
I received the Tage Erlander prize 2009 by the Royal Swedish Academy of Sciences, with
the motivation “for his contributions to the development of functional calculus in harmonic
analysis, which lead to the proof of Lions’ conjecture”. Below you find an attempt to explain
this motivation in a relatively simple way.

The theory of differential equations is perhaps the most profound achievement of mathe-
matical analysis. There are two kinds of such equations, the “ordinary” differential equations
(ODEs) which involve functions only depending on one variable, and “partial” differential
equations (PDEs) where several independent variables appear. The simplest three kinds of
linear ODEs are

f ′(t) = −af(t), f ′′(t) = −af(t), and f ′′(t) = af(t),

where a > 0 is some constant. The first is a first order ODE whose solution, with initial
condition f(0) = u, is

f(t) = e−atu.

The solutions of the two second order equations, with initial conditions f(0) = u, f ′(0) = v,
are

f(t) = cos(
√

at)u +
sin(
√

at)√
a

v

and
f(t) = e

√
at(u + a−1/2v)/2 + e−

√
at(u− a−1/2v)/2

respectively. Turning to PDEs, there are three fundamental types of such equations: para-
bolic, hyperbolic and elliptic. Standard examples are

∂f

∂t
= ∆f,

∂2f

∂t2
= ∆f(t), and

∂2f

∂t2
= −∆f(t).

Here f(t, x) is a function of t and x = (x1, . . . , xn), i.e. n+1 variables, and ∆ = ∂2
1 +. . .+∂2

n

is the Laplace operator. The first is the standard parabolic equation: the heat / diffusion
equation, named so since it models time evolution of such phenomena. The second is the
standard hyperbolic equation: the wave equation, which models time evolution of waves.
The third one is the standard elliptic equation: the Laplace equation (in n + 1 variables),
which describes equilibrium, e.g. of heat or temperature. In the latter equation, t is just
another space variable like x1, . . . , xn, and not time as in the first two equations.

The Laplace operator ∆ is a negative self-adjoint operator, and behave in many ways li-
ke a negative real number −a. Not one value though, but all negative values simultaneously.
Simply replacing a by −∆ in the solution formulas above gives the solution

f(t, x) = et∆u(x)

to the heat equation, and the solution

f(t, x) = cos(t
√
−∆)u(x) +

sin(t
√
−∆)√
−∆

v(x)

1



to the wave equation. This is functional calculus: we apply the function e(·)t to the operator
∆ to obtain another operator e∆t. This operator is then applied to the function u(x) which
describes the initial distribution of heat, to obtain the function describing the distribution
of heat at time t. For the wave equation it works similarly: from the initial shape u(x) and
initial speed v(x) of the wave, the operators cos(t

√
−∆) and sin(t

√
−∆)/

√
−∆ obtained

by functional calculus are applied to give the shape of the wave at time t.
Given a polynomial p(z), it is clear what is meant by p(∆). For self-adjoint operators

like ∆, more general functions f(∆) of ∆ are defined through the Fourier transform and the
spectral theorem. For non self-adjoint operators, which my research concerns, the key tool is
instead the Cauchy integral. Much of the modern developments of this Dunford functional
calculus is due to my collegue and former PhD supervisor Professor Alan McIntosh.

Much of my work deals with the application of functional calculus to elliptic equations.
Here the situation is more complicated. The reason for this is that the above transference
procedure from ODEs to PDEs would involve both the operators et

√
−∆ and e−t

√
−∆.

However, the first one is not useful for t > 0, since
√
−∆ behaves like infinitely large

positive numbers and the exponential function grows rapidly for positive arguments. For
this reason, we do not obtain a continuous operator. (For similar reason, the heat equation
cannot be solved backwards in time.)

For elliptic equations, we think of the variable t as being the coordinate transversal
to the boundary t = 0. The function u(x) describes the boundary values of f(t, x), the
Dirichlet data, and the function v(x) describes the normal derivatives of f(t, x) at the
boundary, the Neumann data. We see that under the condition v = −

√
−∆u, we can solve

the equation for positive t, with solution

f(t, x) = e−t
√
−∆u(x),

since the bad term vanishes. Similarly, if v =
√
−∆u, we can solve the equation for negative

t, with solution
f(t, x) = et

√
−∆u(x).

Thus, we see that for “half” of the boundary data {u(x), v(x)}, we can find a solution on one
side of the boundary, whereas for the remaining “half”, we find a solution on the other side
of the boundary. This splitting in two subspaces of the space of functions is fundamental in
the theory of elliptic equations, and the subspaces are referred to as Hardy subspaces. The
reason why the boundary data here consist of pairs of functions is that the PDE is of second
order. This structure of elliptic boundary value problems becomes more transparent when
working with first order elliptic systems of PDEs, where this type of splitting of the function
space is seen more clearly. For example, it was in the investigation of analytic functions
(which solve the elliptic Cauchy–Riemann system) where Hardy originally discovered this
type of subspaces.

The boundary value problem discussed above dealt with the flat surface t = 0. The
extension to more general smooth surfaces is relatively straightforward, although more te-
chnical. However, real life geometries are seldom smooth. Corners and edges often appear.
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And even if a surface appears smooth, irregularities may appear if we zoom in on the sur-
face and look at smaller scales. My work is focused on understanding functional calculi as
above, for boundary surfaces which are irregular on all scales, so called Lipschitz regular
surfaces. By a change of variables, one may assume that the surface is flat, but then the
operator ∆ is replaced by a partial differential operator involving coefficients without any
smoothness whatsoever. In order to understand such operators, techniques from the field of
harmonic analysis are needed. A key result of fundamental importance is the Kato estimate,
conjectured by T. Kato in the 1960’s and proved by my collegues A. McIntosh (the Au-
stralian National University) and P. Auscher (Université de Paris-Sud), with collaborators
S. Hofmann, M. Lacey and P. Tchamitchian in 2001. This estimate states that∫

Rn

|
√
−divA(x)∇u(x)|2dx ≈

∫
Rn

|∇u(x)|2dx,

for any bounded and accretive matrix coefficient function A(x). When A is the identity
matrix, then divA(x)∇ = ∆. The Kato estimate means that in a certain way the square
root of the second order operator always behaves like a first order operator. Less transparent
is the fundamental fact that the Kato estimate really is a statement about continuity of
projections onto Hardy subspaces for elliptic PDEs as above. Indeed, if we measure the
size of the pair of functions {u(x), v(x)} according to (

∫
Rn(|∇u(x)|2 + |v(x)|2)dx)1/2, then

continuity of the two projections onto the Hardy subspaces given by v = −
√
−∆u and

v =
√
−∆u is seen to be exactly the Kato estimate.

My work on elliptic boundary value problems has lead to a deepened understanding
of this estimate and related functional calculi, and to powerful applications to the theory
of elliptic PDEs. More fundamental than scalar PDEs as above are systems of PDEs,
which not only involve one function f(t, x) but several functions coupled by the equations.
Many of the interesting differential equations appearing in physics are first order systems
of PDEs, for example Maxwell’s equations in electrodynamics and the Dirac equation in
quantum electrodynamics. The most exciting aspects of my work is that it applies equally
well to systems of PDEs. As compared to scalar equations, elliptic systems of PDEs have
previously not been very well understood. The reason is that earlier methods frequently
made use of the order structure of the real numbers through various comparison principles.
On the other hand, the above Kato estimate is really a statement about systems of PDEs,
although not completely obvious. As an analogy with an elementary example, consider
the theory of summability of infinite series

∑∞
k=1 ak. It is well known that the theory for

positive series (all ak ≥ 0) is simpler than understanding series with general sign-changing
terms, where no comparison theorems are available.

Finally let me comment on the conjecture by J.-L. Lions from 1962, which is mentioned
in the motivation for the Tage Erlander prize. This concerns the validity of the Kato
square root estimate on domains, where general mixed boundary conditions are imposed
on the function u(x). On part of the boundary Dirichlet data are specified whereas on the
remaining part Neumann data are specified. This conjecture was settled to the positive in
joint work with Alan McIntosh and Stephen Keith at the Australian National University.

3


