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Consider a quantum particle trapped between a curved layer of constant width built
over a complete, non-compact, C2 smooth surface embedded in R3. We assume that
the surface is asymptotically flat in the sense that the second fundamental form
vanishes at infinity, and that the surface is not totally geodesic. This geometric setting
is known as a quantum layer. We consider the quantum particle to be governed by the
Dirichlet Laplacian as Hamiltonian. Our work concerns the existence of bound states
with energy beneath the essential spectrum, which implies the existence of discrete
spectrum. We first prove that if the Gauss curvature is integrable, and the surface is
weakly κ-parabolic, then the discrete spectrum is non-empty. This result implies that
if the total Gauss curvature is non-positive, then the discrete spectrum is non-empty.
Next, we prove that if the Gauss curvature is non-negative, then the discrete spectrum
is non-empty. Finally, we prove that if the surface is parabolic, then the discrete
spectrum is non-empty if the layer is sufficiently thin. C© 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4736412]

I. INTRODUCTION

Mesoscopic physics describes length scales from one atom to micrometers. At these scales,
the behavior of particles is no longer described by classical physics: quantum effects are observed.
Numerous phenomena such as quantum dots and wells occur at the scale of mesoscopic physics,
and all nanotechnology is on the mesoscopic scale.

Consider, for example, electrons trapped between two semi-conducting materials, or more gen-
erally, quantum particles trapped between hard walls. Mathematically, such situations are described
using a quantum layer.

Let p : Σ → R3 be an embedded surface inR3. We will always make the following assumptions
on Σ .

A. Hypotheses

(1) Σ is a C2 smooth surface;
(2) Σ is orientable, complete, but non-compact;
(3) Σ is not totally geodesic;
(4) Σ is asymptotically flat in the sense that the second fundamental form, denoted B throughout

this work, tends to zero at infinity.

A quantum layer over Σ is an oriented differentiable manifold � ∼= Σ × [−a, a] for some
(small) positive number a. Let �N be the unit normal vector of Σ in R3. Define

p̃ : � → R3

a)Electronic mail: zlu@uci.edu.
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by

p̃(x, t) = p(x) + t �Nx .

If a is small, then p̃ is clearly an immersion. The Riemannian metric ds2
� is defined as the pull-back

of the Euclidean metric via p̃. The Riemannian manifold (�, ds2
�) is called the quantum layer.

Physically, the quantum particles are trapped between two copies of the same semi-conducting
material Σ at a uniform distance of 2a apart, where a is of mesoscopic scale. A natural question is:

Does there exist a geometric condition on Σ which guarantees the existence of bound states with energy
beneath the essential spectrum?

Let us formulate this precisely. Let � = �� be the Laplacian with respect to the Riemannian
metric ds2

�, and assume the Dirichlet boundary condition. Since � is a smooth, complete manifold
with boundary, the Dirichlet Laplacian is the Friedrichs extension of the Laplacian acting on C∞

0 (�)
and is self-adjoint. The spectrum of the Dirichlet Laplacian consists of two parts: discrete, isolated
eigenvalues of finite multiplicity and essential spectrum. We distinguish the eigenvalues which are
disjoint from the essential spectrum and refer to these as the discrete spectrum, since there may
also be embedded eigenvalues within the essential spectrum. Physically, the quantum particles are
governed by the Dirichlet Laplacian as Hamiltonian, and eigenvalues correspond to the Dirichlet
energy of bound states. Therefore:

The existence of discrete spectrum is equivalent to the existence of bound states in the physical model
whose energy is beneath the essential spectrum.

Let κ be the Gauss curvature of Σ throughout this paper. Our work is motivated by the following
conjecture.

Conjecture 1: Under the preceding assumptions (I A) on Σ , if∫
Σ

|κ|dΣ < +∞, (1.1)

then there exists an α = α(Σ) such that for all a ∈ (0, α), the discrete spectrum of the quantum layer
over Σ of width 2a is non-empty.

Remark 1.1: By a theorem of Huber,7 if (1.1) is valid, then Σ is conformal to a compact Riemann
surface with finitely many points removed. Moreover, White15, 16 proved that if∫

Σ

κ−dΣ < +∞, (1.2)

where

κ =
{

κ+ κ ≥ 0

−κ− κ < 0
,

then ∫
Σ

|κ|dΣ < +∞.

Thus (1.1) can be weakened to (1.2).
Conjecture 1 was proven under the condition∫

Σ

κdΣ ≤ 0 (1.3)

through the work of Duclos et al.4 and Carron et al.3. Moreover, Ref. 3 also proved that Conjecture 1
holds if the gradient of the mean curvature is locally square integrable, and the total mean curvature
is infinite.
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Our work focuses on the remaining case:∫
Σ

κdΣ > 0.

By the theorem of Huber,7 there exists a compact Riemann surface Σ and finitely many points p1,
···, ps such that

Σ = Σ\{p1, · · · , ps}.
In particular, Σ has finitely many ends, Ei (1 ≤ i ≤ s). By a theorem of Hartman (Theorems 6.1 and
7.1 of Ref. 6), we have ∫

Σ

κdΣ = 2π

(
χ (Σ) −

s∑
i=1

λi

)
, (1.4)

where χ (Σ) is the Euler characteristic number of Σ , and λi are the isoperimetric constants at each
end Ei defined by

λi = lim
r→∞

vol(B(r ) ∩ Ei )

πr2
.

The existence of these limits follows from the integrability of the Gauss curvature (1.1).
We also have

χ (Σ) ≤ χ (Σ) − s = 2 − 2g(Σ) − s < 2.

This together with (1.4) implies that χ (Σ) = 1, and hence the surface is differomorphic to R2.
Consequently,

0 <

∫
Σ

κdΣ ≤ 2π. (1.5)

Although the topology of the surface is completely known, this is the only remaining case in
which the conjecture has not yet been proven.

We recall the main results of Refs. 3 and 4.

Theorem 1.1 (Duclos, Exner, and Krejčiřı́k): Let Σ be a C2-smooth complete simply connected
non-compact surface with a pole embedded in R3. Let the layer � ∼= Σ × [−a, a] built over the
surface be not self-intersecting. If the surface is not a plane, but it is asymptotically flat, then if a
satisfies condition (1.6) below, each of the following implies Conjecture 1.

(1) The Gauss curvature satisfies (1.1) and (1.3);
(2) Σ is C3 smooth, and a is sufficiently small;
(3) Σ is C3 smooth, the Gauss curvature is integrable, the gradient of the mean curvature ∇gH is

L2 integrable, and the total mean curvature is infinite;
(4) the Gauss curvature is integrable and Σ is cylindrically symmetric.

In Ref. 3, Carron et al. proved that the conjecture holds under more general conditions. They no
longer required the surface to have a pole, and they also proved Conjecture 1 under the additional
assumptions that the gradient of the mean curvature is square integrable and the total mean curvature
is infinite.

Theorem 1.2 (Carron, Exner, and Krejčiřı́k): Let Σ be a complete asymptotically flat, non-
compact connected surface of class C2 embedded in R3 and such that the Gauss curvature satisfies
(1.1). Let the layer � of width 2a be defined so that � does not overlap, and a satisfies condition
(1.6) below. Then, any of the following imply Conjecture 1.

(1) The Gauss curvature satisfies (1.3);
(2) a is small enough, and the gradient of the mean curvature ∇gH is locally L2 integrable;
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(3) the gradient of the mean curvature ∇gH is L2 integrable, and the total mean curvature is
infinite;

(4) Σ contains a cylindrically symmetric end with a positive total Gauss curvature.

The general method used in both Refs. 3 and 4 is: first compute the infimum of the essential
spectrum, next construct appropriate test functions, and finally apply the variational principle to
prove that if one of the conditions is satisfied, then there must be an eigenvalue strictly less than the
essential spectrum. The pole and symmetry assumption (4) were necessary in Ref. 4 because their
test functions are radially symmetric.

The first main result of the present paper generalizes3, 4 by demonstrating that Conjecture 1 holds
if the surface is weakly κ-parabolic. (We refer to Sec. III for the definition of weak κ-parabolicity.)

Theorem 1.3: Let Σ be a complete surface in R3 which satisfies the hypotheses (I A), and
assume that Σ is weakly κ-parabolic. Then, there exists α > 0, depending only on the supremum of
the norm of the second fundamental form, such that for all a ∈ (0, α), the discrete spectrum of the
quantum layer over Σ of width 2a is non-empty.

Although the proof of Theorem 1.3 is based on the same principles used in Refs. 3 and 4, our
theorem not only generalizes their results, but also shows that their argument fits nicely into the
notion of weak κ-parabolicity, which provides a geometric abstraction of their argument.

The class of layers considered in Refs. 3 and 4 was already quite broad, but not exhaustive. For
example, a question raised in Ref. 4 which remained unanswered in Ref. 3 is:

Question 1.1: Does Conjecture 1 also hold for thick layers built over surfaces of strictly positive
total Gauss curvature without assuming cylindrical symmetry or square-integrability of the gradient
of the mean curvature?

So-called “thick layers” are those whose thickness satisfies (1.6) and is not otherwise restricted.
Lin and Lu proved in Theorem 1.1 of Ref. 11 that Conjecture 1 holds when Σ can be represented
as the graph of a convex function satisfying certain conditions. Our next theorem generalizes11 and
gives an affirmative answer to the above question under the additional assumption that the Gauss
curvature is everywhere non-negative.

Theorem 1.4: Let Σ be a complete surface in R3 which satisfies the hypotheses (I A). Assume
that the Gauss curvature of Σ is non-negative and satisfies (1.1). Then for all a such that

a ∈ (0, B−1
∞ ), B∞ := sup

p∈Σ

||B(p)||, (1.6)

the discrete spectrum of the quantum layer over Σ of width 2a is non-empty.

Remark 1.2: The condition (1.6) is merely a technicality to ensure that � is immersed in R3

and is slightly weaker than the non-overlapping assumption made in Refs. 3 and 4 (cf. the Remark
on pp. 6–7 of Ref. 4).

The proof of Theorem 1.4 is more subtle. Test functions similar to those used in Refs. 3 and
4 rely on the weak κ-parabolicity of the surfaces, but a surface with non-negative Gauss curvature
will not be weakly κ-parabolic. The main idea is to work on annuli, rather than on disks. In general,
the integration of the mean curvature outside a compact set may be quite small since the surface is
asymptotically flat. But using a result of White,15 we actually know that the total mean curvature is
at least of linear growth. This estimate plays a crucial role in the proof.

In fact, our final main result is more general than Conjecture 1. Any surface whose Gauss
curvature is integrable must be parabolic (see Sec. 3 for the definition), yet not all parabolic surfaces
have integrable Gauss curvature, as demonstrated in Sec. 5.
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Theorem 1.5: Let Σ be a complete, parabolic surface in R3 which satisfies the hypotheses
(I A). Then, there exists α > 0 such that the discrete spectrum of the quantum layer over Σ of width
2a is non-empty for all a ∈ (0, α).

This paper is organized as follows. In Sec. II, we recall the variational principles for the
essential spectrum and the ground state, and we determine the infimum of the essential spectrum. In
Sec. III, we introduce the notion of κ-parabolicity and prove Theorem 1.3. The proof of Theorem
1.4 comprises Sec. IV. We conclude in Sec. V with the proof of Theorem 1.5 and a discussion of
further generalizations.

II. VARIATIONAL PRINCIPLES AND THE INFIMUM OF THE ESSENTIAL SPECTRUM

It is well known that

σ0 = inf
f ∈C∞

0 (�)

∫
�

|∇ f |2d�∫
�

f 2d�
(2.1)

is the infimum of the spectrum of the Laplacian.
For a compact set E ⊂ Σ , we shall use the notation

f ∈ C∞
0 (Σ \ E)

to denote a function f ∈ C∞
0 (Σ) whose support lies in Σ \ E . The infinimum of the essential

spectrum is

σess = sup
K

inf
f ∈C∞

0 (�\K )

∫
�

|∇ f |2d�∫
�

f 2d�
(2.2)

where K runs over all compact subsets of �. Since � = Σ × [−a, a], it is not hard to see that

σess = sup
K⊂Σ

inf
f ∈C∞

0 (�\K×[−a,a])

∫
�

|∇ f |2d�∫
�

f 2d�
, (2.3)

where K runs over all compact subsets of Σ .
It follows that σ 0 ≤ σ ess, and in particular, we have the following.

Remark 2.1: If σ 0 < σ ess, then the discrete spectrum is non-empty.

Let (x1, x2) be a local coordinate system of Σ . Then (x1, x2, t) defines a local coordinate
system of �. Such a local coordinate system is called a Fermi coordinate system. Let x3 = t, and let
ds2

� = Gi j dxi dx j . Then we have

Gi j =

⎧⎪⎨
⎪⎩

(p + t �N )xi (p + t �N )x j 1 ≤ i, j ≤ 2;

0 i = 3, or j = 3, but i �= j ;

1 i = j = 3.

(2.4)

We will demonstrate below that the infimum of the essential spectrum is equal to the spectral
threshold of the planar quantum layer of width 2a, namely, π2/4a2.

We make the following definitions. For a smooth function f on �, let

Q( f, f ) =
∫

�

|∇ f |2d� − π2

4a2

∫
�

f 2d�; (2.5)

Q1( f, f ) =
∫

�

|∇′ f |2d�; (2.6)

Q2( f, f ) =
∫

�

(
∂ f

∂t

)2

d� − π2

4a2

∫
�

f 2d�, (2.7)
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where

|∇′ f |2 =
2∑

i, j=1

Gi j ∂ f

∂xi

∂ f

∂x j

is the square of the norm of the horizontal differential.
Obviously, we have

Q( f, f ) = Q1( f, f ) + Q2( f, f ),

and ∫
�

|∇ f |2d� =
∫

�

|∇′ f |2d� +
∫

�

(
∂ f

∂t

)2

d�.

Clearly, we have ∫
�

|∇ f |2d� ≥
∫

�

(
∂ f

∂t

)2

d�.

Let ds2
Σ = gi j dxi dx j be the Riemannian metric of Σ with respect to the coordinates (x1, x2).

We shall compare the matrices (Gij)1≤i, j≤2 and (gij) outside a big compact set of Σ . By (2.4), we
have

Gi j = gi j + tpxi
�Nx j + tpx j

�Nxi + t2 �Nxi
�Nx j , (2.8)

where we note that gij = pxi px j .
Using (2.8), we have

det(Gi j ) = det(gi j )(1 − Ht + κt2). (2.9)

(Note that the mean curvature H is defined to be the trace of the second fundamental form.)
We assume that at the point x, local coordinates (x1, x2) are chosen such that gij = δij. We have

the estimate

|Gi j − δi j | ≤ a||B||, (2.10)

where B is the second fundamental form of the surface Σ . Based on these calculations, we have the
following.

Proposition 2.1: Let Σ be an embedded surface in R3 which satisfies hypotheses (I A). Then,
for any a which satisfies (1.6), the quantum layer � ∼= Σ × [−a, a] is an immersed submanifold of
R3. Moreover, for any ε > 0, there is a compact set K of Σ such that on Σ \ K we have

(1 − ε)

(
g11 g12

g21 g22

)
≤

(
G11 G12

G21 G22

)
≤ (1 + ε)

(
g11 g12

g21 g22

)
. (2.11)

In particular, we have

(1 − ε)2dΣdt ≤ d� ≤ (1 + ε)2dΣdt. (2.12)

On the other hand, there exists α = α(Σ, ε) > 0 such that for all a ∈ (0, α), the above inequalities
hold at any point of Σ .

Proof: It follows from (2.9) and (2.10) that � is an immersed submanifold whenever a satisfies
(1.6). By (2.10) and the assumption that Σ is asymptotically flat, for any ε > 0, there exists a compact
subset K ⊂ Σ such that (2.11) holds on Σ \ K . Since ||B|| vanishes at infinity, both H and κ also
vanish at infinity. Therefore, (2.12) follows from (2.9). Finally, for a fixed ε > 0, we may choose a
compact subset K ⊂ Σ such that both (2.11) and (2.12) hold on Σ \ K , and since K is compact, by
(2.9) and (2.10), we may choose a sufficiently small such that (2.11) and (2.12) hold also on K. �

The following technical lemma shall be used throughout the remaining sections.
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Lemma 2.1: For a surface Σ which satisfies (I A), let j be a smooth function on Σ with compact
support, and let

χ (t) = cos

(
π t

2a

)
.

Then there exist universal constants C1 and C2 which depend only on B∞ (the supremum of the norm
of the second fundamental form) and an absolute constant C3 such that

Q( jχ t, jχ t) ≤ a
∫

Σ

j2dΣ + C2a3
∫

Σ

|∇ j |2dΣ + C3a3
∫

Σ

j2κdΣ. (2.13)

Moreover, we also have the following estimate

Q( jχ, jχ ) ≤ a
∫

Σ

j2κdΣ + (a + a2||B||∞ + a3||B||∞)
∫

Σ

|∇ j |2dΣ. (2.14)

Proof: It is a straightforward exercise to compute:∫ a

−a
χ2(t)dt = −2

∫ a

−a
χ ′(t)χ (t)tdt = a,

∫ a

−a
χ (t)2t2dt = −2

3

∫ a

−a
χ ′(t)χ (t)t3dt = a3(π2 − 6)

3π2
,

∫ a

−a
(χ ′(t))2t2dt = a(6 + π2)

12
,

∫ a

−a
χ (t)2t4dt = a5(120 − 20π2 + π4)

5π4
,

∫ a

−a
(χ ′(t))2t4dt = a3(20π2 − 120 + π4)

20π2
.

(2.15)

By (2.9) and (2.8), and since j is independent of t, there is a constant C0 which depends only on B∞
such that

Q1( jχ t, jχ t) ≤ C0

∫ a

−a

∫
Σ

|∇ j |2χ2t2dΣdt

By (2.15), we have

Q1( jχ t, jχ t) ≤ C2a3
∫

Σ

|∇ j |2dΣ,

where

C2 := C0

(
π2 − 6

3π2
+ a2(120 − 20π2 + π4)

5π4
B∞

)
.

Next, we have

Q2( jχ t, jχ t) =
∫ a

−a

∫
Σ

(
(χ ′)2t2 + χ2 + 2χχ ′t

)
(1−Ht + κt2) j2dΣdt

− π2

4a2

∫ a

−a

∫
Σ

χ2(1−Ht + κt2) j2dΣ.
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Since ((χ ′)2t2 + χ2 + 2χχ ′t) and χ2t2 are even functions, we have

Q2( jχ t, jχ t) =
∫ a

−a

∫
Σ

(
(χ ′)2t2 + χ2 + 2χχ ′t

)
(1 + κt2) j2dΣdt

− π2

4a2

∫ a

−a

∫
Σ

χ2t2(1 + κt2) j2dΣ.

Using (2.15), we have

Q2( jχ t, jχ t) = a
∫

Σ

j2dΣ +
(

4

3
− 8

π2

)
a3

∫
Σ

j2κdΣ. (2.16)

To complete the proof of the lemma, we first compute as above using (2.15)

Q2( jχ, jχ ) = a
∫

Σ

j2κdΣ.

Next, by (2.10),

Q1( jχ, jχ ) ≤ (1 + a||B||∞)
∫

�

|∇ j |2χ2d�.

By (2.9) and since χ2 is an even function,

Q1( jχ, jχ ) ≤ (1 + a||B||∞)
∫

Σ

∫ a

−a
|∇ j |2χ2(1 + κt2)dtdΣ.

Using (2.15) and since κ ≤ ||B||∞, we have

Q1( jχ, jχ ) ≤ (1 + a||B||∞)

(
a + a3(π2 − 6)

3π2
||B||∞

) ∫
Σ

|∇ j |2dΣ.

Finally, estimating the constants and using the hypothesis a ≤ ||B||−1
∞ , we have

Q1( jχ, jχ ) ≤ (
a + a2||B||∞ + a3||B||∞

) ∫
Σ

|∇ j |2dΣ.

�
Based on the preceding results and the variational principle, we are able to determine σ ess. The

following lemma is originally due to Refs. 3 and 4, but we include a short proof for completeness.

Lemma 2.2: Let Σ be an embedded surface in R3 which satisfies the hypotheses (I A), and
assume the Gauss curvature satisfies (1.1). Then, for any quantum layer � built over Σ of width 2a
> 0, where a satisfies (1.6),

σess = π2

4a2
.

Proof: We first prove that

σess ≥ π2

4a2
.

Let ε > 0 be given, and let K be a compact set of Σ as in Proposition 2.1. Let K̃ ⊂ � be defined as

K̃ ∼= K × [−a, a].

For f ∈ C∞
0 (� \ K̃ ), by Proposition 2.1,∫
�

(
∂ f

∂t

)2

d� ≥ (1 − ε)2
∫

Σ

∫ a

−a

(
∂ f

∂t

)2

dtdΣ ≥ (1 − ε)2 π2

4a2

∫
Σ

∫ a

−a
f 2dtdΣ,
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where the last inequality follows from the one-dimensional Poincaré inequality. By Proposition 2.1
again, we have ∫

�

|∇ f |2d� ≥ (1 − ε)2

(1 + ε)2

π2

4a2

∫
�

f 2d�,

which by the variational principle for σ ess implies

σess ≥ (1 − ε)2

(1 + ε)2

π2

4a2
.

Letting ε → 0 completes the proof of the first inequality.
To complete the proof of the lemma, we demonstrate the estimate

σess ≤ π2

4a2
. (2.17)

Since the Gauss curvature tends to zero, it is well known (see Ref. 2) that the infimum of the essential
spectrum of Σ is zero. Therefore, for any compact set K and any ε > 0, there exists a smooth function
ϕ ∈ C∞

0 (Σ \ K ) such that ∫
Σ

|�ϕ|2dΣ ≤ ε

∫
Σ

ϕ2dΣ.

It follows that∫
Σ

|∇ϕ|2dΣ = −
∫

Σ

ϕ�ϕdΣ ≤
√∫

Σ

ϕ2dΣ ·
√∫

Σ

(�ϕ)2dΣ ≤ √
ε

∫
Σ

ϕ2dΣ.

Using Proposition 2.1, for sufficiently large K, we have∫
�

|∇′ϕ|2d� ≤ 2(1 + ε)a
∫

Σ

|∇ϕ|2dΣ ≤ 2ε(1 + ε)a
∫

Σ

ϕ2dΣ.

As in Lemma 2.1, we let

χ (t) = cos(π t/2a)

and consider the function ϕχ on �. Thus by (2.15) and (2.9), since χ2 and (χ ′)2 are even functions,
we have

Q2(ϕχ, ϕχ ) =
∫

Σ

ϕ2dΣ

∫ a

−a

((
χ ′(t)

)2 − π2

4a2
χ (t)2

)
dt

+
∫

Σ

ϕ2κdΣ

∫ a

−a
t2

((
χ ′(t)

)2 − π2

4a2
χ (t)2

)
dt.

By (2.15), we have

Q2(ϕχ, ϕχ ) = a
∫

Σ

ϕ2κdΣ, (2.18)

and hence

Q(ϕχ, ϕχ ) ≤ 2aε(1 + ε)
∫

Σ

ϕ2dΣ + a
∫

Σ

ϕ2κdΣ.

By Proposition 2.1 and (1.1),∫
�

(ϕχ )2d� ≥ 2(1 − ε1)a
∫

Σ

ϕ2dΣ,

and ∫
Σ

ϕ2κdΣ ≤ ε1

∫
Σ

ϕ2dΣ
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for some sufficiently small ε1 > 0. By the variational principle for σ ess and the definition of Q, we
have

σess − π2

4a2
≤ Q(ϕχ, ϕχ )∫

�
(ϕχ )2d�

≤ 2ε(1 + ε) + ε1

2(1 − ε)
.

This proves the lemma. �
III. κ-PARABOLICITY

We refer to Ref. 9 for the following definition and basic properties of parabolic manifolds.

Definition 3.1: A complete manifold is parabolic if it does not admit a positive Green’s function.
Otherwise it is non-parabolic.

We first establish the following well-known result.

Proposition 3.1: Assume that κ ∈ L1(Σ). Then there exists a positive constant c1 such that the
volume growth of Σ satisfies ∫

B(R)
dΣ < c1 R2.

Proof: By the results of Huber7 and Hartman,6 Σ has only finitely many ends, {Ei }s
i=1 and at

each end,

λi = lim
r→∞

vol(B(r ) ∩ Ei )

πr2

exists. This proves the proposition. �
By the above proposition, a surface whose Gauss curvature κ ∈ L1 is a parabolic manifold (cf.

Ref. 9).
The definition of parabolicity is equivalent to: the capacity of any ball of radius R is zero. That

is, for any positive R and ε, there exists a smooth function ϕ which satisfies

ϕ ∈ C∞
0 (Σ);

ϕ ≡ 1 on B(R);

0 ≤ ϕ ≤ 1;∫
Σ

|∇ϕ|2dΣ < ε.

For the rest of the paper, we shall repeatedly use the above equivalent capacity definition of
parabolicity.

Parallel to the above, we make the following definition of weak κ-parabolicity.

Definition 3.2: The κ-capacity of a subset E ⊂ Σ is defined to be the infimum of∫
Σ

(
2|∇ϕ|2 + κϕ2

)
dΣ,

where ϕ is a smooth function on Σ with compact support, and ϕ ≡ 1 in a neighborhood of E.
We say Σ is weakly κ-parabolic, if either Σ is a minimal parabolic surface, or if there exists

p ∈ Σ such that H(p) �= 0, and the κ-capacity of a neighborhood of p is non-positive.

Proof of Theorem 1.3: By Lemma 2.2 and the variational principles, it suffices to prove

σ0 < σess .
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If Σ is a minimal surface, then κ ≤ 0. Consequently the total Gauss curvature is negative
because Σ is not totally geodesic. In this case using (2.14) we obtain

Q(ϕχ, ϕχ ) ≤ a
∫

Σ

κϕ2dΣ + C
∫

Σ

|∇ϕ|2dΣ,

where the constant C depends only on ||B||∞. By the capacity definition of parabolicity, the second
term on the right-hand side can be made arbitrary small while the first term is negative if the support
of ϕ is sufficiently large. Thus we conclude that Q(ϕχ , ϕχ ) < 0 for a suitable choice of ϕ, and in
this case, the theorem is proven.

To prove the remaining case, let p ∈ Σ be a point such that H(p) �= 0. We assume that there
is a constant ε1 > 0 such that |H(p)| > ε1 on the ball of radius δ centered at p, which is denoted
Bp(δ), with δ a fixed positive constant. For any ε2 > 0, by the definition of weakly κ-parabolic (and
choosing δ > 0 smaller if necessary), there exists a smooth function ϕ with compact support such
that ϕ ≡ 1 on Bp(δ), and ∫

Σ

(
2|∇ϕ|2 + κϕ2

)
dΣ < ε2. (3.1)

Let j be a smooth function such that the support of j is contained in Bp(δ), and∣∣∣∣
∫

Σ

H jdΣ

∣∣∣∣ > ε3 > 0

for some positive constant ε3 > 0. For a suitable choice of orientation, we may assume that∫
Σ

H jdΣ > ε3 > 0.

By (2.14), if a is chosen small enough,

Q(ϕχ, ϕχ ) ≤ a

(∫
Σ

(
2|∇ϕ|2 + κϕ2

)
dΣ

)
≤ aε2.

By (2.15), we have

Q(ϕχ (t), jχ (t)t) = −a

2

∫
Σ

H jdΣ. (3.2)

Let ε > 0. Using all the above estimates and Lemma 2.1, we have

Q(ϕχ (t) + ε jχ (t)t, ϕχ (t) + ε jχ (t)t) < aε2 − aε3ε + c1aε2.

Since ε2 can be made arbitrary small, and ε3 > 0 is fixed, for a suitable choice of ε, we have

Q(ϕχ (t) + ε jχ (t)t, ϕχ (t) + ε jχ (t)t) < 0

for all a ∈ (0, α), for α chosen sufficiently small. �
The following sufficient condition for κ-parabolicity implies that Theorem 1.3 is indeed a

generalization of both Refs. 3 and 4.

Lemma 3.1: Let Σ be a complete surface such that∫
Σ

|κ|dΣ < ∞,

and ∫
Σ

κdΣ ≤ 0. (3.3)

Then Σ is weakly κ-parabolic.
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Proof: First, if the mean curvature H ≡ 0 on Σ , then Σ is a minimal surface, and there is nothing
to prove. So, we assume there exists some p ∈ Σ such that H(p) �= 0. Since κ is integrable, Σ is
parabolic. That is, for any ball B(R) of radius R centered at p, there exists a smooth function 0 ≤ ϕ

≤ 1 with compact support such that ϕ ≡ 1 on B(R) and∫
Σ

|∇ϕ|2dΣ < ε.

On the other hand, by the integrability of κ , for sufficiently large R,∫
Σ\B(R)

κϕ2dΣ < ε,

∫
Σ\B(R)

|κ|dΣ < ε,

and therefore, by the assumption (3.3), ∫
Σ

κϕ2dΣ < 2ε.

It follows that for any ε > 0 and R sufficiently large, there exists a function ϕ ∈ C∞
0 (Σ) such that ϕ

≡ 1 on B(R), and ∫
Σ

(
2|∇ϕ|2 + κϕ2

)
dΣ < 4ε.

This estimate proves the lemma. �
Remark 3.1: There are many examples of surfaces which are weakly κ-parabolic but whose

total Gauss curvature is positive. For example, any Σ such that∫
Σ

|κ(Σ)| dΣ < ∞, and
∫

Σ

κ(Σ)dΣ < −ε0 < 0,

is parabolic. Therefore, choosing R > 0 sufficiently large, there exists a function ϕ such that

ϕ ∈ C∞
0 (Σ);

ϕ ≡ 1 on B(R);

0 ≤ ϕ ≤ 1;∫
Σ

|∇ϕ|2dΣ <
ε0

8
,

and ∫
B(R)

κ(Σ)dΣ < −1

2
ε0,

∫
B(R)

κ(Σ)ϕ2dΣ < −1

4
ε0.

In this case, ∫
Σ

(
2 |∇ϕ|2 + κϕ2) dΣ < 0.

It follows that the surface is weakly κ-parabolic. Now, since ϕ is compactly supported, there exists
R′ > 0 such that the support of ϕ is contained in B(R′). Then, it is always possible to change Σ

outside of B(R′) such that the volume growth is of order R (for example, we can attach a cylinder
∂ B(R) × R+ to the compact manifold B(R)), which by Hartman’s result6 implies that for the new
Σ ′, ∫

Σ ′
κ(Σ ′)dΣ ′ = 2π > 0.

Since

Σ \ B(R′) ∼= Σ ′ \ B(R′),

Σ ′ is still weakly κ parabolic, however the total Gauss curvature is positive.
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IV. PROOF OF THEOREM 1.4

We proceed as in the proof of Theorem 1.3 by demonstrating that

σ0 < σess .

By Proposition 2.1, this implies that the discrete spectrum is non-empty.
First, if the Gauss curvature is identically zero, then by Theorem of Ref. 12, the discrete spectrum

is non-empty.
Henceforth, we shall assume that there is at least one point of Σ at which the Gauss curvature

is positive. Then, by a theorem of Sacksteder (Ref. [14 Theorem (*), p. 610]), with suitable choice
of orientation, we can assume that the principle curvatures of Σ are always non-negative.

By (1.5), it follows from the results of White15 (Theorem 1, p. 318), that there exists an ε0 > 0
such that for R � 0, ∫

∂ B(R)
||B|| > ε0,

where B is the second fundamental form of Σ . Since the principle curvatures are non-negative, we
have

H ≥ ||B||.
Thus we have ∫

B(R2)\B(R1)
H dΣ ≥ ε0(R2 − R1) (4.1)

provided that both R1 and R2 are large enough.
We follow the same general method of Refs. 3, 4, 10–12 . The main idea is to use the above

estimate together with test functions supported in annuli whose radii tend to infinity.
Let ϕ ∈ C∞

0 (Σ \ B( R
2 )) be a smooth function such that

supp(ϕ) ⊂ B(
5

2
R);

ϕ ≡ 1 on B(2R) \ B(R);

0 ≤ ϕ ≤ 1;∫
Σ

|∇ϕ|2dΣ < ε1,

(4.2)

where ε1 → 0 as R → ∞. The existence of such a function ϕ is guaranteed by the parabolicity of Σ .
Let χ be defined as in Secs. II– III. By Proposition 2.1, there is a constant c2 such that

Q1(ϕχ, ϕχ ) ≤ c2a
∫

Σ

|∇ϕ|2dΣ < c2aε1.

Hence

Q1(ϕχ, ϕχ ) → 0 as R → ∞.

Next, we use the same calculations as in Secs. II– III to compute

Q2(ϕχ, ϕχ ) = a
∫

Σ

ϕ2κdΣ.

Since the support of ϕ is contained in the annulus B( 5
2 R) \ B(R/2), by the integrability assumption

(1.1) on κ ,

Q2(ϕχ, ϕχ ) → 0 as R → ∞.

Since Q = Q1 + Q2, there exists ε3 > 0 such that

Q(ϕχ, ϕχ ) ≤ ε3, ε3 → 0 as R → ∞.
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Now let us consider a smooth function j on Σ with 0 ≤ j ≤ 1, such that

j ∈ C∞
0

(
B(

5

3
R) \ B(

4

3
R)

)
;

j ≡ 1 on B(
19

12
R) \ B(

17

12
R);

|∇ j | < 2.

We consider the function jχ (t)t. By Lemma 2.1, the integrability of κ , and since |∇j| < 2, there is
an absolute constant c1 such that

Q( jχ (t)t, jχ (t)t) ≤ c1a
∫

Σ

j2dΣ.

Next, let us consider Q(ϕχ (t), jχ (t)t). Since the support of j is contained in {ϕ ≡ 1}, by (2.6),
Q1(ϕχ (t), jχ (t)t) = 0.

The same computation as in (3.2) shows that

Q2(ϕχ (t), jχ (t)t) = −a

2

∫
Σ

H jdΣ.

Let ε > 0. By our preceding calculations

Q(ϕχ (t) + ε jχ (t)t, ϕχ (t) + ε jχ (t)t)

< ε3 − εa
∫

Σ

H jdΣ + ε2c1a
∫

Σ

j2dΣ. (4.3)

By (4.1) and the definition of j, there is an independent constant c′
1 such that

Q(ϕχ (t) + ε jχ (t)t, ϕχ (t) + ε jχ (t)t) < ε3 − a

6
εR + ε2c′

1 R2.

Since ε3 → 0 as R → ∞, we may first choose R sufficiently large and then choose ε > 0
appropriately so that for all a ∈ (0, B−1

∞ ),

Q(ϕχ (t) + ε jχ (t)t, ϕχ (t) + ε jχ (t)t) < 0.

Therefore the discrete spectrum is non-empty. �
V. PROOF OF THEOREM 1.5 AND FURTHER DISCUSSIONS

The proof of Theorem 1.4 can be generalized to demonstrate Theorem 1.5, which is a stronger
result than Conjecture 1.

Proof of Theorem 1.5: We first note that if the mean curvature vanishes identically, then since
Σ is not totally geodesic, κ �≡ 0. Since H ≡ 0, it follows that κ ≤ 0, and therefore the same method
in Refs. 3 and 4 can be used to prove the Theorem 1.5, even without the assumption∫

Σ

(−κ)dΣ < ∞.

Nonetheless, we include a short proof here for the sake of completeness. Using the capacity definition
of parabolicity, for any ε1 > 0 there exists a smooth function ϕ such that

ϕ ∈ C∞
0 (Σ);

ϕ ≡ 1 on B(2R);

0 ≤ ϕ ≤ 1;∫
Σ

|∇ϕ|2dΣ < ε1.
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By (2.14), we have

Q(ϕχ, ϕχ ) ≤ aCε1 + a
∫

Σ

ϕ2κdΣ, (5.1)

as R → ∞, where C is a constant depending only on B∞. Since κ ≤ 0 and κ �≡ 0, for sufficiently
large R,

Q(ϕχ, ϕχ ) < 0.

Thus, the theorem is proved when the mean curvature is identically zero. So from now on we
assume that H �≡ 0.

First, we assume the mean curvature H is smooth. Let ϕ be defined as above and let

j = ϕH.

We compute

Q(ϕχ, ε jχ t) ≤ εc1a2
∫

Σ

|∇ϕ · ∇ j | dΣ − ε
a

2

∫
Σ

ϕH jdΣ,

where the constant c1 depends only on ||B||∞. By Lemma 2.1 and (2.13)

Q(ε jχ t, ε jχ t) ≤ ε2a
∫

Σ

j2dΣ + ε2a3c3

∫
Σ

|∇ j |2dΣ + ε2c4a3
∫

Σ

j2κdΣ,

where the constant c3 depends only on ||B||∞, and the constant c4 is independent.
Therefore, using (5.1), we have

Q(ϕχ + ε jχ t, ϕχ + ε jχ t) ≤ aCε1

+ a

(∫
Σ

ϕ2κdΣ − ε

∫
Σ

ϕH jdΣ + ε2
∫

Σ

j2dΣ

)

+ 2a2εc1

∫
Σ

|∇ϕ · ∇ j |dΣ

+ a3

(
ε2c3

∫
Σ

|∇ j |2dΣ + ε2c4

∫
Σ

j2κdΣ

)
.

(5.2)

Note that

κ ≤ 1

4
H 2.

If κ ≡ 1
4 H 2, then all points of Σ are umbilic. Hence by the Meusnier Theorem (see p. 175 of

Ref. 13), Σ is a sphere, which contradicts the fact that Σ is non-compact. Thus by continuity
κ < 1

4 H 2 on a set of positive measure. It follows that for sufficiently large R, there exists a fixed ε5

> 0 which depends only on B such that∫
Σ

ϕ2κdΣ ≤ 1

4

∫
Σ

ϕ2 H 2dΣ − ε5.

Recalling the definition of j, we have

Q(ϕχ + ε jχ t, ϕχ + ε jχ t) ≤ aCε1

+ a

((
1

4
− ε + ε2

) ∫
Σ

ϕ2 H 2dΣ − ε5

)
+ 2a2εc1

∫
Σ

|∇ϕ · ∇(ϕH )| dΣ

+ a3

(
ε2c3

∫
Σ

|∇(ϕH )|2dΣ + ε2c4

∫
Σ

ϕ2 H 2κdΣ

)
.

(5.3)

To make this quantity negative, we first set

ε = 1

2
.
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This implies

Q(ϕχ + jχ t/2, ϕχ + jχ t/2) ≤ aCε1 − aε5

+ a2c1

∫
Σ

|∇ϕ · ∇(ϕH )| dΣ

+ a3

(
c3

4

∫
Σ

|∇(ϕH )|2dΣ + c4

4

∫
Σ

ϕ2 H 2κdΣ

)
.

(5.4)

We take R large to make ε1 small so that Cε1 < 1
2ε5. At this point ϕ, j, and ε5 are fixed, so we

can choose a sufficiently small to control the a2 and a3 terms, and therefore,

Q(ϕχ + jχ t/2, ϕχ + jχ t/2) < 0.

In the general case in which H need not be smooth, there is a canonical smooth approximation,

Ha(x) := 1

vol(Ba(x))

∫
Ba (x)

HdΣ,

if the underlying space is the Euclidean plane, where Ba(x) is the geodesic ball of radius a about a
point x ∈ Σ . This is an example of what is known in Russian literature as a “Steklov approximation”
and can be found in Ref. 1 and more recently in Sec. 4 of Ref. 8. On Σ , we use the mollification
technique of Lemmas 7.1 and 7.2 of Ref. 5 which, for any ε2 > 0 guarantees the existence of a
smooth function Hε1 such that∫

Σ

|H − Hε1 |2dΣ = ε3 → 0 as ε2 → 0.

We replace j defined above by ϕHε1 and estimate similarly.
By (5.2), we have

Q(ϕχ + ε jχ t, ϕχ + ε jχ t) ≤ aCε1

+ a

(∫
Σ

ϕ2κdΣ − ε

∫
Σ

ϕH jdΣ + ε2
∫

Σ

j2dΣ

)

+ 2a2εc1

∫
Σ

|∇ϕ · ∇ j |dΣ

+ a3

(
ε2c3

∫
Σ

|∇ j |2dΣ + ε2c4

∫
Σ

j2κdΣ

)
.

By the discussion above, we assume that κ < 1
4 H 2 on a set of positive measure. Therefore, for

sufficiently large R, there exists a constant ε5 > 0 which depends only on B such that∫
Σ

ϕ2κdΣ ≤ 1

4

∫
Σ

ϕ2 H 2dΣ − ε5.

Therefore,

Q(ϕχ + ε jχ t, ϕχ + ε jχ t) ≤ aCε1

+ a

(
1

4

∫
Σ

ϕ2 H 2dΣ − ε

∫
Σ

ϕH jdΣ + ε2
∫

Σ

j2dΣ − ε5

)

+ 2a2εc1

∫
Σ

|∇ϕ · ∇ j |dΣ + a3

(
ε2c3

∫
Σ

|∇ j |2dΣ + ε2c4

∫
Σ

j2κdΣ

)
.

(5.5)

Since j = ϕHε1 , by the Cauchy-Schwarz inequality and the definition of Hε1 ,∣∣∣∣
∫

Σ

ϕH jdΣ −
∫

Σ

ϕ2 H 2dΣ

∣∣∣∣ ≤ √
ε4

√∫
Σ

ϕ2 H 2dΣ,
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where

ε4 =
√∫

Σ

ϕ2(Hε1 − H )2dΣ → 0 as ε2 → 0.

Moreover, by definition of Hε1 , we may assume that∫
Σ

ϕ2(Hε1 + H )2dΣ ≤ 9
∫

Σ

ϕ2 H 2dΣ.

It follows from the Cauchy-Schwarz inequality and the definition of Hε1 that∣∣∣∣
∫

Σ

j2dΣ −
∫

Σ

ϕ2 H 2dΣ

∣∣∣∣ ≤ 3
√

ε4

√∫
Σ

ϕ2 H 2dΣ.

Therefore, by the definition of j we estimate

Q(ϕχ + ε jχ t, ϕχ + ε jχ t) ≤ aCε1 − aε5

+ a

((
1

4
− ε + ε2

) ∫
Σ

ϕ2 H 2dΣ

)

+ aε
√

ε4 (1 + 3ε)

√∫
Σ

ϕ2 H 2dΣ

+ 2a2εc1

∫
Σ

|∇ϕ · ∇ j |dΣ

+ a3

(
ε2c3

∫
Σ

|∇ j |2dΣ + ε2c4

∫
Σ

j2κdΣ

)
.

Proceeding similarly, we first let ε = 1
2 . Then, we have

Q(ϕχ + jχ t/2, ϕχ + jχ t/2) ≤ aCε1 − aε5

+ a

2

5
√

ε4

2

√∫
Σ

ϕ2 H 2dΣ

+ a2c1

∫
Σ

|∇ϕ · ∇ j |dΣ + a3

(
c3

4

∫
Σ

|∇ j |2dΣ + c4

4

∫
Σ

j2κdΣ

)
.

To make this negative, we first let R be sufficiently large to make

Cε1 <
ε5

2
.

By the convergence of Hε1 to H, this can be done to make ε4 also small. Finally, since this fixes both
ϕ and j, we can choose a sufficiently small to control the a2 and a3 terms so that

Q(ϕχ + ε jχ t, ϕχ + ε jχ t) < 0.

Therefore, the discrete spectrum is also non-empty in the non-smooth case, when the mean curvature
is merely continuous. �

Remark 5.1: The preceding result implies Conjecture 1 and is in fact a stronger result, because
not all parabolic surfaces have integrable Gauss curvature. For example, let f ∈ C∞(R) satisfy:

(1)
∫ ∞

1 f (r )dr = O(r2);
(2)

∫ ∞
1 | f ′′(r )|dr = ∞.

Let Σ = R2 with polar coordinates (r, θ ), and let the Riemannian metric on Σ be g = dr2

+ f(r)2dθ2. Then the volume growth is quadratic, and hence (Σ, g) is parabolic (see Ref. 9),
but by (2) above, the Gauss curvature is not integrable.
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A. Further discussions

In Sec. 7 of Ref. 4, they construct a layer whose discrete spectrum is empty, but this example
is not asymptotically planar. In both our work and Refs. 3 and 4, in some cases we are able to
prove the existence of discrete spectrum for “thick layers,” meaning those whose thickness satisfies
(1.6) and is not further restricted: Theorem 1.4; Theorem 1.1 (1), (3), (4); Theorem 1.2 (1), (3),
(4). However, for the remaining cases, we must assume the layer is sufficiently thin to prove the
existence of discrete spectrum. It would be interesting to investigate whether Theorem 1.5 holds for
all “thick layers” over parabolic surfaces Σ satisfying (I A), or whether one may construct a layer
of width 2a for a satisfying (1.6) over a parabolic surface which satisfies (I A), such that the discrete
spectrum of the layer is empty. The results of Refs. 3 and 4 and Theorem 1.3 indicate that we expect
the following conjecture holds.

Conjecture 2: Let Σ be a surface which satisfies (I A), and assume the Gauss curvature satisfies
(1.1). Then, there exists α = α(B∞) > 0 depending only on the supremum of the norm of the second
fundamental form such that for all a ∈ (0, α), the discrete spectrum of the quantum layer of width
2a over Σ is non-empty.

Although we are unable to completely prove the above conjecture, the following results imply
the conjecture holds under certain geometric assumptions.

Theorem 5.1: Let Σ be a complete surface in R3 which satisfies the hypotheses (I A), and
assume that the Gauss curvature of Σ satisfies (1.1). The following is sufficient to imply Conjecture
2:

∃ε0 > 0 such that ∀ R > 0, ∃ j ∈ C∞
0 (Σ \ B(R)) wi th (5.6)(∫

Σ

H jdΣ

)2

> ε0

∫
Σ

(|∇ j |2 + j2)dΣ.

Proof: As noted previously, we may assume∫
Σ

κdΣ > 0.

Since Σ is parabolic, for any R > 0 sufficiently large there exists a smooth function ϕ ∈ C∞
0 (B(R′) \

B(R)) such that

ϕ ≡ 1 on B(R′/2) \ B(2R);∫
Σ

|∇ϕ|2dΣ < ε1;

0 ≤ ϕ ≤ 1;∫
Σ

κϕ2dΣ < ε1,

(5.7)

where R′ is a sufficiently large number. It follows from the arguments in the proof of Theorem 1.4
that

Q(ϕχ, ϕχ ) < ε3, ε3 → 0 as R → ∞.

We choose R′ large enough such that

supp ( j) ⊂ B(R′/2) \ B(2R).

Without loss of generality, we assume that∫
Σ

H jdΣ > 0.
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Then using the same method as in the proof of Theorem 1.4, letting ε > 0, we have

Q(ϕχ + ε jχ (t)t, ϕχ + ε jχ (t)t)

≤ ε3 − aε

∫
Σ

H jdΣ + c1ε
2a

∫
Σ

( j2 + |∇ j |2)dΣ

for some constant c1 which is independent of R. Since ε3 → 0 as R → ∞, we first choose R
sufficiently large to make ε3 sufficiently small. Then, using (5.6), for all sufficiently small ε > 0,

Q(ϕχ + ε jχ (t)t, ϕχ + ε jχ (t)t) < 0.

This implies that the discrete spectrum of the layer � = Σ × [−a, a] is non-empty, for any a which
satisfies (1.6). �

Based on the above theorem, we make the following purely Riemannian geometric conjecture.

Conjecture 3: Let Σ be a complete surface in R3 which satisfies the hypotheses (I A), and
assume that the Gauss curvature κ of Σ satisfies (1.1). If the total Gauss curvature is positive

∫
Σ

κ > 0,

then (5.6) holds.

Remark 5.2: By the results of Refs. 3 and 4, Conjecture 3 together with Theorem 5.1 would
imply Conjecture 2.

Remark 5.3: It is straightforward to verify that conditions (3) and (4) in Theorem 1.2 are each
implied by (5.6). For example, to prove that (3) implies (5.6), j is replaced by jH, and (5.6) follows
from a direct calculation. Assuming (4), (5.6) follows from either Lemma 6.1 of Ref. 4 or p. 783 of
Ref. 3.

The following proposition uses the result of White15 to demonstrate a weaker version of the
inequality of (5.6).

Proposition 5.1: Assume that Σ is a complete surface in R3 which satisfies the hypotheses (I A),
and that the Gauss curvature κ satisfies

∫
Σ

|κ|dΣ < ∞,

∫
Σ

κdΣ > 0.

Then for any R > 0 there exists a positive constant ε0 and a function j ∈ C∞
0 (Σ \ B(R)) which

satisfies

(∫
Σ

j |H |dΣ

)2

> ε0

∫
Σ

(|∇ j |2 + j2)dΣ. (5.8)

Proof: By the result (Ref. 15, Theorem 1, p. 318), for sufficiently large R,

∫
∂ B(R)

||B|| > c1 > 0

for some constant c1.
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By the parabolicity of Σ and Proposition 3.1, we can find a function j whose support is contained
in B( 5

3 R) \ B( 4
3 R), with

j ≡ 1 on B(
19

12
R) \ B(

17

12
R);∫

Σ

|∇ j |2dΣ < 1,

∫
Σ

j2dΣ ≤ c1 R2,

(5.9)

where c1 is a positive constant independent of R. Hence we have∫
Σ

||B|| jdΣ ≥ c2 R

for some constant c2.
On the other hand, since κ is integrable, for sufficiently large R, we have∫

Σ

j
√

|κ|dΣ ≤
√∫

Σ

jdΣ ·
√∫

Σ

jκdΣ ≤ ε3 R,

for some small positive constant ε3 when R is large.
Since |H | ≥ ||B|| − √

2|κ|, the above inequalities show that∫
Σ

j |H |dΣ ≥
∫

Σ

||B|| jdΣ −
∫

Σ

j
√

2|κ|dΣ ≥ (c2 −
√

2ε3)R.

Therefore, there exists ε > 0 such that for sufficiently large R,∫
Σ

j |H |dΣ > εR.

Finally, by definition of j, for sufficiently large R,∫
Σ

(|∇ j |2 + j2)dΣ < 2c1 R2.

Therefore, there exists a constant ε0 > 0 such that for all R sufficiently large,(∫
Σ

j |H |dΣ

)2

> ε0

∫
Σ

(|∇ j |2 + j2)dΣ.

�
Remark 5.4: Note that the estimate (5.8) is weaker than (5.6), because the integration is j|H| rather

than jH. Although we are unable with our present methods to prove Conjecture 3, the proposition
supports the conjecture since it shows that if the mean curvature has fixed sign off some compact
set, then Conjecture 3 holds. However, by our methods, we cannot prove the conjecture when the
mean curvature H continually oscillates between positive and negative all the way to infinity; cf.
Example 6 from Sec. 6 of Ref. 4. One would need a new and different argument to prove Conjecture
3 in such cases.

Our final theorem below shows that if the surface Σ satisfies certain isoperimetric inequalities,
this is sufficient for (5.6).

Theorem 5.2: Let Σ satisfy the hypotheses (I A), and assume Σ also satisfies the following.

(1) The isoperimetric inequality holds. That is, there is a positive constant δ1 such that if D is a
domain in Σ , we have

(length(∂ D))2 ≥ δ1 Area(D).
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(2) There is another positive constant δ2 such that for any compact set K ⊂ Σ , there is a curve
C ⊂ Σ \ K such that if �γ is the normal vector of C in Σ , then there is a vector �η in R3 such
that

〈 �γ , �η〉 ≥ δ2 > 0.

(3) All such curves C are tamed. That is, let σ (t, x) be the geodesic flow of �γ . Then there exist
constants δ3, A such that the following hold.
(3.1) σ (t, x) is defined up to |t| < δ3;
(3.2) the map C × (−δ3, δ3) → Σ is diffeomorphic onto its image;
(3.3) the derivatives of σ and its inverse are bounded by the fixed constant A.

Then, if the Gauss curvature satisfies (1.1), (5.6) is valid.

Proof: To construct the required function j satisfying (5.6), we let ρ be a smooth non-increasing
cut-off function such that

ρ(t) =
{

1, t ≤ 1;

0, t ≥ 1.

Let C be the curve outside a compact set K, and let D be the compact domain of Σ such that ∂D =
C. Assume that �γ is the outward norm of C in Σ .

Define the cut-off function ρ̃ on Σ as follows

ρ̃ =
{

1 x ∈ D

ρ(ε−1dist(x, C)) x �∈ D
,

where ε is a positive number to be determined later.
Let (x, y, z) be the standard coordinates of R3. Without loss of generality, assume the vector �η

in the hypotheses of the theorem is the z-direction in three-dimensional Euclidean space.
Let �n be the normal vector of Σ ⊂ R3. Let nz be the z-component of �n. Define the function j by

j = ρ̃ · nz .

Since |ρnz| + |∇(ρnz)| ≤ ||B||∞ + 1, if we choose ε small enough, we have∫
Σ

(|∇ j |2 + j2)dΣ ≤ Cε−2 Area(D)

for ε small, where the constant C depends on A.
On the other hand, since Hnz = �z, we have∣∣∣∣

∫
Σ

H ρ̃nzdΣ

∣∣∣∣ =
∣∣∣∣
∫

Σ

∇z∇ρ̃dΣ

∣∣∣∣

= (〈 �γ ,∇z〉 + o(1)) · length(C) >
1

2
δ2 · length(C).

Therefore using the isoperimetric inequality, the conclusion of the theorem holds. �
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