 1 from its starting point. Next, define a *-contour in Z? as a non-selfintersecting
x-circuit that surrounds the origin, and a closed *-contour as one whose vertices are all
closed. Similarly as in (b), we get that the number of countours of length n is bounded
by n8", and that each of them has probability at most (1 — a)"/ 9 of being closed. The
expected number of closed contours is thus bounded by

o

Z n8"(1 — a)"/g

n=1

which is finite when o > 1 — 87°. For such « the number of closed contours is therefore
a.s. finite, whence either the origin itself or some open vertex just outside the “outer-
most” contour is in an infinite cluster. O

Proposition 2.2 will now be proved using two simple renormalization representations (X
and Y below) of Bernoulli bond percolation. Given N € {8,16,24,...} and p € [0, 1],
consider a Bernoulli bond percolation process X € {0,1}Fz¢ with retention parameter
p. For z € Z¢, define the box

AN,z Z{yEZd:y—NJ}EAN}



and define the events Ay, and By, analogously to Ay and By but pertaining to the

edges in Ay, rather than in Ay. Define two site percolation processes Y, Z € {0, 1}Zd
by setting, for each z € Z¢,

1 ifAng
Y(z)= { 0 otherwise

and

[ 1 if By,
Z(z) = { 0 otherwise.

The boxes Ay, and Ay, intersect only if z,y € Z% are Lo,-neighbors, whence Y and
Z are both 1-dependent percolation processes.

Proof of Proposition 2.2 (a). Assume for contradiction that p < p. and that
P,(By) >1—-8"Y Forz € Z% such that By happens, write C; for the connected
component of X whose restriction to Ay, connects all 2d sides of Ay ;. Note that if
z,y € Z% are Li-neighbors, then {Z(z) = 1} U {Z(y) = 1} implies that C, and C,
coincide. By iterating this argument, we get for arbitrary =,y € Z¢ that if Z(z) = 1,
Z(y) = 1 and = and y are in the same connected component of Z, then C, and C,
coincide. In particular, if z € Z? satisfies Z(z) = 1 and sits in an infinite connected
component of Z, then C, is infinite. But since

P(Z(z)=1) = Pp(Bng)
= P,(By) >1-87°
for all z, Lemma 3.2 (a) tells us that Z contains a.s. some infinite cluster. Hence Cj is
infinite for some z € Z%, so X contains an infinite cluster, contradicting p < pe. O

Proof of Proposition 2.2 (b). Assume for contradiction that p > p. and that
P,(An) < (2d — 1)_3d. If the origin O is in an infinite cluster of the bond percola-
tion process X, then we must (by the definition of Ay, and Y') have Y(0) = 1, and
furthermore that 0 belongs to an infinite cluster of Y. But since

P(Y(z)=1) = P,(Any)
= P,(Ay) < (2d—1)%

for all z, we get by Lemma 3.2 (b) that Y contains a.s. no infinite cluster. Hence 0 is
a.s. not in an infinite cluster of X, contradicting p > p.. O
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