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Abstract

We consider random walk with a nonzero bias to the right, on
the infinite cluster in the following percolation model: take i.i.d. bond
percolation with retention parameter p on the so-called infinite ladder,
and condition on the event of having a bi-infinite path from —oo to
00. The random walk is shown to be transient, and to have an asymp-
totic speed to the right which is strictly positive or zero depending on
whether the bias is below or above a certain critical value which we
compute explicitly.

Mathematics Subject Classifications: 60J10 60K35 60K37
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1 Introduction

Random walk on a percolation cluster has received considerable attention in
recent years. For simple random walk on the infinite cluster of i.i.d. percola-
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tion on the Z? lattice, several authors such as De Masi et al. [7], Berger and
Biskup [5] and Mathieu and Piatnitski [12] focused on invariance principles.
Others have considered the recurrence-transience problem; see Grimmett et
al. [9] for the basic result showing that the usual recurrence-transience di-
chotomy between random walks on Z? and in higher dimensions is inherited
by random walks on the infinite clusters, and [3], [10] and [1] for some sub-
sequent developments.

Introducing a bias by letting the walk favor moves in a pre-specified direction
turns out to make the walk transient regardless of the dimension d, but a very
interesting dichotomy of a different kind was established by Berger, Gantert
and Peres [6] and Sznitman [14] concerning the asymptotic speed. Namely,
when the bias is small enough, the walk exhibits a positive asymptotic speed
in the direction of the bias, while for large bias the asymptotic speed vanishes.
At first sight it may seem somewhat counterintuitive that the asymptotic
speed should go from being strictly positive to zero when the bias is increased,
but what happens is actually not so strange: when the bias becomes too large,
the walk starts spending huge amounts of time in “dead end” regions (taking
the shape of peninsulas stretching out in the direction of the bias) before
eventually backtracking and continuing its march off to infinity; once the
walker finds himself in such a dead end region, the larger the bias is the more
reluctant is he to perform the necessary backtrack.

The Berger-Gantert—Peres-Sznitman (BGPS) result suggests that there should
exist a critical value 8. = B.(d,p) for the bias parameter /3, where p is the
retention probability of the underlying percolation process, such that the
asymptotic speed is positive when § < . and zero when § > .. For this,
we need to know that the speed cannot go from zero to strictly positive as 3
increases, but proving such a monotonicity result appears to be difficult.

The purpose of the present paper is to establish the asked-for critical phe-
nomenon in a different percolation setting that turns out to be more tractable.
A similar result was obtained by Lyons, Pemantle and Peres [11] in the setting
of Galton—Watson trees. The setting we opt for here is the one introduced
in our recent paper [2], where we considered a dependent one-dimensional
percolation model that arises by taking i.i.d. bond percolation on the so-
called infinite ladder, and conditioning, in a specific sense, on the existence
of a bi-infinite path from —oo to co. For biased random walk on the infinite
cluster arising in this model, we recover the corresponding phenomenon as



in the BGPS result, but also find an explicit expression for a critical value
Be = Be(p) separating the positive speed region from the zero speed region;
this is Theorem 3.2 below, which is our main result.

Our paper is organized as follows. In Section 2, we define the percolation
model and recall from [2] some key tools for analyzing it. In Section 3, we
introduce the random walk and state our main result. To prove it, we employ
an electrical network analysis a la Doyle and Snell [8] in Section 4, together
with coupling and ergodicity arguments in Section 5.

2 The percolation model

Write £ = (V, E) for the graph with vertex set V = 7Z x {0,1} and edge set
E consisting of pairs of vertices at Euclidean distance 1 from each other; for
obvious reasons, £ is known as the infinite ladder.

Ini.i.d. bond percolation with parameter p, each edge of an infinite connected
graph G is, independently of all others, removed with probability 1 — p and
retained with probability p. Retained and removed edges are also called open
and closed, and the resulting subgraph can be identified with an element of
{0,1}F, where 0 denotes “closed” and 1 “open”. The critical value p.(Q)
is defined as the infimum of all p € [0, 1] such that i.i.d. bond percolation
on (G a.s. produces an infinite connected component. Unlike for instance the
standard Z? lattice in d > 2 dimensions, the infinite ladder has no nontrivial
critical value: a simple Borel-Cantelli argument shows that p.(£) = 1. This
gives reason to dismiss percolation on £ as uninteresting, but in [2] we made
an attempt to resurrect the topic by introducing a dependent percolation
model involving conditioning i.i.d. bond percolation with retention parameter
p € (0,1) on the event that there is an open path from —oc to co. Since that
event has probability zero, some explanation is needed:

For Ni, Ny > 0, let By, n, be the event that there exists an open path from
some vertex with z-coordinate —N; to some vertex with z-coordinate Ny, and
for p € (0,1) let P, n, n, be the probability measure on {0, 1}” that arises by
conditioning i.i.d. bond percolation with parameter p on the event By, n,.
Let B = N2, B,;, so that informally speaking B is the event of having an
open path from —oo to co. In [2] we established the following result, where
convergence is in the product topology, meaning that the probability of any



cylinder event converges.

Theorem 2.1 For any p € (0,1), the probability measures P, n, n, converge
weakly to a probability measure P, on {0,1}¥ as Ny, Ny — 0o. P, is transla-
tion invariant and assigns probability 1 to the event B.

Obviously the resulting measure P, gives rise to dependence between edges.
In fact, it turns out that edges arbitrarily far from each other are correlated
(though the correlation does decay to 0 with the distance), and sometimes
they are correlated conditionally on the status of all other edges. The last
observation indicates a kind of non-Markovianity of the model. In spite of
this, we found in [2] the following Markovian representation of it, which will
be heavily exploited in later sections. Theorems 2.2 and 2.3 below are proved
in [2].

For fixed i € Z, define E~ C E as the set of edges both of whose end-
points have z-coordinates not exceeding ¢. Given the percolation process
X € {0,1}F, we say that a vertex {i,j} is backwards-communicating if
it is connected to —oo via a path that is completely contained in E%~ and
all of whose edges are open in X. Define the {00,01, 10, 11}-valued process
{T;}icz by setting, for each i € Z,

00 if neither {7, 0} nor {7, 1} is backwards-communicating

01 if {4,1} but not {7,0} is backwards-communicating (1)
10 if {4,0} but not {i,1} is backwards-communicating

11 if both {4,0} and {i,1} are backwards-communicating.

T, =

Note that the P,(B) = 1 part of Theorem 2.1 implies that P,(7; = 00) =0
for any 7; the first line of (1) is included for completeness only.

Theorem 2.2 {T;};cz is a time-homogeneous Markov chain.

The next result shows that the percolation process X has a very simple
distribution conditional on the Markov chain. Define E* = E>~ \ E*~b~ or
in other words

Ei = {<{Z - 17 0}’ {ia 0}>7 <{7' - 17 1}: {ia 1}>7 <{Z7 0}’ {i7 1}>} : (2)

Note that given T; ; and X (E") we can read off for each of the vertices {i,0}
and {i,1} whether it is backwards-communicating, and thus we also know
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T;. Given T;_; = ab € {01,10,11} and T; = cd € {01,10,11}, we call a
configuration n € {0,1}*" T;_,, T;-compatible if T;,_; = ab and X (E') =
yields T; = cd. Note that for T;_; = 01 and 7; = 10 or vice versa there is
no T;_1, Ti-compatible n € {0,1}#". For all other choices, define the measure
Pyir._, 1 on {0,1}¥" by setting, for each n € {0,1}*,

Liyiets o Ts—compati e »
PpaiaTi—l,Ti(’r]) — {nisT;—1,T; —compatible} H pn( )(1 —p)l n(e) (3)

Zp,i,Ti—hTi eCHi

where Z,; 1, , 1, is a normalizing constant making P, ;1 , 1, a probability
measure.

Theorem 2.3 The conditional distribution of the percolation process X €
{0,1}¥ given the Markov chain {T;}icz is

H Ppaijj—lyTj * (4)

JEZ

In other words, given {T;};cz, it is for each j the case that X (E?) has distri-
bution P, ;7. , 1;, with independence for different j’s. Theorems 2.2 and 2.3
immediately imply the following.

Corollary 2.4 For any i, we have that X (E>~) and X (E \ E*™) are condi-
tionally independent given T;.

We mention that extensions of Theorems 2.2 and 2.3 were obtained in [2] for
a wider class of one-dimensional periodic lattices.

The next ingredient that will be crucial to our random walk analysis is to have
explicit expressions for the transition matrix and stationary distribution for
{T;}icz. Obtaining those in the larger generality of one-dimensional periodic
lattices seems cumbersome, but we did obtain them in [2] for the case of L.
Ignoring the state 00 which, as remarked above, has probability 0 of showing
up, we may view {7;};cz as a 3-state Markov chain. Its transition matrix
turns out to equal

Po1,01 Po1,10 Poi,11 1 —po1,11 0 Po1,11
P = P1o,01 Pi1o,00 DP1o,11 = 0 1- DPo1,11 Po1,11
P11,01 Pi11,00 P11,11 P11,01 DP11,01 1- 2]911,01



where

1
Dot,11 = % (2;02 —14++/1+4p2 —8p3 + 4p4>
and

P11,01
= 4(11—])) (2(1 —p)— (3—2p) (1 +2p — 2p* — \/1+ 4p® — 8p3 + 4p4)).(6)

These expressions for pos 11 and pi11 can be seen to be strictly positive for
€ (0, 1), making the chain irreducible. It therefore has a unique stationary
distribution, which is easily calculated as

_ _ P11,01 P11,01 Po1,11
T = {To1, T10, T11} = 5 : : :
P11,01 + Do1,11 2P11,010 + Pot,11 2P11,01 + Po1,11

3 The random walk: main result

Let £ = (V, E) be the infinite ladder as in the previous section, fix p € (0,1)
and generate a percolation configuration X € {0,1}¥ according to P,. With
X thus fixed, a random walk Y = (Y, Y3, ...), with each Y; € V| is defined
as follows. First fix the so-called drift parameter 5 > 0. The random walk is
taken to begin at the origin 0, i.e. we set Yo = 0 = (0,0). For each i > 1, Y]
is generated from Y;_; as follows. A candidate value Y,4,4 is chosen among
the three nearest-neighbors of ¥; | = (z,y) with distribution given by

(x —1,y) with probability 5 1+1+B
Yeana = { (2,1 —1y) with probability 5 1+1+ﬂ (7)

(z+1,y) with probability 5= lfl+ﬂ

conditional on X and (Yp,...,Y;—1). The vertex Y,,,q4 is where the random
walker “wants” to move, but only moves along edges that are open in X are
allowed, so if X ((Y; 1, Yeana)) = 0, the move is suppressed. We thus set

Y, = Y;and if X(<Y;'—1> chand)) =1
"7 1 Y;.; otherwise.

(An alternative, and perhaps more common, way to set up the random walk
is to let Y; have the distribution indicated in (7) conditioned on the event

6



that the chosen vertex is among those that are linked to Y;_; via an edge that
is open in X. This would make no difference to our main results (Proposi-
tion 3.1 and Theorem 3.2 below), but would have the downside of requiring
separate treatment of the somewhat boring case when the random walk hap-
pens to start at an isolated (in X) vertex.)

By left-right reflection invariance of £ and of the percolation model, changing
the drift parameter from 3 to 37! makes no essential difference. We therefore
restrict to 8 > 1 without loss of generality.

The recurrence-transience problem for our random walk is of course only
interesting when the starting point (0,0) happens to be in the infinite con-
nected component of the percolation configuration X; write A for the event
that this happens. The case [ = 1 corresponds to simple random walk, for
which recurrence holds for the following reason. By Rayleigh’s monotonicity
principle (see, e.g., Doyle and Snell [8]), removing edges from a graph cannot
transform simple random walk from recurrence to transience. The subgraph
of £ corresponding to X is of course also a subgraph of the Z? lattice, for
which recurrence is well-known.

Taking instead S > 1 changes the situation:

Proposition 3.1 For any p € (0,1) and any § > 1, we have a.s. on the
event A that the random walk (Yy,Y1,...) is transient.

This will follow from some very simple electrical considerations in the next
section. A much more subtle issue, once the random walk is shown to be tran-
sient, is to ask how fast it moves away from its starting point. Specifically,
writing z(Y;) for the z-coordinate of Y;, we may ask whether the asymptotic
speed lim;_, x(?‘) exists. In the following result, which is the main result
of this paper, we find that the speed is indeed well-defined, and moreover
that it is a.s. constant on the event A. Furthermore, we find that the asymp-
totic speed is strictly positive when 3 € (1, 3.), and 0 when 8 > ., where
Be = Be(p) is the critical value given explicitly in (8). Deriving an explicit
expression for the actual speed in the positive speed regime would require a
more refined analysis that we haven’t been able to push through: crude up-
per and lower bounds are easily extracted from our analysis in the following
sections, but not an exact value.




Theorem 3.2 For any fized p € (0,1) and § > 1, we have that the asymp-
totic speed lim,_,oo 22 s well-defined a.s., and is an a.s. constant 6(p, 3) on
the event A. Furthermore,

>0 forpe(1,p5)
H(p,ﬂ){ =0 forﬂzﬂca

where the critical value 5. = B.(p) is given by

ﬂc=\/2/(1+2p—2p2—\/1+4p2—8p3+4p4)- (8)

It is worth noting that the critical value . tends to oo both as p — 0 and
as p — 1.

4 Electrical analysis

An alternative description of the random walk introduced in the previous
section is as follows. Assign to each edge e = ((z,v), (¢, ")) in £ a weight
C(e), given by

Cle) = .

A random walker standing at vertex Y;_; picks an edge at random among the
three edges incident to Y;_; with probabilities proportional to their weights;
if the chosen edge is open in the percolation configuration X then the walker
traverses it, while otherwise he stays where he is for one more time unit. It
is immediate that this gives the same transition kernel, and thus the same
model, as the one defined in connection with (7).

The weights {C'(e) }ecr are also known as conductances — a terminology stem-
ming from the identity between random walks and electrical networks out-
lined beautifully in the monograph by Doyle and Snell [8]. From that theory,
we will make particular use of the notion of effective conductance to infinity.
This requires a few preliminary definitions.

Let G = (V, E) be any infinite connected graph with nonnegative edge con-
ductances {C(e)}ecr- By a flow on G we mean a function F : V? — R
satisfying



(a) F(u,v) =0 unless v and v share an edge in E, and

(b) F(u,v) = =F(v,u),

for all u,v € V. (We should think of F'(u,v) as the amount of current flowing
from u to v through the edge (u,v).) For v € V, a unit current from v to
00 is defined as a flow F' on G such

1 fu=vw
Z F(u,w) = { 0 otherwise.

weV

The energy W (F) of a flow F on G is defined as

W(F) =Y W(Fe)

eckE
where for any e = (u,w) € E we set W(F,e) = F(gfg)z
conductance C,ff(v,00) between v and oo is defined as the infimum of
W (F') over all unit currents from v to oo. The following result on random
walk is well-known (see, e.g. [8]). By the escape probability of a random
walk from its starting point v € V, we mean the probability that once it
leaves v it never comes back.

. Finally, the effective

Lemma 4.1 Consider random walk on an infinite connected graph G =
(V, E) with edge weights {C(e)}ecr starting at v € V. The probability that
the random walk never returns to v equals %

of the conductances of all edges incident to v.

, where C(v) is the sum

For the proof of Proposition 3.1 and also later, one more definition, this time
pertaining to the percolation subgraph X of the infinite ladder £ = (V, E),
is convenient. Given X € {0,1}%, a vertex v € V is said to be good if
x contains an open path from v to +o0o that never visits any vertex whose
z-coordinate is smaller than that of v. Vertices that are not good are called
bad.

Proof of Proposition 3.1. Transience is equivalent to the random walk
having a nonzero escape probability from the starting point 0. Thus, in view



o

Figure 1: Good vertices are filled circles, and bad vertices are unfilled. Note that
all bad vertices in the infinite cluster sit in “dead ends” extending rightwards.

of Lemma 4.1, we need to show that if O is in the infinite cluster of X, then
there exists a finite energy unit current from 0 to oc.

Assume first that 0 is good. Then we can find a infinite self-avoiding path
S from 0 to +oo in the infinite cluster of 0 that never visits a vertex with
negative z-coordinate. Fix such a path S. It follows from the geometry of
L that S never “backtracks” (in the sense of taking a step to the left). We
now simply define F' by pushing a unit current through S. By the non-
backtracking property of S, we have for each £ > 0 that S contains at most
one edge e with C(e) = 8*. Hence the energy of the unit flow through S is
at most Y-, 7% < oo, settling the case of 0 being good.

Assume next that 0 is bad and part of the infinite cluster. Let m be the
smallest n > 0 such that the vertical edge at z-coordinate —n is open. Then
{—m, 0} is a good vertex, and furthermore all of the edges

<{07 0}7 {_17 O}>7 <{_17 0}7 {_27 0}>7 Tt <{_m + 17 0}7 {_m7 O}> (9)

are open. Let S’ be the path consisting of precisely these edges (i.e., going
straight from 0 to {—m,0}), let S” be some non-backtracking self-avoiding
path from {—m, 0} to +oo, and let S be the concatenation of S’ and S”.
Again define a unit current F' from 0 by pushing the whole current through
the path S. We get

W(F) = Y W(Fe)+ > W(Fe)

ecs’ e€s”
= ) Cley'+> Cle
ecs’ ecs”
< 3 Y <o (10)
k=1 k=—2m
as desired. m

It turns out to that as a preliminary step towards proving our main result
— Theorem 3.2 — on the asymptotic speed of the random walk, it is useful
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to have a further refinement of the classification of good and bad vertices.
To this end, define, for m > 0, a vertex v of the infinite cluster in X to be
m-bad if the smallest number of steps that a path from v to 400 along open
edges needs to backtrack is precisely m. Note that 0-bad vertices are in fact
good, while m-bad vertices for m > 1 are bad.

Lemma 4.2 Assume for some m > 0 that O is m-bad for the percolation
configuration X. Then the effective conductance Cerr(0,00) in X satisfies

(ZB2k1+ Z 5k> < Ceff(0,00) < (Zﬁ%l) ] (11)

k=1 k=—2m k=1

Proof of Lemma 4.2. To obtain the lower bound in (11), it suffices to
construct a unit current F' from 0 to oo in X whose energy W (F') does not
exceed Y oo L+ 3, B7F. But this is exactly what the quantitative
estimate in (10) gave us.

We turn now to the upper bound. For this, we need to show that for any unit
current F from 0 to co in X, the energy W (F) must be at least Y, S 1.
To see this, note that any path from 0 to oo must go via every one of the
edges in (9). Hence the current through each of these edges must be exactly
1, and the energy at the edge e = ({k — 1,0}, {k, 0}) becomes C(e) = 1.
Summing over the edges in (9) yields W(F) > >°7", 87! as desired. =

Our next step is to consider the number Zy(0) = > 7 I1y,=0} of visits to
0 that the random walk makes. (We will later, in Section 5, allow random
walks starting from vertices other than 0, and let Z,(w) denote the number
of visits the random walk starting from v makes to w.) We first consider
the expected value of Zg(0) conditional on X, assuming as usual that 0 is
in the infinite cluster of X. By the Markov property of the random walk
(conditioned on X), the number of such visits is geometrically distributed
with mean

1/P(Y;#0forali>1]X). (12)
We now claim that Lemma 4.1 implies
. Ceff(0,00)
P(Y;#A0foralli >1|X) = ———=. 13
(¥ # >11x) = 2 (13
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In the case where all three edges incident to O are open, this is just the
% formula of the lemma. Closing one or more of the edges reduces
C(0), but this is exactly compensated for by the probability that the walk
stays put at time 1; the best way to see this is that closing an edge makes it
act as a self-loop for the random walk, thus leaving C'(0) unchanged. Hence

(13), which combined with (12) gives

Bt +1+p

E[Zy(0) | 0 is m-bad] = Corr(0,00)

Plugging in the conclusions of Lemma 4.2 yields upper and lower bounds for
E[Zy(0) | 0 is m-bad] given by

E[Zo(0) |0 is mbad] > (5 +1+f) (zm: ﬁz“)

k=1
BB —1)

= (07 + 10— 5

and

m

E[Zp(0)|0is m-bad] < (B '+1+p) (Z B+ i ﬁ’“)
k=1 k=—-2m
ppm™—1) B

= (ﬁ1+1+6)( F 1 +6—1>' (15)

We next turn to estimating E[Z(0)] without conditioning, i.e., averaged over
all possible X. This allows for the possibility that O is in a finite connected
component of X, in which case Zy(0) = oo; since this has positive probability,
we get E[Zp(0)] = oo for a trivial and irrelevant reason (irrelevant since the
result we are trying to prove — Theorem 3.2 — deals only with the case where
0 is in the infinite connected component). We therefore switch to studying
a truncated variant Z§“"¢(0) of Zo(0), defined by

Ztrune () — Zo(0) if O is i.n the infinite connected component of X
0 0 otherwise.

Note that by Proposition 3.1, Z§"¢(0) is a.s. finite. Its expected value
E[ZE“m<(0)] might of course nevertheless be infinite, and determining when
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this happens will turn out to be the key to deciding when the asymptotic
speed is zero, i.e., to proving Theorem 3.2.

We may decompose E[Z§""¢(0)] according to the value of m for which O is
m-bad, getting

B[Zy™(0)] =

M2

P(0 is m-bad) E[Z{*"(0) | 0 is m-bad]

3
I
=)

K

P(0 is m-bad) E[Z,(0) | 0 is m-bad] . (16)

3
Il
)

Inequalities (14) and (15) provide us with good enough estimates for the lat-
ter factor in the summands of (16), and it remains to deal with the former
factor P (0 is m-bad). With some work, this can be calculated exactly using
the Markov chain representation of X discussed in Section 2. To save work,
we will settle for estimating P (0 is m-bad) to within a constant factor inde-
pendent of m; this is obviously enough for determining whether the sum in
(16) is finite or infinite.

For m > 1, the event {0 is m-bad} is equivalent to the intersection of all of
the events A_,,, B_ju11, B_myo,---, B_1, By, Cy defined by

A = the vertical edge ({k,0}, {k,1}) is open,
B, = {the horizontal edges ({k — 1,0},{k,0}) and ({k — 1,1}, {k,1})
are both open, while the vertical edge ({k, 0}, {k,1}) is closed},
and

Cr = {There exists an open path from {k,1} to +oo visiting no other
vertices with z-coordinate < k, but no such path from {k,0}}.

We can thus decompose the probability that 0 is m-bad as
P(0 is m-bad)
= P(A—ma B—m—l—la B—m—l—?a s aB—la BO, CO)
0 k—1
= P(A_,) ( I] P (Bk A () B,-))
k=—m+1 j=—m+1
P(Co|A 1, B ins1, B_mms2,---, Bo) - (17)
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By translation invariance of P, (Theorem 2.1), P(A_,,) does not depend on
m; let us denote it by «(p).

Next, by Corollary 2.4, we have P(By|A_, Boms1, Boma2, -, Brk_1) =
P(By|Ty—1 = 11). Note that if Ty_; = 11 and By happens, then T = 11 as
well, so
P(Bk ‘ A—ma B—m—}—la B—m—|—27 SRR Bk—l)
- P(Bk, ‘ Tk:—l - 11)
= P(T, = 11|T_, = 11)P(By, | Tp_1 = 11, T}, = 11)
= puuP(By|Ti—1 = 11,T; = 11). (18)

From (5) and (6) we get

P1111 = 1- 21)11,01
(3 - 2p) (1 +2p— 2% — /T +4p% — 8P + 4p4>
= 19
while a direct application of Theorem 2.3 gives
2
p*(1—p)
P(By|Tp1=11,T, =11) =
(By | Ty k ) P+ 3021 — p)

1-p

= 3= o (20)

Inserting (19) and (20) into (18) gives
P(Bk: | A—m’ B—m—l—la B—m—l—?a SRR Bk—l)
= 1 (1+2p—2p2— \/1+4p2—8p3+4p4) i

A similar application of Corollary 2.4 gives
P(CO | A—m; B—m—i—l; B—m+2, ceey Bo) = P(C() | T() = 11)
which we note does not depend on n; let us denote this probability by (p).

Now we have expressions, or at least notation, for all of the factors in (17),
and we get

P(0 is m-bad)
= ) (3 (1+2p -2~ VI+ 97 =85 + ) )

14



—~

Plugging this into (16) together with inequalities (14) and (15) gives

WK

E[Z{""(0)] = P(0 is m-bad) E[Zy(0) | 0 is m-bad]

3
]
(e}

a(p)v(p) (% (1 +2p—2p” — /14 4p® — 8p3 + 4p4)>m

BB —1)
p*—1

[M]8

3
]
(e}

(B +1+p) (21)

and

E[Z{"¢(0)] = P(0 is m-bad) E[Zy(0) | 0 is m-bad]

hE

3
]
[==)

WK

a(p)v(p) (% (1 +2p—2p° — /14 4p® — 8p® + 4p4))m

Py, Y,

3
]
(e}

-1 T B-1

Note now that the sum in (21) diverges if

B (5 (1+2p -2 - I+ 47— 8P+ apT) ) > 1,

(5 +1+8) ( (22)

and similarly that the sum in (22) converges if

B (% (1+2p—2p2—\/1+4p2—8p3+4p4>> <1.

We thus have the following.

Lemma 4.3 The truncated expected number of returns E[ZF*"¢(0)] to the
origin satisfies
trunc <00 fO’f‘ ﬁ € (Lﬁc)
sz 23 4GS

where B. = B.(p) is given by

Be = \/2/(1+2p—2p2—\/1+4p2—8p3+4p4)-

This strongly suggests Theorem 3.2. The main task in the next and final
section will be to show how Lemma 4.3 implies Theorem 3.2.
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5 Coupling from the past construction

We begin this section with a concrete, but perhaps somewhat lavish, con-
struction of the random walk (Yp,Y;,...) given the percolation configura-
tion X € {0,1}”. Namely, we introduce an array {Y;una(v,7)}veviieqie,..} of
{-1,0, 1}-valued random variables, independent also of X, such that each

—1 with probability 5=

1+1+ﬂ
Yeana(v,4) = ¢ 0 with probability 5 1+1+/3, (23)
1 with probability 5= 1fl+ﬁ .

The variable Y4nq4(v,7) instructs the random walker in which direction to
attempt the next step upon the ¢’th visit to vertex v. More precisely, if
Yeana(v,i) = —1, then the walker attempts to take a step to the left; if
Yeana(v,1) = 0, then it attempts to take a vertical step; and if YVgnq(v,7) = 1,
then the walker attempts to take a step to the right. If the chosen edge is
open in X, then the step is taken, while if the edge is closed, then the walker
stays at v for one more time unit. It is obvious that this gives (Yo, Y3, ...)
the desired distribution as defined in Section 3.

The point of this construction is that it provides a useful way to construct
random walks from different starting points simultaneously. Namely, given
the percolation X € {0,1}” and the array {Yegna(v,)}vevie(1,2,.}, we can
define for any v € V' a random walk (Y, Y, ...) starting from Y’ = v and
governed by the candidate jump array {Yuna(v, %) }oeviiefi,2,..}-

In order to be able to exploit this construction, we begin with a couple of lem-
mas. Write C(X) for for the infinite cluster of X, and define regeneration
point v = {z,0} to be a vertex such that

(a) vertex {x,1} is isolated in X (so that in particular v € C(X)), and

(b) the random walk (Y, Y}, ...) never returns to v.

Lemma 5.1 With probability 1, X and {Yeana(v,%) }oevic{1,2,..} give rise to
infinitely many regeneration points.

Proof of Lemma 5.1. We first claim that it suffices to show that there a.s.
exists at least one regeneration point. To see this, note that, by translation
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invariance of X and {Yan4(v, %) }vev,ic1,2,..}, the random set of regeneration
points is also translation invariant. This means that there cannot exist a
leftmost regeneration point, because conditional the existence of such a point
its z-coordinate must be uniformly distributed on Z, which is a contradiction.

Call v a pre-regeneration point if v satisfies condition (a) above. It follows
easily from Theorems 2.2 and 2.3, plus the irreducibility of {T;};cz, that
there exist a.s. infinitely many pre-regeneration points V1, V5, ... to the right
of 0. Consider the first pre-regeneration point V; to the right of 0. By the
definition of pre-regeneration points, V] is a 0-bad vertex, so Lemma 4.2 in
combination with (13) implies that

o -1
P(Y,", Y\, ... never returns to Vi) > ((,6_1 +1+p5) ZB"“) . (24)
k=0

Now we would like to apply this not just to V; but to V5, Vs, ... as well,
and apply Borel-Cantelli to deduce that with probability 1, at least one of
them will be a regeneration point. A problem with this approach, however,
is that knowledge of V| not being a regeneration point may affect the condi-
tional probability that V5 is a regeneration point downwards. To handle this
problem, consider the following scheme.

1. Setz=1.

2. Is V; a regeneration point? If YES, then we are done. If NO, then
inspect the trajectory of the random walk (Y7, Y/, ..., Y}{") where R
is the time of its first return to V;.

3. Set j to be the index of the first (i.e. leftmost) pre-regeneration point
to the right of Vj that is not visited by (Yy%,Y,",...,Ys"). Then set
1 = j and go back to Step 2.

This scheme has the property that each time we ask whether a pre-regeneration
point V; is a regeneration point, the probability of it being so (an event
that depends on X and {Yesna(v,%)}veviie(1,2,..} only via their values at z-
coordinates at or to the right of V;) is unaffected by any information gathered
about previously inspected pre-regeneration points and the corresponding
first-excursion trajectories. Hence, the right hand side of (24) gives a lower
bound for the conditional probability, each time we reach Step 2 of the above
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scheme, of getting a YES answer. Hence, by conditional Borel-Cantelli, we
get with probability one a YES answer eventually, as desired. ]

For later convenience, we record separately the following result, which is
immediate from Lemma 5.1 in conjunction with the translation invariance
argument at the beginning of the proof of Lemma 5.1.

Corollary 5.2 With probability 1, X and {Yeana(v,%)}oeviic{1,2,.} give rise
to infinitely many regeneration points to the left of 0.

Next, we introduce hitting event H(u,v) from one vertex to another, de-
fined as the event that the random walk (Y{*,Y*,...) ever hits v. In other
words, the indicator I¢g(y )} of the hitting event H (u,v) is given by

I _ | 1 if 32 > 0 such that V* = v
{H@2)} = 0 otherwise.

It turns out that the notion of hitting event from minus infinity of a
vertex v € V, makes sense. This event is denoted H(—o0,v) and is defined
through its indicator function I{y(—c,)} by setting

Lii(-oopp = Hm  In(agyon (25)

where, as it turns out, the limit does exist:

Lemma 5.3 For any v € V and Py-a.e. X € {0,1}¥, the random variable
ItH(—oow)} in (25) is well-defined.

Proof of Lemma 5.3. Fix v, and define w as the first regeneration point
to the left of v; the existence of such a w is guaranteed by Corollary 5.2. Now
consider random walk from some vertex u € C to the left of w. This walk will
a.s. reach w eventually, and any visit to v will have to happen after this visit
to w. But the trajectory of the random walk from the time of the first visit
to w and onwards will be just a time-delay of the walk (Yg*, Yy, ...); this is
because, due to the definition of regeneration point, the entire trajectory after
the first visit to w will take place to the right of w, which at the time of that
first visit to w is still virgin territory, so that the jump candidate variables
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{Yeand(v, 1) }oeviieq,z,...) will give all the same instructions as for (Y{”, Y1, .. .).
Hence, the random walk (Y, Y}, ...) hits v if and only if (Y7*, Y, ...) does.
Since this holds for all u € C to the left of w, we get that the limit in (25)
exists (and equals I{g(w,0)3)- u

The key thing that happens in the above proof is that the random walks
starting from arbitrary vertices in C to the left of the regeneration point w
all coalesce at w. This is reminiscent of the Propp—Wilson coupling-from-
the-past algorithm [13], and also of the way that particles wander in from
infinity in models of diffusion limited aggregation (see, e.g., [4]).

In fact, not only does the hitting or not of a given vertex v from —oco make
sense; we can even define an entire random walk trajectory from —oo. We
call this the two-sided random walk, and denote it by

(YO VT Y Y™, (26)

To achieve this, let Wi, W5, ... be the regeneration points to the left of 0,
enumerated from right to left. There is a certain arbitrariness in the time
indexing of the two-sided walk, but for definiteness we choose to define time
0 as the first time that the walk visits either of the two vertices 0 = {0,0}
and {0,1} that have z-coordinate 0. For each regeneration point W; to the
left of 0, we define 7}"% as the time taken for the random walk (Y,"%, ¥Y{"7,..)
to hit z-coordinate 0, i.e.,

T" = min{j : ;" € {{0,0},{0,1}}}.
Note that
TV <TV <.
and that for any 7 > 1 we have

(V3 g Vot D= 0L, @)

T(}/[/i+1 _Tg/vl 9 T(}/[/i+1 —T(}}Vl-f—l, .

again by the definition of regeneration points. The two-sided random walk
in (26) is defined by setting, for i = 1,2,.. .,

(Y:Z?Vi’y:;(?vuﬂ ) = (Y()WivY1Wiv )

Note first that, for any k, Y, °° is defined eventually, i.e. for large enough 3;
this is because lim;_,, TOW * = 0o. Note secondly that each Y, > gets multiply
defined, but that (27) guarantees that this causes no conflict.
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Another crucial observation is the following. The origin 0 appears explic-
itly — as a kind of “anchor” — in the definition of the two-sided random
walk. Nevertheless, choosing a different vertex v € V' as the anchor would
have given the very same two-sided random walk trajectory, modulo only
a possible time delay. This (together with translation invariance of X and
{Yeand(v,7) }oeviieq,e,...}) gives the walk a certain kind of translation invari-
ance, which can intuitively be described as follows. Suppose that, like spec-
tators of the Tour de France, we position ourselves next to £, at some z-
coordinate z, in order to watch the two-sided walk pass by. Then the time
at which the walk passes by depends on our choice of x, but apart from this
time lag the behavior of the walk we expect to see in the window we observe
(L restricted to z-coordinates in [x — 10,z + 10|, say) does not.

It follows that the random process Z = {Z(v) }yev, defined by
Z(v) = #{1: Y77 = v},

is translation invariant. This process will be the key to completing the proof
of Theorem 3.2. The following lemma is reminiscent of Lemma 4.3, but takes
us one step closer to Theorem 3.2.

Lemma 5.4 The number of visits Z(0) by the two-sided random walk to the
origin satisfies
<oo for e (1,5)
szo 2% G is

where B, is given by (8).

Proof of Lemma 5.4. Since Z(0) is non-negative integer-valued, we have,
provided P(Z(v) > 1) > 0, that

E[Z(0)[X] = P(Z(0)> 1| X)E[Z(0)| Z(0) > 1, X]
= P(H(~c0,0)| X)E[Z(0) | H(~c0,0), X].
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We calculate

E[Z(0)]

= P(0ZC)E[Z(0)|0&C]+ i P(0 is m-bad)E[Z(0) | 0 is m-bad]

m=0

I
K

P(0 is m-bad)E[Z(0) | 0 is m-bad|

3
]
o

I
M]3

3
]
[==)

P(0 is m-bad)P(H (—00,0) | 0 is m-bad)E[Z(0)| 0 is m-bad],

I
M8

3
I
o

where, as in Section 4, Zp(0) is the number of visits to 0 by the one-sided
random walk (Y, Y3, ...) starting from Yy = 0. The sum in (28) is obviously
bounded by

) " P(0 is m-bad) E[Z,(0) | 0 is m-bad],

m=0
which is precisely the decomposition of E[Z§“"¢(0)] obtained in (16). So if
E[Zt""<(0)] < oo, then E[Z(0)] < oo as well. For 8 € (1, ,), Lemma 4.3
tells us precisely that E[Z{“"(0)] < oo, so we conclude that E[Z(0)] < oo,
and the case 3 € (1, 3.) is settled.

It remains to consider the case § > f.. Again (28) will help, and if we can find
a lower bound 6 > 0 for P(H(—00,0) |0 is m-bad) (uniformly in m), then
we know, due to (16), that E[Z(0)] > dE[Z{“"(0)], and since Lemma 4.3
tells us that E[Z{™"¢(0)] = co when 3 > S., we will be done.

To execute this program, consider first the case m = 0, i.e. where 0 is good.
Given X, there will a.s. be vertices with arbitrarily small hitting probabilities
from —oo (namely those sitting far out on dead ends extending to the left),
but every such vertex nevertheless has positive probability of being hit from
—00, SO

P(H(—00,0)|0is 0-bad) > 0, (29)
which is all we need to know about the case m = 0.
Next, consider the case where 0 is m-bad for some m > 1. Then, by the

detailed description of the event {0 is m-bad} following (16), we have that
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the vertical edge ({—m, 0}, {—m, 1}) is open, that the horizontal edges ({i —
1,0}, {i,0}) are open for i = —m +1,—m + 2,...,0, and that the vertical
edges ({7, 0}, {, 1}) are closed for i = —m+1, —m+2,...,0. We first estimate
P(H(—o00,{—m,0}) |0 is m-bad). The walk from —oo must eventually hit
x-coordinate —m. If this happens at {—m, 0}, then we are happy, while if it
happens at {—m, 1} then the probability that the walk immediately takes a
step from there to {—m, 0} is (37! + 1+ 3)~!. Hence,

P(H(—o00,{—m,0})|0is m-bad) > (871 4+1+p6)" . (30)

Next, once {—m, 0} is hit, the walker has probability (87! + 1 + 3)~! of
immediately taking a step to {—m + 1,0}, so

P(H(—o0,{—m+ 1,0})|0 is m-bad)
> BBt +1+8) "P(H(—00,{—m,0})]|0 is m-bad) . (31)

And once it has reached {—m+1, 0}, the probability that it reaches 0 before

going back to {—m, 0} is easily seen (for instance by electrical analysis) to

equal =

1-51
=g

Multiplying (30), (31) and (32) gives

P(H(—00,0) |0 is m-bad) > P(H(—o00,{—m+1,0}) |0 is m-bad) .

(32)

P(H(-00,0)|0is m-bad) > (87 +14+p)7?8(1 - 7)1 -p™)""
which in turn exceeds
(B +1+8)728(1—571).

The point is that this bound is strictly positive and independent of m. Com-
bining with (29) gives

min{(8 ' +1+8)28(1 - B 1),P(H(—00,0) |0 is 0-bad)} > 0. (33)
We now take 0 to be the left hand side of (33); for this § > 0 we know that

P(H(—00,0)|0is m-bad) > §
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for all m. This allows us to continue the calculation (28) with the estimate

E[Z(0)

—

P(0 is m-bad)P(H (—0o0,0) | 0 is m-bad)E[Z4(0)| 0 is m-bad]

[M]8

=0

3

> 0 Z P(0 is m-bad)E[Z,(0)| 0 is m-bad]
m=0

= GE[Z5"(0))

where the last equality comes from (16). Since E[Z§""(0)] = oo when
B > B. (Lemma 4.3), we get E[Z(0)] = oo for the same range of 5, and the
proof is complete. [

Moving on, we now define the process {Z*(7) }icz by setting

Z(i) = Z2({i,0}) + Z2({i,1})

for each i, so that in other words Z*(7) is the total time spent by the two-
sided walk at z-coordinate i. The translation invariance of {Z(v)}ycy is of
course inherited by {Z*(7) };cz. Furthermore
E[Z*()] = E[Z({i,0})]+E[Z({i,1})]
_ < oo for € (1,0)
= QE[Z(O)]{ — oo for B> B,

by Lemma 5.4. In the finite expectation case 8 € (1,5.), the pointwise
ergodic theorem tells us that the limit

n—1

1
L=
Jim 5220

exists a.s. In the infinite expectation case 5 > 3., we have, since the process
is non-negative, that the limit still exists, but may take value +oo. In fact
we have the following.

Lemma 5.5 The process {Z*(i) }icz is ergodic, so
1 n—1
P (g&ﬁ;z (i) = E[Z (0)]) =1.
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For the proof we need some basic facts from ergodic theory. These are col-
lected in the following lemma; they can be found, e.g., in Walters [15].

Lemma 5.6 Some ergodic-theoretic facts:

(a) If {U;}icz is an irreducible and aperiodic stationary finite-state Markov
chain, then it is ergodic.

(b) Suppose that {U;}icz is ergodic and that {U]}icz is an i.i.d. process
independent of {U;}icz, and define U' = (U;,U;). Then {U}'}icz is
ergodic.

(c) Suppose that {U;}icz is ergodic and that there is a function f such
that fO’f‘ each 7:, UZI = f(UZ, Ui—i—l, UH_Q, “eay Ui—l; Ui_g, Ui_g, .. ) Then
{U!}iez is ergodic.

Proof of Lemma 5.5. Note first that, by Lemma 5.6 (a), {7} }icz is ergodic.

To show that also the percolation process X € {0,1}¥ is ergodic, we make
the way in which X is obtained from {T;}cz slightly more concrete. (To
place X in the context of Z-indexed processes, we should think of X as
X = {X(E))}iez, where E; is the triplet of edges defined in (2).) Inde-
pendently for each i and each pair (ab, cd) such that the transition proba-
bility papca defined in (5) is nonzero, define a {0,1}*-valued random vari-
able Xf4d, with distribution P,;.bca given by (3). Then construct X
by for each i setting X(E;) = X/ 5. By Lemma 5.6 (b) the process
{(T;, Xgand, ..., X{419,) Yiez is ergodic, whence by Lemma 5.6 (c) X is er-
godic.

Similarly, {({X(E;), {Yeana({?, 7} k) }ieqr,23,ke1,2,.1}) Yiez is ergodic by an-
other application of Lemma 5.6 (b). This in combination with Lemma 5.6
(c) implies ergodicity of {Z*(i) }icz- u
Next, define the process {R;}icz by setting

1 if {4,0} is a regeneration point
R, = :
0 otherwise.

for each i. Also define m, = P(0 is a regeneration point), and note that
E[R;] = m, for each i.
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Lemma 5.7 The process {R;}icz is ergodic, so
1 n—1
P (nlggoﬁzo:R’ - Wp) = 1.
1=

Proof of Lemma 5.7. This follows from ergodicity of

{({X(Ez)’ {Y;and({i’ .7}’ k)}j€{1,2},k€{1,2,...}})}z’eZ

by the same argument as in the punchline of the proof of Lemma 5.5. [ ]

Equipped with Lemmas 5.5 and 5.7, we are finally prepared to wrap up the
proof of Theorem 3.2.

Proof of Theorem 3.2. We will prove the statement of the theorem with

1

0(p, B) = BZ(0)]

which in the E[Z*(0)] = oo case 8 > /3. means of course that 0(p, ) = 0.

Write py, po, . .. for the z-coordinates of the regeneration points at or to the
right of 0, enumerated from left to right. Due to Lemma 5.7, we have a.s.
that

j 1
lim 2 = = (34)
j—o0 j Tp
For each ¢, define 7; as the first (and only) time that (Y;,Y;,...) hits the
regeneration point {p;,0}, and define 7;7° as the first (and only) time that
(Yy %%, ¥7°°, ...) hits the regeneration point {p;,0}. Define the random vari-
able A = 7y —17 *°. Note that after hitting the first regeneration point {p;, 0}
the two random walk trajectories are identical, i.e.,
(Vi Yorrn,-..) = (Yiﬁ,Y*“ ) .

—00 | 13
1 T o +1

This implies in particular that
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for all j. Next define A* as the total time spent by (Y, *°, Y, *,...) at strictly
negative z-coordinates; since the random walk is transient to the right, we
have A* > oo a.s. Note that for any j we have

pj—1

Tj_oo = A*+ Z Z*(n)
n=0

whence by (35) we get

pj—1
T =A+A ) Z'(n). (36)

n=0
Lemma 5.5 (ergodicity of {Z*(n)}nez) gives
192
lim — Y Z*(n) = E[Z*(0)] as.,

gmoo pj n=0

which in combination with (36) yields
lim < = E[Z*(0)] ass., (37)

or in other words that

This goes a long way towards proving Theorem 3.2, because it means that
the desired limiting behavior holds along a subsequence: in the language of
the theorem, where z(Y;) denotes the z-coordinate of Y;,

Y;
lim 2(Y3)

1—00 Z

= 0(p, B) a.s. along the subsequence i = 71,75, . . .. (38)

It remains to fill in the full sequence. Given an arbitrary time point 7 > 7y,
define i~ as the last time before i at which (Yp, Y1,...) visits a regeneration
point, and let i* be the first time after i at which (Y, Y1,...) visits a regen-
eration point. Note that, since Y;- and Y;+ are regeneration points, (38) tells

us that v
tim 205 g ) (39)

1—00 1=
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and

Because of existence of the limit in (34) we have

lim 2 =1, (40)

j—o0 pj—l

This implies that

1 =1
fim

Y

i-)
and since Y; is sandwiched between z(Y;-) and z(Y;+), we get

- 2(Y3) - 2(Y)
=1 1
e and - lim =55

= 1. (41)

Consider now the case 8 € (1, 3.) where E[Z*(0)] < co. From existence of
the limit in (37), in combination with (40), we conclude that

lim 2 =1, (42)
)= Tj—1
Hence
i+
1—00 7

and since 7 is sandwiched between 7~ and 7™ we get

lim i =1 and lim i =1. (43)
1—00 1 1—00 7,+
This gives
i 200 (20205 50D
iboo 1 i—00 7~ 7 x(Yz_)
= lim a:(Y_) lim L lim z(Y3)
1—00 . 1—00 7 1—00 g;(Y;,)
Y-
= 1im 205 g )
71— 00 1

using (43), (41) and (39).



Finally we consider the case 5 > . where E[Z*(0)] = co. Here we can just
combine (39) with (41) and the observation that i~ <1 to get

iy 25—y (2L 200 )

1—00 7 1—00 . ,’Ij(Y;f)
— i (S0 iy (D)
i—00 1 i—oo \ 1 z(Y;-)
Y._
< 1im 2 _ g ) = 0,
1—00 VA
and the proof is complete. [

References

[1] Angel, O., Benjamini, 1., Berger, N. & Peres, Y. (2006) Transience of
percolation clusters on wedges. Electr. J. Probab. 11, 655-669.

[2] Axelson-Fisk, M. & Haggstrom, O. (2008) Conditional percolation on
one-dimensional lattices. Preprint.
http://www.math.chalmers.se/~olleh/cond_perc_1D_lattice.pdf

[3] Benjamini, I., Pemantle, R. & Peres, Y. (1998) Unpredictable paths and
percolation. Ann. Probab. 26, 1198-1211.

[4] Benjamini, I. & Yadin, A. (2008) Diffusion limited aggregation on a cylin-
der. Commun. Math. Phys. 279, 187-223.

[5] Berger, N. & Biskup, M. (2007) Quenched invariance principle for simple
random walk on percolation clusters. Probab. Theory Relat. Fields 137,
83-120.

[6] Berger, N., Gantert, N. & Peres, Y. (2003) The speed of biased random
walk on percolation clusters. Probab. Theory Relat. Fields 126, 221-242.

[7] De Masi, A., Ferrari, P.A., Goldstein, S. & Wick, W.D. (1989) An invari-
ance principle for reversible Markov processes. Applications to random
motions in random environments. J. Statist. Phys. 55, 787-855.

28



[8] Doyle, P. & Snell, J. L. (1984) Random Walks and Electric Networks.
Mathematical Monographs 22, Mathematical Association of America.

[9] Grimmett, G.R., Kesten, H. & Zhang, Y. (1993) Random walk on the
infinite cluster of the percolation model. Probab. Theory Relat. Fields 96,
33-44.

[10] Haggstrom, O. & Mossel, E. (1998) Nearest-neighbor walks with low
predictability profile and percolation in 2 + € dimensions. Ann. Probab.
26, 1212-1231.

[11] Lyons, R., Pemantle, R. and Peres, Y. (1996) Biased random walks on
Galton-Watson trees. Probab. Theory Related Fields 106, 249-264.

[12] Mathieu, P. and Piatnitski, A. (2007) Quenched invariance principles
for random walks on percolation clusters. Proc. R. Soc. Lond. A 463,
2287-2307.

[13] Propp, J.G. & Wilson, D.B. (1996) Exact sampling with coupled Markov
chains and applications to statistical mechanics. Rand. Struct. Algorithms
9, 223-252.

[14] Sznitman, A. S. (2003) On the Anisotropic Walk on the Supercritical
Percolation Cluster. Commun. Math. Phys. 240, 123-148.

[15] Walters, P. (1982) An Introduction to Ergodic Theory, Springer, New
York.

29



