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The simplest example

Given initial data x(0) ∈ C2 and coefficient matrix A :=

[
7 −9
3 −5

]
, solve

the linear system of first order ODEs

x ′(t) + Ax(t) = 0 for x : R→ C2.

Coordinates in eigenbasis y(t) := V−1x(t), where V :=

[
3 1
1 1

]
, give

decoupled equations

y ′(t) +

[
4 0
0 −2

]
y(t) = 0 for y : R→ C2.

Solution to the initial ODE is x(t) = V

[
e−4t 0

0 e2t

]
V−1x(0).

Definition

A = V

[
4 0
0 −2

]
V−1 gives e−tA := V

[
e−4t 0

0 e2t

]
V−1.
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Functional calculus through diagonalization of matrices

A generic matrix A ∈ Cn×n is diagonalizable,

A = V diag(λ1, . . . , λn) V−1,

for some invertible “change-of-basis” matrix V ∈ Cn×n.

Definition

For a function φ : σ(A) = {λ1, . . . , λn} → C defined on the spectrum of
A, define the matrix

φ(A) := V diag
(
φ(λ1), . . . , φ(λn)

)
V−1

For fixed A, the map φ 7→ φ(A) from symbol φ : σ(A)→ C to matrix
φ(A) ∈ Cn×n is an algebra-homomorphism:

(φψ)(A) = φ(A)ψ(A).

Example: {e−tA}t∈R is a group of matrices, e−tAe−sA = e−(t+s)A.
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Functional calculus for general matrices

For general A ∈ Cn×n there are natural definitions of matrices

A2,A3,A4, . . . , (λI − A)−1, λ /∈ σ(A).

We want to define in a natural way a matrix φ(A) for any

φ ∈ H(σ(A)) := {φ : Ω→ C holomorphic ; Ω ⊃ σ(A) open}.

Definition

For a function φ ∈ H(σ(A)), define the matrix

φ(A) :=
1

2πi

∫
γ
φ(λ)(λI − A)−1dλ,

where γ is a closed curve in Ω counter clockwise around σ(A).
The holomorphic functional calculus of A is the map
H(σ(A)) 3 φ 7→ φ(A) ∈ Cn×n.
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Properties of the holomorphic functional calculus

1 The holomorphic functional calculus of A is an algebra-homomorphism
and its range is a commutative subalgebra of Cn×n:

φ(A)ψ(A) = (φψ)(A) = (ψφ)(A) = ψ(A)φ(A).

2 For polynomials we have

(zk)(A) = Ak , for k = 0, 1, 2, . . .

3 If H(σ(A)) 3 φk → φ uniformly on compact subsets of Ω, then
φk(A)→ φ(A).

4 For diagonal matrices we have

φ
(
diag(λ1, . . . , λn)

)
= diag(φ(λ1), . . . , φ(λn)).

5 For any invertible “change-of-basis” matrix V , we have
φ(VAV−1) = Vφ(A)V−1.
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Example: a Jordan block

Fix a ∈ C and consider A = aI + N, where N is nilpotent: Nm = 0 for
some m.
Spectrum is σ(A) = {a} and

1

λI − (aI + N)
=

1

λ− a

1

I − N/(λ− a)
=

m−1∑
k=0

Nk

(λ− a)k+1
.

Cauchy’s formula for derivatives gives

φ(A) =
m−1∑
k=0

(
1

2πi

∫
γ

φ(λ)

(λ− a)k+1
dλ

)
Nk =

m−1∑
k=0

φ(k)(a)

k!
Nk .

For example

φ




3 1 0 0
0 3 1 0
0 0 3 1
0 0 0 3


 =


φ(3) φ′(3) 1

2φ
′′(3) 1

6φ
(3)(3)

0 φ(3) φ′(3) 1
2φ
′′(3)

0 0 φ(3) φ′(3)
0 0 0 φ(3)

 .
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Generalization to bounded operators on Hilbert spaces

Letting n→∞, we extend the above holomorphic functional calculus

from matrices A ∈ Cn×n, to bounded linear operators T : H → H

on Hilbert space H (or more generally to Banach space operators).
The Dunford (or Riesz–Dunford or Dunford–Taylor) integral

φ(T ) :=
1

2πi

∫
γ
φ(λ)(λI − T )−1dλ

defines a bounded linear operator φ(T ) : H → H.

Spectrum σ(T ) ⊂ C is compact (but typically not finite).

Symbol φ : Ω→ C is holomorphic on open neighbourhood Ω ⊃ σ(T ).

Closed curve γ ⊂ Ω encircles σ(T ) counter clockwise.
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Example: self-adjoint operators

Let T : H → H be self-adjoint: 〈Tf , g〉 = 〈f ,Tg〉, f , g ∈ H. The spectral
theorem shows

T = VMλV−1,

where

V : L2(X , dµ)→ H is a bijective isometry, with a Borel measure dµ
on a σ-compact space X , and

Mλ : L2(X , dµ)→ L2(X , dµ) is multiplication by a real-valued
function λ ∈ L∞(X , dµ): (Mλf )(x) := λ(x)f (x) for f ∈ L2(X , dµ)
and a.e. x ∈ X .

Then

1 the spectrum σ(T ) ⊂ R is the essential range of λ : X → R, and

2 φ(T ) is similar to multiplication by φ(λ(x)), or more precisely

φ(T ) = VMφ◦λV−1.
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A boundedness conjecture

Even though φ is assumed to be holomorphic on a neighbourhood of σ(T )
in the definition of φ(T ), it is natural to ask whether φ(T ) only depends
on φ|σ(T ) ? Do we have the estimate

‖φ(T )‖H→H ≤ sup
λ∈σ(T )

|φ(λ)| ?

For self-adjoint operators we have

‖T‖H→H = ‖Mφ◦λ‖L2→L2 = sup
λ∈σ(T )

|φ(λ)|.
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The conjecture is false!

The estimate
‖φ(T )‖H→H ≤ sup

λ∈σ(T )
|φ(λ)|

cannot be true for general non-selfadjoint operators, since changing to an
equivalent norm on H may change the RHS, but not the LHS (not σ(T )!).

Example

A simple counter example is A =

[
0 1
0 0

]
. We have A2 = 0, so

σ(A) = {0}. However,

A =

[
φ(0) φ′(0)

0 φ(0)

]
.

We cannot bound A (φ(0) and φ′(0)) by φ(0), uniformly in φ.
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A classical positive result

The estimate
‖φ(T )‖H→H ≤ sup

λ∈σ(T )
|φ(λ)|

holds if we replace the spectrum σ(T ) in the RHS by the disk

{|λ| ≤ ‖T‖} ⊃ σ(T ).

The following is a classical result by J. von Neumann (Eine Spektraltheorie
für allgemeine Operatoren eines unitären Raumes. Math. Nachr., 1951).

Theorem (von Neumann)

Let T : H → H be a bounded linear operator on a Hilbert space H. Then

‖φ(T )‖H→H ≤ sup
|λ|≤‖T‖

|φ(λ)|

holds for all φ holomorphic on some neighbourhood of |λ| ≤ ‖T‖.
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A sharpening of von Neumann’s theorem

M. Crouzeix (Numerical range and functional calculus in Hilbert space. J.
Funct. Anal., 2007) has proved the following.

Theorem (Crouzeix)

Let W (T ) := {〈Tf , f 〉 ; ‖f ‖ = 1} be the numerical range of a linear
Hilbert space operator T : H → H. Then

‖φ(T )‖H→H ≤ 11.08 sup
λ∈W (T ) |φ(λ)|

holds uniformly for all φ holomorphic on some neighbourhood of W (T ).

Hausdorff–Toeplitz theorem: W (T ) is a convex set.

σ(T ) ⊂W (T ) ⊂ {|λ| ≤ ‖T‖}
The second inclusion quite sharp: ‖T‖ ≤ 2 sup{|λ| ; λ ∈W (T )}.
For a normal (A∗A = AA∗) matrix A, W (A) is the convex hull of
σ(A).

Andreas Rosén (Linköping University) Diff. equations & functions of operators February 2011 13 / 26



Spectral projections: a simple example

Often one needs to apply φ which are not holomorphic on a convex
neigbourhood of σ(T ) (like W (T )).

Example

Let A :=

3 0 0
0 7 1
0 0 7

, so that σ(A) = {3, 7} (algebraic multiplicity 2 for

λ = 7). For φ(λ) =

{
0, |λ− 3| < 1,

1, |λ− 7| < 1,
we have φ(A) :=

0 0 0
0 1 0
0 0 1

 being

the spectral projection onto the two-dimensional generalized eigenspace at
λ = 7.

Von Neumann’s and Crouzeix’s theorems do not apply, but still
‖φ(A)‖ ≤ C sup{|φ(λ)| ; |λ− 3| < 1 or |λ− 7| < 1} is clear from the
Dunford integral!
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Partial differential equations (PDEs)

Applications to PDEs typically involves functional calculus of unbounded
differential operators D on a space like H = L2(Rn) (rather than bounded
operators T ).
Consider the positive Laplace operator −∆ = −

∑n
1 ∂

2
k , with spectrum

σ(−∆) = R+.

The heat equation ∂t ft −∆ft = 0 has solution

ft = e−t(−∆)f0, t > 0.

The wave equation ∂2
t ft −∆ft = 0 has solution

ft = cos(t
√
−∆)f0 +

sin(t
√
−∆)√
−∆

(∂t f )0, t ∈ R.

For functions ft(x) = f (t, x) we write x ∈ Rn for the space variable and t
for the time/evolution variable.
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Integral formulae

Calculating functions φ(−∆) of the self-adjoint unbounded operator −∆
with the Fourier transform F as φ(−∆) = F−1Mφ(|ξ|2)F gives well known
integral formulae for solutions.

For the heat equation in Rn, we have

(e−t(−∆)f )(x) =
1

(4πt)n/2

∫
Rn

e−|y−x |2/(4t)f (y)dy .

For the wave equation in R3 (n=3), we have

(cos(t
√
−∆)f )(x) =

∂

∂t

(
1

4πt

∫
|y−x |=t

f (y)dσ(y)

)
,

((−∆)−1/2 sin(t
√
−∆)f )(x) =

1

4πt

∫
|y−x |=t

f (y)dσ(y),

where dσ is surface measure on the sphere |y − x | = t.
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Cauchy–Riemann’s equations (CR) and Hardy spaces

The CR system of equations for an analytic function f = u + iv of one
complex variable z = x + iy can be written

∂y fy + Dfy = 0,

where D := −i∂x acts on one-variable functions x 7→ fy (x) = f (x , y) for
fixed y > 0.

Problem: e−yD is not bounded for any y 6= 0. This D = F−1MξF is
a two-sided unbounded self-adjoint operator in H = L2(R):

σ(D) = (−∞,∞).

Apply χ+ := χ(0,∞) and χ− := χ(−∞,0) to get the spectral projections

P± = χ±(D) = F−1Mχ±(ξ)F .
The Hilbert space splits orthogonally H = H+ ⊕H−, where
H± := R(P±). The Hardy subspaces H± are invariant under D and
D± := D|H± have spectra

σ(D+) = [0,∞) and σ(D−) = (−∞, 0].
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Functional calculus and the Cauchy integral

Solution to CR for y > 0 with boundary data f0 ∈ H+ at y = 0 is

f (x + iy) = (e−yD+
f0)(x), y > 0.

Calculating e−yD+
= F−1Me−yξχ+(ξ)F with the Fourier transform F

gives the Cauchy integral

(e−yD+
f0)(x) =

1

2πi

∫
R

f0(t)

t − (x + iy)
dt, y > 0, f ∈ H+.

Solution to CR for y < 0 with boundary data f0 ∈ H− at y = 0 is

f (x + iy) = (e−yD−
f0)(x), y < 0.

Calculating e−yD−
= F−1Me−yξχ−(ξ)F with the Fourier transform F

gives the Cauchy integral

(e−yD−
f0)(x) =

1

2πi

∫
R

f0(t)

t − (x + iy)
dt, y < 0, f ∈ H−.
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The Kato conjecture for spectral projections

Note for CR that ‖χ±(D)‖L2→L2 = 1 <∞ as a consequence of
self-adjointness of D = −i∂x . Consider the following natural generalization
to “variable coefficients” B.

D is a self-adjoint operator in a Hilbert space so that
σ(D) ⊂ (−∞,∞).
B : H → H is a bounded operator with numerical range W (B) being
compactly contained in the right half plane Reλ > 0.
Then BD is a closed operator in H with spectrum

σ(BD) ⊂ Sω := {| arg λ| < ω} ∪ {| arg(−λ)| < ω}
contained in a double sector Sω around R, for some ω ∈ (0, π/2)
depending on B.

Let χ± be the characteristic function for the right/left half plane. Can

χ±(BD)

be defined through Dunford functional calculus as bounded linear
projections on H ?
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Positive answer to a restricted Kato conjecture

The classical Kato conjecture for square roots was posed by T. Kato
(Fractional powers of dissipative operators. J. Math. Soc. Japan, 1961).
This famous conjecture was solved by P. Auscher, S. Hofmann, M. Lacey,
A. McIntosh and P. Tchamitchian (The solution of the Kato square root
problem for second order elliptic operators on Rn. Annals of Math., 2002).
Extending this result, the following solution to the Kato conjecture for
spectral projections was found.

Theorem (A. Axelsson, A. McIntosh, S. Keith, Invent. Math. 2006)

Assume furthermore that D =
∑n

k=1 ak∂k is a first order partial
differential operator with constant coefficients in H = L2(Rn) and that
B = Mb is a multiplication operator. Then ‖χ±(BD)‖L2→L2 <∞.

This theorem says that we can cut through the spectrum at 0 and ∞, and
obtain two bounded spectral projections P±, even though the symbols χ±

are not analytic on a neighbourhood of σ(BD).
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A counterexample for the general Kato conjecture

The proof of ‖χ±(BD)‖ <∞ uses harmonic analysis techniques that
require D to be a differential operator and B to be a multiplication
operator. A counter example to the Kato conjecture was found by A.
McIntosh (On the comparability of A1/2 and A∗1/2. Proc. Amer. Math.
Soc., 1972). A variant of it is the following.

Example

Let H = `2(Z) = span{ek} and ζ ∈ C. Define

Dek := 2|k|e−k and Bζek := ek + ζ
∑

j 6=0

1

j
ek+j .

Then there are ζ ≈ 0 such that χ±(BζD) is not bounded.

Note that using Fourier series, D can be viewed as a differential operator
of “infinite order” and B as a multiplication operator.
One finds that σ(D) = {1} ∪ {±2k ; k = 1, 2, 3, . . .} and W (B) is the
straight line from 1− iζ to 1 + iζ.
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Inhomogeneous linear PDEs

Consider the heat equation with sources

∂t ft + Dft = gt ,

where D = −∆ is the Laplace operator on Rn as above. It is important
that σ(D) = [0,∞) ⊂ {Reλ > 0} so that the semigroup {e−tD}t>0 is
uniformly bounded. Solving with integrating factor e−(t−s)D for 0 < s < t:

∂s(e−(t−s)D fs) = De−(t−s)Dgs ,

ft = e−tD f0 +

∫ t

0
e−(t−s)Dgsds.

One says that the equation has maximal regularity in the function space
L2(R+; L2(Rn)) = L2(R+ × Rn) if (with initial data f0 = 0)

gt 7→ Dft =

∫ t

0
De−(t−s)Dgsds

is bounded on this space of functions gt(x) = g(t, x) in R1+n
+ := R+ ×Rn.
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A useful abstract point of view

In
∫ t

0 De−(t−s)Dgsds, replace D by a spectral point λ:

Φ(λ) : L2(R1+n
+ )→ L2(R1+n

+ ) : gt 7→
∫ t

0
λe−(t−s)λgsds.

View λ 7→ Φ(λ) as an L2(R1+n
+ )-operator-valued function for Reλ > 0.

For any µ < π/2, it is holomorphic and uniformly bounded on the
sector | arg λ| < µ.

Since on functions g(t, x), D acts in the x-variable and Φ(λ) acts in
the t variable, we have

Φ(λ)D = DΦ(λ) for all λ.

Applying the operator-valued function λ 7→ Φ(λ) to the operator D yields

Φ(D) : gt 7→
∫ t

0
De−(t−s)Dgsds.

This generalization of functional calculus, using operator-valued symbols
Φ(λ), we refer to as operational calculus.
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Joint functional calculus of two commuting operators

For the solution ft to ∂t ft + Dft = gt with boundary conditions f0 = 0, we
have

Df = Φ(D)f =
D

∂t + D
g .

The operator D/(∂t + D) is defined through functional calculus of the two
commuting unbounded operators D and ∂t (the domain of ∂t being
functions with zero boundary condition at t = 0). Thus

Φ(λ) = λ(λI + ∂t)−1, for Reλ > 0.

References for operational calculus and functional calculus of commuting
operators:
D. Albrecht (Functional calculi of commuting unbounded operators. PhD
thesis, Monash Univ., 1994)
D. Albrecht, E. Franks, A. McIntosh, (Holomorphic functional calculus and
sums of commuting operator. Bull. Austral. Math. Soc., 1998)
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A Duhamel formula for bi-sectorial operators

Replace the positive self-adjoint operator D = −∆ by a bi-sectorial
differential operator BD with bounded coefficients B ∈ L∞(Rn), as above
for the Kato problem, and consider the maximal regularity question for

∂t ft + BDft = gt .

Apply the two spectral projections to get f ±t := χ±(BD)ft , with
ft = f +

t + f −t . Integrating each of the equations

∂t f +
t + (BD)+f +

t = g +
t and ∂t f −t + (BD)−f −t = g−t ,

we get the solution formula

ft = e−t(BD)+
χ+(BD)f0 +

∫ t

0
e−(t−s)(BD)+

χ+(BD)gsds

−
∫ ∞

t
e(s−t)(BD)−χ−(BD)gsds.
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New maximal regularity results for elliptic equations

Recent joint work with P. Auscher:
A. Axelsson, P. Auscher (Weighted maximal regularity estimates and
solvability of non-smooth elliptic systems I. To appear in Invent. Math.)
A. Rosén, P. Auscher (Weighted maximal regularity estimates and
solvability of non-smooth elliptic systems II. Preprint)

We here prove maximal regularity estimates for ∂t ft + BDft = gt in
weighted spaces L2(R1+n

+ ; tαdtdx). Such hold for −1 < α < 1 and
are proved through operational calculus of BD very similarly to the
proof of the boundedness of the spectral projections χ±(BD) in the
solution of the Kato conjecture.

Maximal regularity does not hold for ∂t ft + BDft = gt in the endpoint
spaces L2(R1+n

+ ; tdtdx) and L2(R1+n
+ ; t−1dtdx), but we adapt the

techniques and obtain perturbation results for Dirichlet and Neumann
boundary value problems, for second order divergence form elliptic
equations with non-smooth coefficients, with L2(Rn) data.
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