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The Fundamental Gap and One-Dimensional Collapse

Zhiqin Lu and Julie Rowlett

Abstract. The fundamental gap of a bounded, connected domain in R
n is

the difference between the first two (positive) eigenvalues of the Euclidean
Laplacian with Dirichlet boundary condition. The one dimensional collapse
considered here is the degeneration of a family of convex, bounded domains in
R
n to a domain in R

n−1. The boundary of the domains need not be smooth,
merely Lipschitz continuous. Our results show that the fundamental gap de-
tects the geometry of one-dimensional collapse, and that depending upon the
geometry of the collapse, the gap can either diverge or remain bounded.
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1. Motivation and results

Our sign convention and boundary conditions for the Laplace equation on a
domain Ω ⊂ R

n shall be

Δu =
n∑

k=1

∂2u

∂x2
k

= −λu, Dirichlet boundary condition: u = 0 on ∂Ω.

This equation arises from physics by separating the time and space variables in
the wave equation, and the eigenvalues correspond to the frequencies of standing
waves on Ω. The set of all eigenvalues is known as the spectrum. Based on the
physical interpretation Marc Kac posed the now well-known question, “Can one
hear the shape of a drum?” [21]. The mathematical formulation is: if two Euclidean
domains have the same spectrum, do they have the same shape? For arbitrary
bounded, connected domains with piecewise smooth boundary Gordon, Webb, and
Wolpert proved that the answer is “no” [14, 15]. For convex domains, however,
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Kac’s question is an open problem. In some cases one can “hear the shape of a
drum” by restricting to “drums” with specific geometric properties. Durso used the
heat and wave traces to prove that isospectral triangular domains are congruent
[8]. Grieser and Maronna gave a proof using only the heat trace [20].

For both proofs one must know that the entire spectra of two triangles coincide
to prove that they are congruent. Since three independent parameters determine
a triangle (up to congruence), it is natural to conjecture that the first three eigen-
values suffice to determine if two triangles are congruent. Antunes and Freitas
demonstrated strong numerical evidence in support of this conjecture in [3].

In some cases a finite set of eigenvalues can indeed detect geometric features
such as symmetry. Pólya and Szegő proved that the first eigenvalue detects the
regular n-gon among all convex n-gons with fixed area for n = 3 and 4 [29]. For
n ≥ 5, the analogous result has not been proven and is known as the Pólya-Szegő
Conjecture.

The next natural object to study after the first eigenvalue is the difference
between it and the rest of the spectrum, known as the fundamental gap. If one
scales a bounded domain Ω ⊂ R

n by a constant factor c, then the eigenvalues
change according to:

λk(cΩ) = c−2λk(Ω).

This motivates the definition of the scale-invariant gap function

ξ(Ω) := d2(Ω) (λ2(Ω) − λ1(Ω)) ,

where d is the diameter of the domain.
In [26] we demonstrated that the gap function detects the equilateral triangle

among all Euclidean triangles.

Theorem 1 ([26]). Let T be a Euclidean triangle. Then

ξ(T ) ≥ 64π2

9

with equality if and only if T is equilateral.

A fundamental result concerning the gap function is due to Andrews and Clut-
terbuck [2] who proved that for any convex domain Ω ⊂ R

n,

ξ(Ω) ≥ 3π2.

It is a straightforward exercise to compute that the right side of the above
inequality is equal to the gap function on a one dimensional bounded domain (a
segment). Andrews’s and Clutterbuck’s Theorem shows that the gap function in n
dimensions is bounded below by the gap function in 1 dimension. This motivated us
to investigate the behavior of the gap function on families of collapsing domains and
to determine if and when it converges to the gap function on a lower dimensional
domain. Further motivation to study eigenvalues of thin and collapsing domains
comes from physics; see for example [16], [17], and [18].

1.1. Examples. Although the following examples may be well-known, we in-
clude them for the sake of completeness and to give intuition for that which follows.
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1.1.1. Rectangles. There are very few domains for which one may explicitly
compute the spectrum. The most elementary example of a planar domain with
computable spectrum is a rectangle. For a rectangle R ∼= [0, L] × [0,W ] the set of
eigenvalues and eigenfunctions may be computed by separation of variables. The
eigenvalues are thus:

λj,k =
k2π2

L2
+

j2π2

W 2
, j, k ∈ N.

Without loss of generality we assume W ≤ L. Then, the gap function

ξ(R) = (L2 + W 2)

(
4π2

L2
+

π2

W 2
− π2

L2
− π2

W 2

)
=

3π2(L2 + W 2)

L2
.

The gap function detects the shape of a square since for any rectangle R

ξ(R) ≤ 6π2,

with equality if and only if R is a square. For a family of rectangles undergoing
one-dimensional collapse by letting W → 0 the gap function converges to 3π2 which
is the gap function for a segment.

1.1.2. Circular sectors. Circular sectors may be the most natural example to
consider after rectangular domains because in polar coordinates a circular sector
looks like a rectangle.

The Laplacian in polar coordinates (r, θ) is

Δ = ∂2
r + r−1∂r + r−2∂2

θ .

Separating variables in the Laplace equation leads to the equations

(1.1) g′′(θ) = −μg(θ), r2f ′′(r) + rf ′(r) + λr2f(r) = μf(r), μ > 0.

For a circular sector of opening angle απ and radius 1, the boundary conditions are

g(0) = g(απ) = 0, f(0) = f(1) = 0.

The solutions to the first equation in (1.1) are

g(θ) = sin(kθ/α), k ∈ N, μ = μk =
k2

α2
.

The second equation in (1.1) can be re-arranged to

r2f ′′(r) + rf ′(r) + (λr2 − μk)f = 0, f(0) = f(1) = 0,

which one recognizes as a Bessel equation. The solutions are

Jk/α(
√
λr), J−k/α(

√
λr),

where Jx denotes the Bessel function of order x. To satisfy the boundary conditions
the second solution is not allowed since it does not vanish at r = 0. Consequently,

√
λ =

√
λj,k = Zj,k,

is the jth zero of the Bessel function of order k/α. The eigenvalues of the sector
are therefore

λj,k = Z2
j,k.

The first and second zeros of the Bessel function of order ν are

(1.2) Zν,i = ν − ai
21/3

ν1/3 + O(ν−1/3), i = 1, 2,
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where ai is the ith zero of the Airy function of the first kind. These formulae can
be found in [23,25], and [30] for Bessel functions of real order and were previously
demonstrated in [34] and [28] for Bessel functions of integer order. Since

(1.3) a1 ≈ −2.34, and a2 ≈ −4.09,

the first two Dirichlet eigenvalues of the circular sector of opening angle απ and
radius one are approximately

(1.4) λi(Sα) =
1

α2
+

ci
α4/3

+ O(α−1), i = 1, 2,

where

(1.5) c1 = −a12
2/3 ≈ 3.71 and c2 = −a22

2/3 ≈ 6.49.

Consequently the gap function of a circular sector Sα of opening angle απ is as-
ymptotic to

(1.6) ξ(Sα) =
c2 − c1
α4/3

+ O(α−1), α → 0.

In this case the gap function is unbounded as the sector collapses to the segment.
These examples show that the gap function is sensitive to the geometry of

convex planar domains which collapse to a segment. Motivated by the strikingly
different asymptotic behavior of the gap function on rectangles and circular sectors,
in [26] we investigated the behavior of the gap function on simplicial domains and
proved the following.

Theorem 2 ([26]). Let Y be an n − 1 simplex for some n ≥ 2. Let {Xj}j∈N

be a sequence of n-simplices each of which is a graph over Y . Assume the height of
Xj over Y vanishes as j → ∞. Then ξ(Xj) → ∞ as j → ∞. More precisely, there

is a constant C > 0 depending only on n and Y such that ξ(Xj) ≥ Ch(Xj)
−4/3,

where h(Xj) is the height of Xj.

Any triangle with unit diameter is a 2-simplex with base

Y = {(x, 0) : 0 ≤ x ≤ 1}.
By Theorem 2, the gap function on a family of triangles which collapses to a segment
diverges with at least the same asymptotic rate as a collapsing sector (1.6). In §2,
we explore different ways in which triangles may collapse to the segment and present
an elementary proof that the gap function on any sequence of collapsing triangles
diverges. In §3, we prove that the gap function is sensitive to the geometry of
convex planar domains which collapse to a segment. The proof of our main result
comprises §4.

To state this result we shall identify R
n−1 with the subset

{(x1, · · · , xn−1, 0) | (x1, · · · , xn−1) ∈ R
n−1} ⊂ R

n.

Let E ⊂ R
n−1 be a convex domain, and let h−

ε and h+
ε be respectively one-

parameter families of convex, non-positive and concave non-negative Lipschitz con-
tinuous functions. Assume that h±

ε are uniformly bounded from above and below,
and that their moduli of continuity are uniformly bounded from above for all ε.
Define

hε(x) := |h+
ε (x) − h−

ε (x)|, σε := max{hε(x) | x ∈ E},
and

Ωε := {(x, y) | x ∈ E, εh−
ε (x) ≤ y ≤ εh+

ε (x)}.
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Theorem 3. Let E, h±
ε , σε, and Ωε be as above, and let

Uε(δ) := {x ∈ E | hε(x) ≥ σε − δ}.
If

diamUε(δ) → 0, as δ → 0, uniformly in ε,

then
λ2(Ωε) − λ1(Ωε) → ∞, as ε → 0.

A more refined theorem was proven by Borisov and Freitas in a slightly dif-
ferent setting [4]. They determined the asymptotics of both the eigenvalues and
eigenfunctions for domains in R

d with smooth boundary which collapse to a domain
in R

d−1. Since simplices and polygonal domains do not satisfy the hypotheses of
[ibid] due to the presence of corners, those results cannot be used to prove Theo-
rem 3. We note however that in two dimensions Theorem 2 can be deduced from
Friedlander and Solomyak’s results [13]. Both [4] and [13] require sophisticated
functional analysis, whereas our proofs are rather elementary.

2. Collapsing triangular domains

2.1. Preliminaries. The variational principle, also known as the mini-max
principle, states that the eigenvalues are given by the infima of the Rayleigh-Ritz
quotient,

(2.1) λk+1 = inf

{ ∫
Ω
|∇f |2∫
Ω
f2

∣∣∣∣ 0 =

∫
Ω

ffj , j = 0, . . . , k

}
where f0 ≡ 0, and fj is an eigenfunction for λj for j ≥ 1. We refer to [6] for the
proof. The test functions above and in the equivalent “maxi-min” principle (2.2)
are C2 functions which vanish on the boundary of Ω and are not identically zero,

(2.2) λk = inf
dim(L)=k

{
sup
f∈L

∫
Ω
|∇f |2∫
Ω
f2

}
.

The maxi-min principle can be used to prove domain monotonicity (see [7])

Ω ⊂ Ω′ =⇒ λk(Ω) ≥ λk(Ω
′), ∀k ∈ N.

We shall use the standard “big-O” and “little-o” from asymptotic analysis. We
shall also use the following notations for functions f, g : R → R,

f � g as t → t0 ⇐⇒ ∃C, ε > 0 such that f(t) ≤ Cg(t) ∀t ∈ [t0 − ε, t0 + ε],

f � g as t → t0 ⇐⇒ −f � −g as t → t0,

f ∼ g as t → L ⇐⇒ f � g and g � f as t → t0,

f ≈ g ⇐⇒ lim
t→t0

f

g
= 1.

In some arguments we will use the following constants1

(2.3) c′1 = −a′12
2/3 ≈ 1.62, c′2 = −a′22

2/3 ≈ 5.16.

Above a′i is the ith negative zero of the derivative of the Airy function of the first
kind.

1This constant arises from the asymptotic formula for the first two zeros of the derivative
of the Bessel function which is related to the first two Dirichlet eigenvalue of an obtuse isosceles
triangle; see [11].
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2.2. The moduli space of triangles. Since the gap function is invariant
under scaling, we restrict to triangles with diameter one. Such a triangle has angles

0 < απ ≤ βπ ≤ π − απ − βπ.

The moduli space of triangles, which we shall call P , can thus be identified with a
triangle in the α × β plane; see Figure 1. We are interested in the behavior of ξ
approaching the boundary of P which is the dashed vertical segment in Figure 1
and corresponds to triangles which degenerate to a segment.

(0,0)

(0, 1/2)

(1/3, 1/3)
P

Figure 1. Moduli space of triangles.

Consider the triangle T with angles 0 < απ ≤ βπ ≤ π − απ − βπ, and assume
for some fixed ε > 0, β ≥ ε. Let the side opposite απ have length A, the side
opposite βπ have length B, and the third side have length one. The Law of Sines
states that

sin(απ)

A
=

sin(βπ)

B
=

sin(π − απ − βπ)

1
.

Then

(2.4) B =
sin(βπ)

sin(απ + βπ)
=⇒ |1 −B| = O(α), as α → 0.

We approximate ξ(T ) using domain monotonicity with two sectors both of opening
angle απ. The larger sector S has radius 1 and contains T , whereas the smaller
sector σ has radius B and is contained in T . By domain monotonicity,

λ2(T ) ≥ λ2(S), λ1(T ) ≤ λ1(σ).

Then,
λ2(S) − λ1(σ) ≤ ξ(T ) ≤ λ2(σ) − λ1(S).

Since
λk(σ) = B−2λk(S), ∀k ∈ N,

we have the estimate

(2.5) λ2(S) −B−2λ1(S) ≤ ξ(T ) ≤ B−2λ2(S) − λ1(S).

By (2.4) and (1.4), there are constants c, c′ > 0 such that

ξ(S)− c

α
=

c2 − c1
α4/3

− c

α
≤ ξ(T ) ≤ ξ(S) +

c′

α
=

c2 − c1
α4/3

+
c′

α
.
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Consequently,

(2.6) lim
α→0

ξ(T )

ξ(S)
= 1.

More generally, we have the following.

Proposition 1. Let {Tn} be a sequence of triangles with diameter one and
angles αnπ, βnπ and π(1− αn − βn). Let Sn be the sector with opening angle αnπ
and radius 1. Assume that αn = o(β3

n) and βn → 0 as n → ∞. Then

ξ(Tn) ≈ ξ(Sn) =
c2 − c1

α
4/3
n

as βn → 0.

Proof. For simplicity, we shall abuse notation and drop the subscript n. Es-
timating with two sectors S and σ as above with opening angle απ and radii 1 and
B, respectively, we again have (2.5). In this case since both α and β tend to 0, by
(2.4)

|1 −B| = O

(
α

β

)
.

Therefore (2.5) becomes

ξ(S)− cα

β
λ1(S) ≤ ξ(T ) ≤ ξ(S) +

c′α

β
λ2(S),

for some positive constants c and c′. By (1.4) for some positive constants C and
C ′ we have

ξ(S) − C

αβ
=

c2 − c1
α4/3

− C

αβ
≤ ξ(T ) ≤ ξ(S) +

C ′

αβ
=

c2 − c1
α4/3

+
C ′

αβ
.

Since α = o(β3), (2.6) follows. �

We next consider obtuse isosceles triangles with diameter one. By [11],

λi(T ) =
4

α2
+

4c′i
α4/3

+ O(α−2/3), i = 1, 2.

Then,

ξ(T ) ≈ 4(c′2 − c′1)

α4/3
+ O(α−2/3) as α → 0.

More generally, we have the following.

Proposition 2. Let {Tn} be a sequence of triangles with diameter one and
angles αnπ, βnπ and π(1 − αn − βn). Assume that αn = βn + o(β3

n) and βn → 0
as n → ∞. Then

ξ(Tn) ≈ 4(c′2 − c′1)

α
4/3
n

as n → ∞.

Proof. By abuse of notation we shall again drop the subscript n. We estimate
the gap function on the triangle PRT in Figure 2 using a smaller isosceles triangle
QRT and a larger isosceles triangle PST .

By domain monotonicity

λk(PST ) ≤ λk(PRT ) ≤ λk(QRT ).
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T

SRQP

Figure 2. Triangle with two angles collapsing and approximating
isosceles triangles.

The triangle QRT has angles βπ, βπ, and π − 2βπ, whereas the triangle PST has
angles απ, απ, and π − 2απ. Let B denote the length of QT , A the length of PT ,
Γ the length of QR, and γ the length of PQ. By [11],

(2.7) λk(QRT ) =
4

Γ2

(
1

β2
+

c′k
β4/3

)
+ O(β−2/3), k = 1, 2,

and

(2.8) λk(PST ) =
4

(Γ + 2γ)2

(
1

α2
+

c′k
α4/3

)
+ O(α−2/3), k = 1, 2.

By the Law of Cosines

Γ = 2B cos(βπ),

and by the Law of Sines

B =
A sin(απ)

sin(βπ)
=⇒ |A−B| = o(β2).

By the Law of Sines

γ =
B sin(βπ − απ)

sin(απ)
= o(β2).

Since PRT has unit diameter,

Γ + γ = 1, |Γ − 1| = o(β2).

The estimate for ξ(PRT ) is

(2.9) λ2(PST ) − λ1(QRT ) ≤ ξ(PRT ) ≤ λ2(QRT ) − λ1(PST ).

By (2.5) and (1.4)

ξ(PRT ) ≈ 4(c′2 − c′1)β
−4/3, as β → 0.

�

The above propositions imply the following.

Corollary 1. The gap function is not polyhomogeneous on P .

Proof. Polyhomogeneity would imply that the gap function λ2−λ1 on trian-
gles with unit diameter admits an expansion of the form

(2.10) ξ(α, β) ∼
∞∑
k=1

αzk log(α)pkbk(β − α), α → 0.

Above, the coefficient functions bk are smooth in β − α, the real parts of the
(possibly complex) powers zk tend toward infinity as k → ∞, and the powers pk
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A

P1P1' P2 P2' EB

Q1
Q1'

Q2

Q2'

Figure 3. Arbitrary collapsing triangle.

are non-negative integers. For all points away from (α, β) = (0, 0), ξ is asymptotic
to

ξ(α, β) ≈ c2 − c1
α4/3

, as α → 0.

This corresponds to an expansion (2.10) with z1 = −4/3, p1 = 0, and b1(x) a
smooth function with b1(x) > 0 for x > 0, and b1(0) = c2 − c1. However, along
trajectories approaching (α, β) = (0, 0) with β − α = o(β3), by Proposition 2 the
gap is asymptotic to 4(c′2 − c′1)α

−4/3. This would require b1(0) = 4(c′2 − c′1). Since

4(c′2 − c′1) ≈ 14, c2 − c1 ≈ 3,

there can be no smooth function b1 which satisfies these conditions. �

Remark 1. In forthcoming work by Grieser and Melrose the eigenvalues are
shown to be polyhomogeneous on the moduli space of triangles with an appropriate
blow-up at the point (α, β) = (0, 0) [19].

2.3. A general collapsing triangle. For the general case consider the trian-
gle T = ABE in Figure 3. We make the following assumptions: the smallest angle
of the triangle is at the vertex B and measures απ, |DE| ≤ |BD|, and |BE| = 1.
Fix

0 < ε <
2

9
.

Let P1 be between B and D so that |P1D| = αε, and P ′
1 be between B and P1 so

that |P ′
1D| = 2αε. If |DE| > 2αε, let P2 be between D and E so that |P2D| = αε,

and P ′
2 be between P2 and E so that |P ′

2D| = 2αε. If |DE| ≤ 2αε, we do not
define or use the points P2, P

′
2. If |DE| > 2αε let U be the trapezoid AQ1P1P2Q2

and similarly let U ′ = AQ′
1P

′
1P

′
2Q

′
2. If |DE| ≤ 2αε, we let U = AQ1P1E and

U ′ = AQ′
1P

′
1E. Let V = ABE \U and V ′ = ABE \U ′. In the estimates to follow,

we show that we may estimate λ2(ABE) − λ1(ABE) using λ2(U
′) − λ1(U

′).
Let fi be the eigenfunction for λi = λi(ABE), for i = 1, 2. Assume that∫

ABE

f2
i dxdy = 1, i = 1, 2,

and define

(2.11) ηi :=

∫
V

f2
i dxdy, i = 1, 2.

In the following arguments the notation “dxdy” shall be suppressed whenever it
is clear from context. We identify the base of the triangle BE with the segment
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from (0, 0) ∈ R
2 to (1, 0) ∈ R

2. Let h(x) denote the height of the triangle over
a point (x, 0) in the base. Since the eigenfunctions fi vanish on the boundary of
the vertical segment from (x, 0) to (x, h(x)), the variational principle for the first
eigenvalue of this vertical segment implies

(2.12)

∫ h(x)

0
|∇fi|2∫ h(x)

0
f2
i

dy ≥ π2

h(x)2
=⇒

∫ h(x)

0

|∇fi|2dy ≥ π2

h(x)2

∫ h(x)

0

f2
i dy.

This is known as the one-dimensional Poincaré inequality. The heights of V , U ,
and U ′ satisfy

h(V ) � (1 − αε)α, h(U) � α, h(U ′) � α.

Integrating the inequality (2.12) with respect to x over the points (x, 0) in the base
of each of V , U , and U ′, we have the estimates∫

V
|∇fi|2∫
V
f2
i

� 1

(1 − αε)2α2
,

∫
U
|∇fi|2∫
U
f2
i

� 1

α2
, and

∫
U ′ |∇fi|2∫

U ′ f2
i

� 1

α2
.

By the variational principle (2.1),

ηi
(1 − αε)2α2

+
1 − ηi
α2

�
∫
V

|∇fi|2 +

∫
U

|∇fi|2 = λi.

Since the triangle ABD is a right triangle, by [11] and domain monotonicity

λi ≤ λ2(ABD) � 1

α2
+

c2
α4/3

+ O(α−1).

Therefore,

(2.13) ηi � α2/3c2(1 − αε)2

αε(2 − αε)
� α2/3−ε, i = 1, 2.

2.3.1. Estimate for λ1. To estimate λ2 − λ1 = ξ(T ) from below, by domain
monotonicity

λ1 ≤ λ1(U
′) =⇒ ξ(T ) ≥ λ2 − λ1(U

′).

In the following arguments, we will show that we can estimate λ2(U
′) from above

in terms of λ1 and λ2.
2.3.2. Estimate for λ2. Let ρ be a smooth compactly supported function so

that

(2.14) ρ|U ≡ 1, ρ|V ′ ≡ 0.

We may choose ρ so that

(2.15) |∇ρ| ≤ 1

αε
, and |Δρ|, |Δ(ρ2)| ≤ 1

α2ε
.

Note that

(2.16) −(ρfi)Δ(ρfi) = λiρ
2f2

i − f2
i ρΔρ− 2fiρ(∇ρ)(∇fi).

We would like to use ρf2 in the variational principle (2.1) for λ2(U
′), but since

ρf2 is not à priori orthogonal to the first eigenfunction for U ′, we must modify
it a bit. Since ρf1 is not orthogonal to the first eigenfunction for U ′ because
both are positive, there is some a ∈ R such that ρf2 + aρf1 is orthogonal to the
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first eigenfunction for U ′. We may then use ρf2 + aρf1 as a test function for the
variational principle (2.1) for λ2(U

′),

(2.17) λ2(U
′) ≤

∫
U ′ |∇(ρf2 + aρf1)|2∫

U ′(ρf2 + aρf1)2
.

Since

λ2 = λ2

∫
U ′(ρf2 + aρf1)

2∫
U ′(ρf2 + aρf1)2

=
λ2

∫
U ′ ρ

2f2
2 + a2λ2

∫
U ′ ρ

2f2
1 + λ2

∫
U ′ 2aρ2f1f2∫

U ′(ρf2 + aρf1)2
,

expanding the numerator and denominator in (2.17) we have

λ2(U
′) ≤ λ2 +

I + II + III∫
U ′(ρf2 + aρf1)2

,

where

I :=

∫
U ′

|∇(ρf2)|2 − λ2

∫
U ′

ρ2f2
2 , II := a2

(∫
U ′

|∇(ρf1)|2 − λ2

∫
U ′

ρ2f2
1

)
,

and

III :=

∫
U ′

2a∇(ρf1) · ∇(ρf2) − λ2

∫
U ′

2aρ2f1f2.

In the arguments below we estimate I, II, and III from above. Using integra-
tion by parts

(2.18)

∫
U ′

|∇ρfi|2 = −
∫
U ′

ρfiΔ(ρfi) = λi

∫
U ′

ρ2f2
i −

1

2

∫
U ′

∇ρ2∇f2
i −

∫
U ′

f2
i ρΔρ.

We estimate using integration by parts, the fact that both Δρ and ∇ρ vanish
identically on U , and (2.11), (2.13),∣∣∣∣

∫
U ′

|∇(ρfi)|2 − λi

∫
U ′

ρ2f2
i

∣∣∣∣ ≤ 1

2

∣∣∣∣
∫
U ′

f2
i Δρ2

∣∣∣∣ +

∫
U ′

|ρΔρ|f2
i ,

(2.19) � α−2ε

∫
U ′\U

f2
i � α−2ε

∫
V

f2
i � α2/3−3ε.

We compute using integration by parts:
∫
U ′ ∇(ρf1)∇(ρf2) =

(2.20) −
∫
U ′

ρf1Δ(ρf2) = λ2

∫
U ′

ρ2f1f2 − 2

∫
U ′

ρf1∇ρ · ∇f2 −
∫
U ′

ρf1f2Δρ,

and
∫
U ′ ∇(ρf1)∇(ρf2) =

(2.21) −
∫
U ′

ρf2Δ(ρf1) = λ1

∫
U ′

ρ2f1f2 − 2

∫
U ′

ρf2∇ρ · ∇f1 −
∫
U ′

ρf2f1Δρ.

This gives the inequality∣∣∣∣2
∫
U ′

∇(ρf1)∇(ρf2) − (λ1 + λ2)

∫
U ′

ρ2f1f2

∣∣∣∣
�

∣∣∣∣∣
∫
U ′\U

f1f2
α2ε

∣∣∣∣∣ + 2

∣∣∣∣∣
∫
U ′\U

ρ∇ρ∇(f1f2)

∣∣∣∣∣
� α−2ε

∣∣∣∣
∫
V

f1f2

∣∣∣∣ � α2/3−3ε,

(2.22)
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which follows from integration by parts, the Schwarz inequality, and (2.11), (2.13).
By (2.19),

(2.23) |I| � α2/3−3ε.

To estimate II, we note that λ1 ≤ λ2 so that

(2.24) II ≤ a2
(∫

U ′
|∇ρf1|2 − λ1

∫
U ′

ρ2f2
1

)
� a2α2/3−3ε,

which follows from (2.19).
Note that by the orthogonality of f1 and f2, the Schwarz inequality and (2.13),

(2.25)

∣∣∣∣
∫
U ′

ρ2f1f2

∣∣∣∣ =

∣∣∣∣
∫
ABE

(1 − ρ2)f1f2

∣∣∣∣ ≤
∣∣∣∣
∫
V

f1f2

∣∣∣∣ � α2/3−ε.

By (2.22), (2.25), and adding and subtracting λ1

∫
U ′ aρ

2f1f2, we estimate III,

III ≤ |a|
∣∣∣∣2
∫
U ′

∇(ρf1) · ∇(ρf2) − (λ1 + λ2)

∫
U ′

ρ2f1f2

∣∣∣∣ + |a|(λ2 − λ1)

∣∣∣∣
∫
U ′

ρ2f1f2

∣∣∣∣
(2.26) � |a|(α2/3−3ε + (λ2 − λ1)α

2/3−ε).

Next we estimate the denominator in (2.17). By (2.25), and (2.13) which implies∫
U ′ f

2
i � 1 − α2/3−ε,

(2.27)

∫
U ′

(ρf2 + aρf1)
2 � (1 + a2)(1 − α2/3−ε) − 2|a|α2/3−ε.

This inequality together with our estimates (2.23), (2.24), (2.26), and (2.27) in
the variational principle for λ2(U

′) (2.17) show that

λ2(U
′) � λ2 +

α2/3−3ε + a2α2/3−3ε + |a|α2/3−3ε + |a|(λ2 − λ1)α
2/3−ε

(1 + a2)(1 − α2/3−ε) − 2|a|α2/3−ε
.

This simplifies a bit to

λ2(U
′) � λ2 + α2/3−3ε

(
1 + a2 + |a| + |a|(λ2 − λ1)α

2ε

1 + a2 − (1 + a2)α2/3−ε − 2|a|α2/3−ε

)
.

We therefore have the bound

λ2(U
′) � λ2 + α2/3−3ε + (λ2 − λ1)α

2/3−ε.

2.3.3. Gap estimate. Using our estimates for λ1 and λ2, and the choice of
ε ∈ (0, 2/9) which implies α2/3−3ε → 0 as α → 0, we have

λ2 − λ1 � λ2(U
′) − λ1(U

′) − (λ2 − λ1)α
2/3−ε.

We then have

(λ2 − λ1) � λ2(U
′) − λ1(U

′)

1 + α2/3−ε
.

By the main theorem of [31], since the diameter of U ′ is at most 4αε,

λ2(U
′) − λ1(U

′) ≥ π2

64α2ε
,

which shows that

λ2 − λ1 � Cα−2ε
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and is therefore unbounded as α → 0. We have shown that for any triangle with
one or two small angles, ξ(T ) becomes unbounded as the triangle collapses to a
segment. �

3. Collapsing polygonal domains

The geometric feature which seems to determine whether the gap remains
bounded or diverges as a polygonal domain collapses to a segment is the rate at
which boundary points approach the segment. In the familiar example of rectan-
gles this rate is perfectly uniform, and the gap remains bounded. In the case of
triangles, points near B collapse “more quickly” than points near A (see Figure 3),
and the gap diverges. The theorem below generalizes this observation to convex
domains.

To state the theorem we shall require the following notions. Let {Qn}n∈N be
a family of convex domains in R

2. The arguments in both this section and the
following can be generalized to convex domains with diameter 1 which collapse to
the diameter, but for the sake of simplicity we shall assume Qn is the convex hull of
the graph of a Lipschitz continuous function over the unit interval and identify the
base of Qn with Sn = {(x, 0) : 0 ≤ x ≤ 1}. Without loss of generality we assume
that the domains are contained in the upper half plane.

Definition 3.1. The height hn of Qn is defined by

(3.2) hn := max{y | (x, y) ∈ Qn}.
We say that the domains Qn collapse as n → ∞ if

lim
n→∞

hn = 0.

The following definition describes collapse in which all boundary points are the
same distance from the base up to o(h2), where h denotes the height.

Definition 3.3. We say that Qn are asymptotically rectangular as n → ∞
if for each n, there exist rectangles Rn = [Cn, Cn + An] × [0, hn] ⊃ Q ⊃ rn =
[cn, cn + an] × [0, bn] and a constant γ > 0 such that an ≥ γ for all n ∈ N and

(3.4)
hn

bn
= 1 + o(h2

n) as n → ∞.

Triangular domains do not collapse asymptotically rectangularly. The following
notion generalizes the “non-uniform” collapse of triangular domains.

Definition 3.5. We say that Qn collapse non-uniformly as n → ∞ if there
exist convex inscribed polygons Un ⊂ Qn such that the following hold.

(1) The diameter of Un → 0 as n → ∞.
(2) The longest side Σn of Un is contained in Sn.
(3) The height of Un = hn.
(4) The height of Vn := Qn \ Un, satisfies h(Vn) ∼ (1 − hε

n)hn for some
ε ∈ (0, 2/9).

These two types of collapse determine whether the gap remains bounded or
diverges as the domains collapse.

Theorem 4. Let {Qn}n∈N be a family of convex domains as above, and assume
that Qn collapse as n → ∞. If Qn are asymptotically rectangular as n → ∞, then
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the gap function ξ(Qn) is bounded as n → ∞. If Qn collapse non-uniformly as
n → ∞, then the gap function ξ(Qn) → ∞ as n → ∞.

Proof. Assume first that the collapsing domains are asymptotically rectan-
gular. By domain monotonicity

λ2(Qn) − λ1(Qn) ≤ λ2(rn) − λ1(Rn).

For simplicity we shall drop the subscript and denote λi = λi(Q) for i = 1, 2. Since
b ≤ h → 0, we may assume that a ≥ b. Then

λ2(r) − λ1(R) = π2

(
h2 − b2

h2b2
+

4

a2
− 1

A2

)
.

Since Q ⊂ R, A ≥ 1, and by assumption a is also bounded below as n → ∞. Thus

ξ(Q) � π2

(
(h/b)2 − 1

h2
+

4

a2
− 1

A2

)
.

By the definition of asymptotically rectangular (3.4), it follows that ξ(Q) is bounded
as n → ∞.

A B C D E

FHJ

K

L

Figure 4. Collapsing polygon with unbounded gap.

For the case of non-uniform collapse we shall generalize the estimates used in
the preceding section for triangles. Let U ′ ⊃ U be a convex inscribed polygon so
that one side Γ of U ′ satisfies S ⊃ Γ ⊃ Σ and |Γ − Σ| ∼ hε, where ε ∈ (0, 2/9)
is defined by Definition (3.4). We can define such an inscribed polygon since the
diameter of U → 0, and S has length 1. With this definition the diameter of U ′ → 0
as h → 0.

Let fi be the eigenfunction for Q with eigenvalue λi, for i = 1, 2. By convexity,
Q contains an inscribed right triangle T of height h = h(U) and base at least 1/2.
For example in Figure 4, Q = AEFJL, T = JCE, h = |JC|, and U = JKBDH.
Assume fi are normalized so that∫

Q

f2
i = 1, and let ηi :=

∫
V

f2
i , i = 1, 2.

By the one dimensional Poincaré inequality,∫
V
|∇fi|2∫
V
f2
i

� π2

(h(V ))2
,

and ∫
U
|∇fi|2∫
U
f2
i

� π2

(h(U))2
,

∫
U ′ |∇fi|2∫

U ′ f2
i

� π2

(h(U))2
,
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since U and U ′ have the same height. For h ≈ 0, the measure of the smallest angle
of T ∼ h = h(U). By domain monotonicity

λi(Q) ≤ λ2(T ) ≤ λ2(σ) � π2

(h(U))2
+

c2
(h(U))4/3

+ O(h(U)−1),

where σ is a sector of the same opening angle as T which is contained in T and has
radius bounded below by a fixed constant.

Estimating ηi as we did for triangles,

ηiπ
2

(h(V ))2
+

π2(1 − ηi)

(h(U))2
�

∫
V

|∇fi|2 +

∫
U

|∇fi|2 = λi ≤ λ2(T )

� π2

(h(U))2
+

c1
(h(U))4/3

+ O(h(U)−1).

This gives the following estimate for ηi,

(3.6) ηi � h(U)2/3h(V )2

h(U)2 − h(V )2
, i = 1, 2.

By assumption h = h(U) and h(V ) ∼ h(1 + hε) for some ε ∈ (0, 2/9). It follows
that

(3.7) η := max{η1, η2} � h2/3−ε.

Let

(3.8) δ :=
2

3
− ε.

3.0.4. Estimates for λ1. By domain monotonicity

λ1 ≤ λ1(U
′) =⇒ λ2 − λ1 ≥ λ2 − λ1(U

′).

3.0.5. Estimates for λ2. We shall again define a cut-off function ρ as in (2.14)
so that,

|∇ρ| ≤ h−ε, |Δρ| ≤ h−2ε.

Since the function ρf2 is not à priori an admissible test function for the variational
principle for λ2(U

′) we again modify it to make it orthogonal to the first eigenfunc-
tion on U ′. Since the first eigenfunction of U ′ and the first eigenfunction of Q are
both positive on the interior, we shall consider the test function

ρf2 + aρf1,

where a is chosen so that ρf2 + aρf1 is L2 orthogonal to the first eigenfunction of
U ′.

The variational principle for λ2(U
′) using ρf2 + aρf1 as a test function

(3.9) λ2(U
′) ≤

∫
U ′ |∇(ρf2 + aρf1)|2∫

U ′(ρf2 + aρf1)2
.

Since

λ2 = λ2

∫
U ′(ρf2 + aρf1)

2∫
U ′(ρf2 + aρf1)2

,

expanding the numerator and denominator in (3.9) we have

λ2(U
′) ≤ λ2 +

I + II + III∫
U ′(ρf2 + aρf1)2

,
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where

I :=

∫
U ′

|∇(ρf2)|2 − λ2

∫
U ′

ρ2f2
2 , II := a2

(∫
U ′

|∇(ρf1)|2 − λ2

∫
U ′

ρ2f2
1

)

and

III :=

∫
U ′

2a∇(ρf1) · ∇(ρf2) − λ2

∫
U ′

2aρ2f1f2.

Using (2.18), we estimate∣∣∣∣
∫
U ′

|∇(ρfi)|2 − λi

∫
U ′

ρ2f2
i

∣∣∣∣ ≤ 1

2

∣∣∣∣
∫
U ′

Δρ2f2
i

∣∣∣∣ +

∫
U ′

|ρΔρ|f2
i ,

(3.10) � h−2ε

∫
U ′−U

f2
i � h−2ε

∫
V

f2
i � hδ−2ε,

since Δρ and ∇ρ vanish identically on U . By (2.20) and (2.21),∣∣∣∣2
∫
U ′

∇(ρf1)∇(ρf2) − (λ1 + λ2)

∫
U ′

ρ2f1f2

∣∣∣∣
�

∫
U ′−U

|f1f2|
h2ε

+ 2

∣∣∣∣
∫
U ′−U

ρ∇ρ∇(f1f2)

∣∣∣∣
(3.11) � h−2ε

(∫
V

|f1f2| + 2

∫
V

|f1f2|
)

� hδ−2ε,

which follows from integration by parts and the Schwarz inequality.
By our calculations for triangles, our estimate for η, and the estimates (3.10)

and (3.11),

(3.12) I � hδ−2ε,

(3.13) II � a2hδ−2ε, and

(3.14) III � |a|(hδ−2ε + (λ2 − λ1)h
δ).

Moreover,

(3.15)

∫
U ′

(ρf2 + aρf1)
2 � (1 + a2)(1 − hδ) − 2|a|hδ.

Using these estimates, we estimate the Rayleigh-Ritz quotient for ρf2 + aρf1,

(3.16) λ2(U
′) � λ2 +

hδ−2ε + a2hδ−2ε + |a|hδ−2ε + |a|(λ2 − λ1)h
δ

(1 + a2)(1 − hδ) − 2|a|hδ
.

This simplifies to

λ2(U
′) � λ2 + hδ−2ε

(
1 + a2 + |a| + |a|(λ2 − λ1)h

2ε

1 + a2 − (1 + a2)hδ − 2|a|hδ

)
.

We therefore have the bound as h → 0,

λ2(U
′) � λ2 + hδ−2ε + hδ(λ2 − λ1).
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3.0.6. Gap estimate. Using our estimates for λi(U
′)

λ2 − λ1 � λ2 − λ1(U
′) � λ2(U

′) − λ1(U
′) − hδ−2ε − (λ2 − λ1)h

δ,

Since

δ = 2/3 − ε, ε < 2/9,

it follows that

δ − 2ε = 2/3 − 3ε > 0.

Consequently,

(3.17) λ2 − λ1 � λ2(U
′) − λ1(U

′)

1 + hδ
.

By hypothesis on U and definition of U ′, the diameter of U ′ vanishes as h → 0,
so (3.17) and the main theorem of [31] imply

ξ ∼ λ2 − λ1 → ∞, as h → 0.

�

The theorem shows that the gap function is sensitive to the rate at which
boundary points collapse to the base. We shall demonstrate in the following section
that the same phenomenon is true for domains in R

n under one dimensional collapse.

4. The general case

To prove Theorem 3 we shall require the following proposition.

Proposition 3. Let Ω ⊂ R
n be a convex bounded domain with Lipschitz bound-

ary, and let φ be the first eigenfunction for the Euclidean Laplacian on Ω with the
Dirichlet boundary condition. Let U be a convex subset of Ω. Define

μ := inf

{ ∫
U
|∇ϕ|2φ2∫
U
ϕ2φ2

∣∣∣∣ϕ ∈ C2(U),

∫
U

ϕφ2 = 0

}
.

Then

μ ≥ π2

4d(U)2
, d(U) = diameter of U.

Proof. By the variational principle (see [27] §2), μ is the first positive eigen-

value for the Bakry-Émery Laplace operator

L := Δ + 2∇ log φ∇,

with the Neumann boundary condition on ∂U . Analogous to the classical varia-
tional principle for the Laplacian, the infimum is achieved by a function ϕ which
satisfies

(4.1) Δϕ + 2∇ log φ∇ϕ = −μϕ,
∂ϕ

∂n

∣∣∣∣
∂U

= 0.

We define for ε > 0

g :=
1

2

(
|∇ϕ|2 + (μ + ε)ϕ2

)
.

Claim 1. Let x0 be the point at which g achieves its maximum. Then ∇ϕ(x0) =
0.
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Proof. To prove the claim we first note that if g attains its maximum at
x0 ∈ U \ ∂U , then ∇ϕ(x0) = 0, and Δg(x0) ≤ 0. On the other hand if g achieves
its maximum at x0 ∈ ∂U , then we have

0 ≤ ∇g · �n =

⎛
⎝(μ + ε)ϕ∇ϕ +

(
n∑

i=1

ϕiϕij

)n

j=1

⎞
⎠ · �n,

where �n is the outward normal vector at x0. Since ϕ satisfies the Neumann bound-
ary condition,

0 ≤ ∇g · �n =

n∑
i.j=1

ϕiϕij · nj = −
n∑

i,j=1

hijϕiϕj ,

where hij is the second fundamental form. By convexity of U , hij is non-negative
definite so we have

0 ≥ ∇g · �n =

n∑
i.j=1

ϕiϕij · nj = −
n∑

i,j=1

hijϕiϕj ≤ 0.

This implies that ∇g(x0) = 0. To show that Δg(x0) ≤ 0, note that

Δg(x0) = Δ′g(x0) + gnn(x0) + 2H∇g(x0) · �n,
where H is the mean curvature, gnn is the second derivative of g in the normal
direction, and Δ′ is the Laplace operator for ∂U . At the maximum point x0,

Δ′g(x0) ≤ 0.

We have shown above that ∇g(x0) · �n = 0, and since x0 is the maximum point,
gnn(x0) ≤ 0. It follows that

Δg(x0) ≤ 0.

Consequently, in any case we have ∇g(x0) =

(4.2) (μ + ε)ϕ∇ϕ +

(
n∑

i=1

ϕiϕij

)n

j=1

= 0 =⇒ (μ + ε)ϕϕj = −
n∑

i=1

ϕiϕij ,

for all j = 1, . . ., n. Note that the above equalities and the calculations below are
all for the maximum point x0, so for the sake of simplicity we shall not write x0.
We also have at the maximum point

(4.3) Δg = (μ + ε)|∇ϕ|2 + (μ + ε)ϕΔϕ +

n∑
i,j=1

(ϕ2
ij + ϕiϕijj) ≤ 0.

For each j = 1, . . ., n in (4.2), multiplying by ϕj and summing over j, we have

(4.4)

⎛
⎝ n∑

i,j=1

ϕiϕijϕj

⎞
⎠

2

=

⎛
⎝ n∑

j=1

−(μ + ε)ϕϕ2
j

⎞
⎠

2

= (μ + ε)2ϕ2|∇ϕ|4.

To show that ∇ϕ(x0) = 0 we will assume for the sake of contradiction that
∇ϕ(x0) �= 0. Then by the Cauchy Inequality in (4.4)

n∑
i,j=1

(ϕij)
2 =

n∑
i,j=1

(ϕij)
2 |∇ϕ|4
|∇ϕ|4 ≥

(∑n
i,j=1 ϕijϕiϕj

)2

|∇ϕ|4 = (μ + ε)2ϕ2.
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Next we have by (4.1)

n∑
i,j=1

ϕiϕijj =

n∑
i=1

ϕi(Δϕ)i =

n∑
i=1

ϕi(−μϕ− 2∇ log φ · ∇ϕ)i.

By [5] the logarithm of φ is concave and therefore the Hessian of log φ is negative
definite, and we have

n∑
i,j=1

−2ϕiϕj
φij

φ
≥ 0.

Consequently,

n∑
i=1

ϕi(−μϕ− 2∇ log φ · ∇ϕ)i ≥ −μ|∇ϕ|2 − 2
n∑

i,j=1

ϕi
φj

φ
ϕij .

By (4.2),

n∑
i,j=1

ϕi
φj

φ
ϕij = −

n∑
j=1

(μ + ε)ϕϕj
φj

φ
= −(μ + ε)ϕ∇ log φ∇ϕ,

so we have
n∑

i=1

ϕi(−μϕ− 2∇ log φ · ∇ϕ)i ≥ −μ|∇ϕ|2 + 2(μ + ε)ϕ∇ logφ∇ϕ.

Putting it all together in (4.3) we have

0 ≥ (μ + ε)|∇ϕ|2 + (μ + ε)ϕΔϕ +

n∑
i,j=1

(ϕ2
ij + ϕiϕijj) ≥

(μ+ε)|∇ϕ|2+(μ+ε)ϕ(−μϕ−2∇ logφ∇ϕ)+(μ+ε)2ϕ2−μ|∇ϕ|2+2(μ+ε)ϕ∇ logφ∇ϕ

= ε2ϕ2 + +ε|∇ϕ|2 + μεϕ2.

Since ε, μ > 0, we clearly must have ∇ϕ = 0 which is a contradiction. �

It follows that at the maximum point x0 for g, ∇ϕ vanishes and hence

g(x) ≤ g(x0) =
1

2
(μ + ε)ϕ2(x0) ≤

1

2
(μ + ε)max(ϕ2).

Assume we have normalized ϕ such that the maximum of ϕ2 is 1. Then,

1

2

(
|∇ϕ|2 + (μ + ε)ϕ2

)
= g ≤ 1

2
(μ + ε)

and so

|∇ϕ|2 ≤ (μ + ε)(1 − ϕ2).

Letting ε → 0 we have

(4.5) |∇ϕ|2 ≤ μ(1 − ϕ2) =⇒ |∇ϕ|√
1 − ϕ2

≤ √
μ.

Since ∫
U

ϕφ2 = 0,
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and φ > 0 on the interior of U , there exist points y0, y1 ∈ U such that ϕ(y0) = 0
and ϕ(y1)

2 = 1. Without loss of generality we may assume that ϕ(y1) = 1. Let
γ(t) be a unit-speed geodesic in U such that γ(0) = y0 and γ(1) = y1. Then∣∣∣∣∣

∫
γ

∇ϕ√
1 − ϕ2

dσ

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

∇ϕ(γ(t))γ̇(t)√
1 − ϕ(γ(t))2

dt

∣∣∣∣∣
= |arcsin(ϕ(γ(1)))− arcsin(ϕ(γ(0)))| =

π

2
.

By (4.5), ∣∣∣∣∣
∫
γ

∇ϕ√
1 − ϕ2

dσ

∣∣∣∣∣ ≤ l(γ)
√
μ ≤ d(U)

√
μ.

It follows that
π

2
≤ d(U)

√
μ =⇒ π2

4d(U)2
≤ μ.

�

We now have the necessary ingredients to prove our main result.

Proof of Theorem 3. In what follows, the constant C is independent of δ
and ε but may be different from line to line and within the same line. Let u1 and
u2 be the eigenfunctions of Ωε for the eigenvalues λ1(Ωε), λ2(Ωε), respectively, and
assume ∫

Ωε

u2
i = 1, i = 1, 2.

Define

E(δ) := {x ∈ E | hε(x) > σε − δ};
U(δ) := (E(δ) × R) ∩ Ωε;

V (δ) := Ωε \ U(δ)

We shall again estimate the L2 norm of the eigenfunctions on V (δ) using the one
dimensional Poincaré inequality which implies

(4.6) λi(Ωε) =

∫
Ωε

|∇ui|2 � π2

(σε − δ)2ε2

∫
V (δ)

u2
i +

π2

σ2
εε

2

(
1 −

∫
V (δ)

u2
i

)
,

for i = 1, 2. By the Lipschitz continuity of h±
ε and the uniform boundedness of the

modulus of continuity, it follows that Ωε contains a generalized cylinder of height
∼ ε(σε − δ2) over E(δ2). The eigenvalues of such a cylinder are bounded above by

λi(E(δ2)) + π2

(σε−δ2)2ε2 . By domain monotonicity,

(4.7) λi(Ωε) ≤ λi(U(δ2)) � λi(E(δ2)) +
π2

(σε − δ2)2ε2
.

Let x0 be the maximum point of hε(x) so that hε(x0) = σε. Then by the Lip-
schitz continuity of h±

ε and the uniform boundedness of the modulus of continuity,
there is a constant C, such that

E(δ2) ⊃ Bx0
(Cδ2).

Therefore, we have by domain monotonicity

λi(E(δ2)) � δ−4.
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Combining the above inequality with with (4.6) and (4.7), we have

π2

(σε − δ)2ε2

∫
V (δ)

u2
i +

π2

σ2
εε

2

(
1 −

∫
V (δ)

u2
i

)
� π2

δ4
+

π2

(σε − δ2)2ε2
,

and hence we have ∫
V (δ)

u2
i � δ +

ε2

δ5
.

We choose δ = ε1/3. Then we have

(4.8)

∫
V (δ)

u2
i � ε1/3.

Since u1 is orthogonal to u2, we have

(4.9)

∣∣∣∣∣
∫
U(δ)

u1u2

∣∣∣∣∣ =

∣∣∣∣∣
∫
V (δ)

u1u2

∣∣∣∣∣ � ε1/3,

where the last inequality follows from (4.8) and the Schwarz inequality.
Let

ψ :=
u2

u1

and let

α :=

∫
U(δ)

ψu2
1∫

U(δ)
u2
1

, ψ̃ := ψ − α.

By the estimate (4.9) and definition of ψ,

α =

∫
U(δ)

u1u2∫
U(δ)

u2
1

� ε1/3

1 − ε1/3
.

Let μ = μ(δ) be defined as in Proposition 3, where in the statement of the
proposition φ = u1, and U = U(δ). Note that by the definition of h±

ε as concave,
non-positive and convex non-negative functions and the convexity of E it follows
that U is a convex subset of Rn. We compute that∫

U

ψ̃u2
1 = 0.

Since μ is the infimum and ∇ψ̃ = ∇ψ,

μ ≤
∫
U
|∇ψ|2u2

1∫
U
ψ̃2 u2

1

≤
∫
Ωε

|∇ψ|2u2
1∫

U
ψ̃2 u2

1

=
λ2(Ωε) − λ1(Ωε)∫

U
ψ̃2 u2

1

.

The final equality in the numerator follows from §2 of [27]. We compute∫
U

ψ̃2u2
1 =

∫
U

u2
2 + α2

∫
U

u2
1 − 2

∫
U

αu2u1

=

∫
U

u2
2 − α

∫
U

u1u2 � 1 − ε1/3.

Consequently we have the estimate

μ � (λ2(Ωε) − λ1(Ωε))

1 − ε1/3
.
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By Proposition 3

μ ≥ π2

4d(U)2
.

By the assumption that d(U) → 0 uniformly as ε → 0, it follows that λ2(Ωε) −
λ1(Ωε) → ∞ as ε → 0. Finally we note that the diameter of Ωε is uniformly
bounded from above and from below (by the diameter of E, for example), and so
it follows that

ξ(Ωε) ∼ λ2(Ωε) − λ1(Ωε) → ∞, as ε → 0.

�

Remark 2. The assumption that the diameter of Uε(δ) tends to zero is neces-
sary. For example, assume there exists a fixed constant c > 0 such that

diam{x ∈ E | hε(x) ≡ σε} ≥ c, ∀ε.

By domain monotonicity estimates using two generalized cylinders analogous to
the two rectangles used in the proof of the bounded-gap case of Theorem 4, it
is straightforward to show that in this case the gap remains bounded under one
dimensional collapse. The details are left to the reader.

Remark 3. In [4] and [13] much more precise results for the behavior of the
eigenvalues and the eigenfunctions under one-dimensional collapse were obtained.
We note that those results require that the collapsing domains are defined by

(4.10) Ωε = {(x, y) | x ∈ E, 0 ≤ y ≤ εh(x)} → E as ε → 0.

Since the collapse is described by scaling a fixed non-negative function h by the
parameter ε, those results do not immediately apply to the cases considered here.
It would be interesting to investigate whether the results of [4] and [13] may be
extended to more general collapsing geometry.
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[29] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Math-
ematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. MR0043486
(13,270d)

[30] C. K. Qu and R. Wong, “Best possible” upper and lower bounds for the zeros of the Bessel
function Jν(x), Trans. Amer. Math. Soc. 351 (1999), no. 7, 2833–2859, DOI 10.1090/S0002-
9947-99-02165-0. MR1466955 (99j:33006)

[31] I. M. Singer, Bun Wong, Shing-Tung Yau, and Stephen S.-T. Yau, An estimate of the gap of
the first two eigenvalues in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4) 12 (1985), no. 2, 319–333. MR829055 (87j:35280)

[32] Bart�lomiej Siudeja, Sharp bounds for eigenvalues of triangles, Michigan Math. J. 55 (2007),
no. 2, 243–254, DOI 10.1307/mmj/1187646992. MR2369934 (2008k:35341)

[33] M. van den Berg, On condensation in the free-boson gas and the spectrum of the Laplacian,
J. Statist. Phys. 31 (1983), no. 3, 623–637, DOI 10.1007/BF01019501. MR711491 (85i:82022)

[34] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Li-
brary, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition.
MR1349110 (96i:33010)

[35] Shing-Tung Yau, An estimate of the gap of the first two eigenvalues in the Schrödinger
operator, Lectures on partial differential equations, New Stud. Adv. Math., vol. 2, Int. Press,
Somerville, MA, 2003, pp. 223–235. MR2055851 (2005c:35219)

[36] Shing-Tung Yau, Nonlinear analysis in geometry, Enseign. Math. (2) 33 (1987), no. 1-2,
109–158. MR896385 (88g:58003)

[37] Qi Huang Yu and Jia Qing Zhong, Lower bounds of the gap between the first and second
eigenvalues of the Schrödinger operator, Trans. Amer. Math. Soc. 294 (1986), no. 1, 341–
349, DOI 10.2307/2000135. MR819952 (87f:35179)

Department of Mathematics, 410D Rowland Hall, University of California, Irvine,

California 92697-3875

E-mail address: zlu@uci.edu

Max Planck Institut für Mathematik, Vivatgasse 7, 53111 Bonn, Germany

E-mail address: rowlett@mpim-bonn.mpg.de

http://www.ams.org/mathscinet-getitem?mr=2998145
http://www.ams.org/mathscinet-getitem?mr=0043486
http://www.ams.org/mathscinet-getitem?mr=0043486
http://www.ams.org/mathscinet-getitem?mr=1466955
http://www.ams.org/mathscinet-getitem?mr=1466955
http://www.ams.org/mathscinet-getitem?mr=829055
http://www.ams.org/mathscinet-getitem?mr=829055
http://www.ams.org/mathscinet-getitem?mr=2369934
http://www.ams.org/mathscinet-getitem?mr=2369934
http://www.ams.org/mathscinet-getitem?mr=711491
http://www.ams.org/mathscinet-getitem?mr=711491
http://www.ams.org/mathscinet-getitem?mr=1349110
http://www.ams.org/mathscinet-getitem?mr=1349110
http://www.ams.org/mathscinet-getitem?mr=2055851
http://www.ams.org/mathscinet-getitem?mr=2055851
http://www.ams.org/mathscinet-getitem?mr=896385
http://www.ams.org/mathscinet-getitem?mr=896385
http://www.ams.org/mathscinet-getitem?mr=819952
http://www.ams.org/mathscinet-getitem?mr=819952

	The Fundamental Gap and One-Dimensional Collapse
	1. Motivation and results
	2. Collapsing triangular domains
	3. Collapsing polygonal domains
	4. The general case
	Acknowledgements
	References


